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Abstract. Tzaar is an abstract strategy two-player game, which has re-
cently gained popularity in the gaming community and has won several
awards. There are some properties, most notably the high branching fac-
tor, that make Tzaar hard for computers. We developed Waltz, a strong
Tzaar-playing program, using enhanced variants of Alpha-beta and Proof-
number Search based algorithms. After many tests with computer oppo-
nents and a year of deployment on a popular board-gaming portal, we
conclude that Waltz can defeat all available computer programs and even
strong human players. In this paper we describe Waltz, its performance
and an enhancement of Proof-number Search developed for Waltz that
can be also used in other domains than Tzaar.

1 Introduction

Tzaar is a relatively new game, which was invented by Kris Burm and published
in 2007. Despite being so young, Tzaar has won quite a lot of awards, most
notably the Games Magazine’s award “Game of the Year 2009” [19], “Spiel des
Jahres” Recommendation in 2008 [21], and earned nominations to several other
awards. Tzaar is also highly rated by the gaming community, for example on
the popular server BoardGameGeek.com it has the second highest rating among
abstract games. It is a part of the Project GIPF, a set of six abstract strategy
two-player games. The first game of the project, also called GIPF, was played on
Computer Olympiad [20] in 2001.

There are several properties that make Tzaar a hard game to play for com-
puters. Most notably it is the high branching factor (see Section 1.3). Even in
the endgame there is usually more than one solution to a threat, thus algorithms
based on threats like Dependency-based Search [1] or Lambda Search [10] are
not effective. We cannot also easily decompose the game into independent parts
(unlike Amazons), thus standard techniques from combinatorial game theory are
not applicable. Therefore, writing a strong Tzaar playing program is a challenge.
We address this challenge by developing Waltz,3 a strong program able to de-
feat all other Tzaar programs that we are aware of, and also—which is more
important—match up with and defeat even strong human players.

We have installed several playable “robots” on the popular board-gaming por-
tal Boitejeaux.net [18], where some very strong players are playing. The details
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about Waltz performance against both computer and human opponents can be
found in Section 4.

The algorithms employed in Waltz are based on Alpha-beta pruning and
Proof-number Search (PNS), together with many enhancements, see Section 2
for more details. We chose and tuned these algorithms and their enhancements
after numerous statistical experiments and play-outs with other Tzaar playing
programs, humans, and different versions of Waltz.

We also developed an enhancement of PNS for Waltz called Heuristic Weak
PNS. See Section 2.2 for its description.

This paper was preceded by the thesis of Veselý [13], which, although slightly
outdated, contains a lot of details that are omitted here. Waltz, the thesis, and
other information can be downloaded from our website [11].

1.1 Tzaar Rules

Tzaar is a modern abstract strategy two-player game with full information, bear-
ing a distant similarity to Checkers in some sense.

The board for Tzaar is hexagonal and consists of 30 lines that makes 60 inter-
sections. There is a missing intersection in the center of the board. In the starting
position there are 30 white and 30 black pieces, one at each intersection. Each
color has pieces of three types: 6 are Tzaars, 9 are Tzarras and 15 are Totts. See
Fig. 1 for illustration.

The initial placement could be random or players can use a fixed starting
position which is defined in the official rules [2].

Pieces can form stacks, that means, towers of pieces of the same color. In the
beginning, all stacks on the board have height one. A stack is one entity, thus it
cannot be divided into two stacks. The type of a stack is the type of its top piece.

White player and black player take turns, white has the first turn. Each player’s
turn consists of two moves. There is an exception in the very first turn of white
player, as his turn consists only of the first move.

The first move of each turn must be a capture. The player on turn moves one
of his stacks along a line to an intersection with an opponent’s stack. A stack
cannot jump over other stacks or over the center of the board. Only a jump over
and arbitrary number of empty intersections is allowed. No stack may end the
jump on an empty intersection. A captured stack must have height at most the
height of the capturing stack. Captured pieces leave the board.

The second move of a turn can be another capture move, or a stacking move,
or a pass move. Passing means that the player on turn does not move with any
stack. During the stacking move the player jumps with his stack on some other
stack of his color. The height of the resulting stack is the sum of both stacks
heights. The type of the resulting stack is determined by the piece on the top.

A player loses when the last stack of one of the three types is captured, or if
he cannot capture in the first move of his turn. A draw is not possible.

1.2 Strategies

In this section we discuss some common heuristic strategies how to play Tzaar.
These observations are based on authors’ experiences from numerous play-outs
with both human and computer opponents. We use these strategies to construct
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Fig. 1: The Tzaar board with a sample position and piece types on the left. The
possible moves of the black Tzaar stack in the second move of a turn are marked
by arrows, the dashed arrows represent stacking moves and the numbers denote
the stack heights greater than one.

the evaluation function of Waltz, see Section 2.1. However, as these strategies
are based on heuristic arguments, there are of course positions where they do not
yield good results.

The first move is always a capture move, but it often depends which type of
piece is captured. A good move usually consists of capturing piece type t such that
the opponent does not have a high stack of type t, and as a secondary condition
such type t that there are not many stacks of type t. In a typical game the player
starts by creating a stack of Tzaar, it is thus convenient to capture Tzarras.

In the second move of a turn a player has three possibilities:

– Capturing again (so called double-capture move). This is appropriate if the
opponent is running out of pieces of a certain type (he should not have a high
stack of that type), or if a high stack can be captured. Height of the double
captured stack should be greater than two, because by capturing stacks of size
two, a player may lose capturing possibilities. Moreover, double capturing
two pieces with height one usually leads to a loss because of no capturing
possibilities.

– Stacking is often the most reasonable move, because it makes one of the stacks
more powerful and more safe against opponent’s stacks. The other reason is
that the opponent loses capturing possibilities, thus it is more likely that he
will run out of captures and lose in the endgame.

– Passing occurs rarely during the game. It is worth playing only in the endgame
when stacking and capturing are not possible or would result in a loss. See
Figure 2 for an example of such position.
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Fig. 2: In this position, black player is on turn. After the last black Tzaar stack
captures the white Tzaar piece in the right corner, the only move not leading to
a loss for black is the pass move.

There are generally two stacking strategies:

1. Creating one high stack which is powerful and can capture all opponent’s
stacks, or which forces the opponent to raise his highest stack.

2. Creating more lower stacks, usually of height two, although it is safer when
some of them have height at least three.

It is not known to us which strategy is better. Using the first strategy the
player can quite easily threaten or even capture small opponent’s stacks, but using
the second strategy it is sometimes impossible for the opponent to create a new
stack (it would be captured immediately) and the opponent can lose because of
it. The second strategy is more reasonable during the endgame, since it decreases
the opponent’s capturing possibilities. Also, having a stack much higher than all
other opponent’s stacks is worse than having more lower stacks.

These strategy observations were mostly about material; now we give some
positional strategy tips:

– Keeping high stacks inside the board, not on the border. Stacks inside are
able to move to any direction and thus they threaten large part of the board.
Moreover, during the middle game a stack placed inside the board can nearly
always escape from a threat. The worst positions are the six corners of the
board.

– Limiting moving possibilities of an opponent’s high stack, i.e., moving pieces
away from lines containing an opponent’s high stack.

– Isolating a small stack (preferably of size one) such that there are no other
pieces on the same lines as the isolated stack. The reason is that the player
cannot run out of the type of an isolated piece, thus the type is safe.

– Isolating own high stack is not good, because the stack cannot be used for
capturing opponent’s stacks.



– Limiting opponent’s capturing possibilities and also preparing own capturing
possibilities during the endgame.

The black player has a small advantage, because he is stacking first. Hence he
can often threaten white player by attacking white stacks and white player should
create his first stack as far from black player’s stack as possible.

1.3 Game Properties

We estimate the maximum height of a stack. Observe that before a stacking move
that created a stack of height h, the opponent must have captured at least h− 1
pieces. There should be two pieces of another types present and there are 30 pieces
of each color, the maximum number of captures is 13 as at least two other pieces
must be present, so the maximum stack height is 14.

The state space complexity is the number of game positions reachable from
any starting position. There are

(

60
v

)

different choices of fields for stacks, where v
is the number of free fields. Let k be the sum of heights of all white stacks on the
board, i.e. the number of white pieces, and analogously ℓ for the black color. Both
numbers are bounded from above by the number of necessary captures before
exactly v free fields appeared on the board. Thus k, ℓ ≤ 30 − ⌊ 1

4v⌋ (at least one
fourth of moves must capture a white stack).

Let there be s white stacks, so the number of black stacks is 60 − v − s. We
know that s ≤ min(k, 58 − v), since there are k white pieces and there must be
two black stacks on 60− v occupied fields on the board. The number of different
stack heights for s stacks with k white pieces is

(

k−1
s−1

)

; the number of different

choices of fields for white stacks is
(

60−v

s

)

and 3s is the number of different types
of white stacks. Similar formulas holds for black player. This gives us the upper
bound on the number of possible states:
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= 9.17 · 1057

Let us now take symmetries into account. The position can have 6 equivalent
rotations. The position may also have 6 isomorphic mirrors by 6 axes (between
opposite corners of the board and between centers of opposite sides). Mirroring
twice by any two axes results in a rotated position, thus there are 12 isomorphic
positions. We use Burnside’s Lemma (the orbit-counting theorem) to count the
number of distinct positions.

For each symmetry we estimate the number of fixed points, i.e., positions
that are the same after applying a symmetry. The identity has clearly 9.17 · 1057

fixed points. Rotation symmetries (except identity) have at most (14 · 6 + 1)10
.
=

1.97 · 1019 fixed points, since the maximal height is 14, Tzaar has six types of
pieces and the six triangles with 10 fields that lie between the side of the board
and the side of the empty part in the middle must be the same. Mirroring by axes
has at most 4.83 · 1028 fixed points which we obtain using similar formula as for
the state space complexity. From Burnside’s Lemma we get the upper bound on
the number of distinct positions reachable from any starting position:



(9.17 · 1057 + 5 · 1.97 · 1019 + 6 · 4.83 · 1028)/12 = 7.64 · 1056

This is an upper bound on the number of positions that can be reached from
all starting positions altogether, but some positions can be obtained from more
than one initial position.

The number of different starting positions is 60!/(15! · 9! · 6!)2
.
= 7.13 · 1040.

Using Burnside’s Lemma to deal with symmetries we get 5.94 · 1039 different
starting positions. The number of fixed points is zero for rotation symmetries,
since the number of black Totts is not divisible by six. For mirroring symmetries
the number of fixed points is at most 30!/(8! · 5! · 3!)2

.
= 3.15 · 1017.

Let us now estimate the number of endgame positions. We count the number
of positions with six stacks of different types or colors—if there are two pieces of
the same color and type, the position is won by one of the players. We observe
that the number of positions with more than six stacks is higher. The number of
positions with exactly six stacks is the number of different choices of six fields on
the board multiplied by the number of permutations of six stacks and the number
of different stack sizes for each piece type and for each player. The maximum sum
of stack sizes for a player is 16, because there should be a capture before each
stacking. Therefore, the number of endgame positions is

(

60

6

)

· 6! ·

(

16
∑

i=3

(

i− 1

2

)

)2

.
= 1.13 · 1016,

where i denotes the sum of stack heights for one player.
After taking symmetries into account, we get 9.42 · 1014 different positions

with six different stacks. Note that the number of fixed points is zero for rota-
tions symmetries and for mirroring by axes between opposite sides. For mirroring
between opposite corners it is at most

6! ·

(
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∑

i=3
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i− 1

2

)

)2

.
= 2.26 · 108

For a lower bound on the state space complexity we can use the number of
distinct starting positions which is 5.94 · 1039. We thus believe that the real state
space complexity lies roughly between 1045 and 1055

The branching factor depends on the starting position. The fixed starting
position has the maximum branching factor around 5 500, but there are starting
positions with the branching factor up to 10 000. We count positions reachable by
two possible ways only once, otherwise the branching factor can be 14 000. During
the game, the branching factor is decreasing as the pieces are captured or stacked.
Table 1 provides a summary of the minimum, maximum and average branching
factor according to the number of stacks on the board, computed statistically
from real play-outs.

The game tree complexity is usually estimated by multiplying the average
branching factor for each turn. For Tzaar we get approximately 1079.

We conclude that Tzaar has much larger state space complexity than GIPF
that has roughly 1025 different positions [14] and probably slightly larger than
Chess that has 1046 positions [3]. The game is also harder for computers because
of huge number of possible starting positions and more importantly the branching



Stacks 59 55 49 43 37 31 25 19 13 9 7 6
Positions 470 464 456 460 446 427 399 338 170 61 15 7

Min 4961 3962 2732 1732 906 403 139 35 1 1 1 1
Max 9933 7651 6007 4235 2986 2078 1073 476 114 21 4 2
Avg 7497 5965 4463 2971 1978 1117 562 203 37 7 1 1

Table 1: Minimum, maximum and average branching factor according to the num-
ber of stacks on the board. The table contains also the number of positions from
which the values were obtained. We sampled positions from real games at BAJ [18]
and these positions can be downloaded from [11].

factor which is more than 1000 for most of the game. In contrast, GIPF or Chess
have average branching factor from 30 to 40. On the other hand, Tzaar games are
quite short, typically up to 28 turns of a player, thus the game tree of Chess or
GIPF is larger (about 10123 for Chess and 10132 for GIPF [14]).

2 Algorithms for Tzaar

We now discuss algorithms we have implemented in Waltz. We also describe
domain dependent heuristics. Since the game tree properties differ in the middle
game and in the endgame, we discuss these parts of the game separately.

Due to the high number of possible starting positions the Opening database
technique is not applicable. Similarly, one cannot use the endgame database as
even the number of positions with only six different stacks is 9.42 · 1014 as we
counted in Section 1.3. We thus believe that data-base methods are not applicable
in Tzaar.

We cannot also easily decompose the game into independent parts, since stacks
can jump from one part of the board to another by few moves. Hence standard
techniques from combinatorial game theory are not applicable.

Opening has the highest branching factor, but otherwise it is not very different
from the middle game. Before the endgame, the attacking player usually cannot
capture defender’s high stack or even win in a few moves by a threat sequence.
Defender can escape with his stack from most threats easily and there are often
more different ways to do it. We thus conclude that algorithms based on threats
would be ineffective during the opening and middle game, therefore Proof-number
Search (PNS) is used only during the endgame.

The most frequently used algorithm inWaltz is Minimax with the Alpha-beta
pruning and several enhancements, namely:

– Transposition Table (TT): Used for storing moves from the previous shallower
search (the Principal Variation Move, PV) and also because some positions
can be reached by a few different move sequences.

– Iterative Deepening (ID): Implemented because of time estimation (how deep
may the engine search), and because of PV.

– domain specific Move Ordering (MO): Done by heuristically assigning values
to moves and sorting moves according to these values. In most cases, stacking
is preferred to capturing.

– History Heuristic (HH): Only for the first move of a turn.

– NegaScout (NS): To quickly find cutoff nodes.



– Randomized Alpha-beta: for the first two moves, Waltz chooses uniformly
randomly among moves with a value at least bestValue −margin for a given
constant margin. These moves are found using a slightly modified Alpha-beta
search. See [13] for more details.

– Playing in lost positions: when Waltz finds out that it is in a lost position,
it uses the best move in the last iteration of the Iterative Deepening where
Alpha-beta has not found out that the position is lost. Thus Waltz plays a
move that leads to a loss after the maximal possible number of moves.

In the endgame the branching factor is not so high and threat sequences occur
more frequently. There are also fewer solutions to threats, thus threats limit the
branching factor and Proof-number Search (PNS) can sometimes be more effec-
tive than Alpha-beta search. However, PNS as proposed by Allis [1] consumes a
considerable amount of memory. Therefore, we use the Depth-first Proof-number
Search (DFPN) [6] with the following enhancements:

– Move Ordering: The same as in Alpha-beta.
– Evaluation Function Based PNS (EFB PNS) [15]: Heuristic initialization of

leaves using the evaluation function.
– 1 + ε Trick [7]: To avoid frequent jumping of the search across the tree.
– Weak PNS (WPNS) [4] and Dynamic Widening (DW) [17]: To suppress over-

estimation of proof and disproof numbers.
– Heuristic Weak PNS (HW PNS): A new enhancement, see Section 2.2.
– Time estimation: How many nodes can DFPN visit within a given time—at

first a certain number of nodes is visited and then the number of nodes to
visit is estimated.

We note that there are some other algorithms for solving endgame positions.
For the Lambda Search [10] we were not able to determine quickly the order of
a threat. Since there is usually more than one way to evade a threat, we may
conclude that the Dependency-based Search [1] is not suitable for Tzaar.

See Section 3 for an evaluation of how each enhancement improves the search.
The detailed description of the algorithms and their enhancements can be found
e.g. in [13].

2.1 Evaluation Function

The evaluation of a position in Tzaar is used both by the Alpha-beta search and
DFPN. We created the evaluation function according to strategy observations
given in Section 1.2. We tuned up its constants by playing with Waltz and by
numerous play-outs between different versions of the evaluation function.

In positions with a positive value, white player has an advantage (∞ is a win),
and vice versa for black player. We basically use this formula:

eval(position) = material(position,White) + positional(position,White)

−material(position,Black)− positional(position,Black)

The material value for a player is the sum of values of player’s stacks:

material(position, player) =
∑

s is a stack
of player

heightValue(s) · countValue(s)



The function heightValue grows rapidly up to 150 for heights less than 4, then
stays nearly the same and decreases for stacks higher than 8. The reason is that
instead of building very high stacks a player can build more lower stacks, which
is usually better. The function countValue is inversely proportional to the count
of stacks with the same piece type as the stack s . It is 100 for the count 1, then
it decreases rapidly and it is less than 20 for counts higher than 5.

The material value is more important in the first half of the game. The material
value together with some positional information is counted incrementally (when
a move is executed or reverted), other positional features are counted statically
for each leaf node that is not won by a player.

For the positional value the Zone of Control (ZOC) is maintained. It deter-
mines how many stacks of a certain type can be captured in one move, no matter
who is on turn. It is used also for determining whether a player on turn has lost
because of no possible captures.

The positional value for a player is roughly the sum of these bonuses:

– 20 000 000 for an immediate threat: The player is on turn and he can capture
all stacks of an opponent’s piece type (the player can win).

– 1 000 for a threat, when the player is not on turn.

– 1 000–200 000 if the opponent has few possible captures.

– Value of ZOC:
∑

opponent′s
piece type t

stacksInZOC(t) · (1− count(t)/ initialCount(t))

– 25 000 for each player’s piece type that is “secure”—the player has a stack
higher than all stacks of his opponent—and 100 000 if all types are secure.

– 50 000 for stacks with height at least 2 of all types.

– 50 000 if an opponent’s valuable stack can be captured.

– 1 000–100 000 for an opponent’s high stack that cannot move.

– 10–25 for high stacks not on the margin of the board and −30 for a stack in
the corner.

2.2 Heuristic Weak PNS

As positions often occur more than once in a game, the state space is described
by a directed acyclic graph instead of a tree. Then DFPN suffers from the double-
counting problem, when the proof number of a position contains the proof number
of another position more than once.

This problem can be addressed by modifying the summation of disproof num-
bers in OR nodes and proof numbers in AND nodes. Weak PNS [4] proposes
taking the maximum disproof number and adding the number of children minus
one. Another solution to this problem is described by Kishimoto [5].

We propose a new enhancement based on Weak PNS and the evaluation func-
tion. We modify counting disproof numbers in OR nodes (and analogously in AND
nodes) in a way similar to Evaluation Function Based PNS. The idea of using the
evaluation function is also briefly mentioned by Kishimoto [5].

We define the step function similarly to Evaluation Function Based PNS:

step(value) =











2 if value ≥ t,

1 if − t < value < t,

0 if value ≤ −t,



where value is the value of the current position and the threshold t indicates the
player’s high advantage. The best value for t is at least 106 (see Section 3) while
a win has value 2 · 109.

We count the disproof number (DN) as maxDN +h(m− 1) step(value), where
maxDN is the maximum disproof number among children, m is the number of
moves and h > 0 is a constant.

Now we discuss reasons for this modification of Weak PNS. When the player
on turn has a big advantage and value ≥ t, DN is ∞ with a high probability.
We can thus set DN to maxDN + 2h(m− 1). In the case of a balanced position,
we count DN similarly to Weak PNS. Because of this, the parameter h should be
close to 1. When the player on turn is in a bad position, we likely do not need to
search many positions to disprove the node, so DN is set to maxDN .

3 Experiments with Waltz

This section shows the results of search runtime optimization. For parameter
tuning and measuring the runtime we use two sets of Tzaar positions. The first
set, we call it MidSet , consists of 200 middle game positions with exactly 41 stacks
on the board. It is intended for testing Alpha-beta.

For experimenting with DFPN we have a set of 713 endgame positions with
less than 27 stacks on the board, we call it EndSet . Both MidSet and EndSet

are available at [11]. We took these positions from Waltz’s games with strong
and intermediate players on BAJ. This set contains both easy positions (Waltz

solves them quickly) and hard positions (neither DFPN, nor Alpha-beta are able
to find a solution within a minute).

We performed the tests on a Dual-Core AMD Opteron 2216 server with 64 GiB
of memory, but we used only one of its cores.

For Alpha-beta we measured the efficiency of the Alpha-beta enhancements in
the domain of Tzaar by searching each MidSet position to the depth of 3 turns.
We observed that it is best to use all Alpha-beta enhancements listed in Section 2.
Since this behavior occurs also in other games, this approach does not contribute
with some new insight, so we omit the exact results. They can be found in [13].

Table 2 shows the importance of enhancements for DFPN. Note that there
is nearly no difference between DW, WPNS and HW PNS, and that one single
enhancement is still not enough. Surprisingly, sorting moves heuristically using the
same algorithm as in Alpha-beta is useful. We ran the tests on EndSet positions
with the time limit of 60 seconds.

Enhancements Solved (out of 713)

HW, 1 + ε Trick and EFB 484

WPNS, 1 + ε Trick and EFB 484

DW, 1 + ε Trick and EFB 480

HW, 1 + ε Trick and EFB without sorting moves 465

Only 1 + ε Trick 343

Without enhancements 336

Only Heuristic Weak (HW) 289

Only Evaluation Function Based (EFB) 289

Table 2: Results of the DFPN search with different enhancements listed in Sec-
tion 2.



We find it strange that Heuristic Weak PNS does not solve more positions
than Weak PNS, but we think that Heuristic Weak PNS can improve solvers in
other games.

We experimented also with different sizes of TT and constants used in DFPN
enhancements, namely 1+ε Trick, EFB PNS and DW. For each constant we tried
different values, run the experiments and counted the number of solved positions
from EndSet . The results are omitted due to space limitations and can be found
in [13].

Heuristic Weak PNS has two parameters: the threshold t for the step function
and the multiplier h. From the experiments we observed that the best values are
h = 1 and t ≥ 106—the value of a position in which a player has a significant
advantage.

3.1 DFPN versus Alpha-beta in Endgames

DFPN was designed to find long winning strategies where the player can force
his opponent to have only a limited number of possible moves. We tried DFPN
on Tzaar endgames, although Tzaar has relatively high branching factor even in
endgames. On the other hand, the player can sometimes force his opponent to
have a small number of moves.

To decide whether to use Alpha-beta or DFPN in endgames we ran statistical
experiments. Using the best possible setting of constants in DFPN, it solved 495
out of 713 positions. Then we tried Alpha-beta (with all enhancements) and it
solved 506 positions. There are 20 positions which DFPN solved and Alpha-beta
did not, so DFPN is reasonable to use in Waltz.

Hence Waltz try to use DFPN first in the endgame when the number of
stacks is at most 23. If it does not succeed because of the time limit or because
DFPN found disproof, we run the Alpha-beta search.

4 Results against Computer and Human Opponents

We testedWaltz against other existing programs for playing Tzaar that are avail-
able: HsTZAAR [12] and programs of students from University of Alaska [22].4

See Table 3 for the results.
During the tests, Waltz had a time limit of 30 seconds. Each game started

with a random starting position. We performed tests with HsTZAAR on Intel
Xeon ES-1620 server with 64 GiB of memory and tests with the other programs
on a AMD Turion II P560 Dual-Core notebook with 4 GiB of memory.

To test Waltz against people we chose the game server Boiteajeux.net (BAJ)
[18], since a lot of people play Tzaar there.5 For each game, an ELO rating is
counted.6

We created four different versions of Waltz which are described in Table 4.
We performed matches between these versions to compare their strength. See
Table 5 for the results.
4 There are also some more programs available, but due to their design it is not possible

to run automatic play-outs between them and Waltz.
5 299 players have played Tzaar in the last six month till May 10, 2013 and 24 842 Tzaar

games were finished on BAJ from October 31, 2008 to May 10, 2013.
6 For a win a player obtains some ELO points according to his and opponent’s ELO

and his opponent loses the same number of points. New player receives ELO 1 500.



Program Wins Losses Note

HsTZAAR 479 121 Used with the algorithm pscout full 4 on 4 cores.

GreensteinTzaarAI 342 53 We could not set a time limit.

BiTzaarBot 196 5 The time limit was 40 seconds.

Mockinator++ 83 2 The time limit was 40 seconds.

Mockinator 82 1 The time limit was 40 seconds.

Table 3: Results of Waltz against other Tzaar-playing programs. Wins and losses
are counted from the Waltz’s point of view.

Level Username on BAJ Time
limit [s]

Used algorithms

Beginner PauliebotBeginner 30 Randomized Alpha-beta with a very sim-
ple evaluation function to the depth of two
turns of a player for the whole game with
a big margin (5000).

Intermediate PauliebotMedium 30 Randomized Alpha-beta with the full eval-
uation function to the depth of two and
half turns for the whole game with a small
margin (20).

Expert Pauliebot 30 Both Alpha-beta and DFPN with the full
evaluation function.

“Unbeatable” PauliebotUnbeatable 300 Both Alpha-beta and DFPN with the full
evaluation function.

Table 4: Versions of Waltz.

Beginner Intermediate Expert “Unbeatable”

Beginner 224:1140 218:1090 45:351

Intermediate 1140:224 647:1371 84:208

Expert 1090:218 1371:647 98:149

“Unbeatable” 351:45 208:84 149:98

Table 5: Results of matches between versions of Waltz.

Now we describe how successfulWaltz was against human opponents on BAJ.
We focus only on the expert and unbeatable versions since the other versions are
intended to play weaker.

We released Waltz in the expert version on March 20, 2012 under username
Pauliebot, and it was under development until April 4, 2012. After that we made
only minor updates, mostly improving the evaluation function. On April 24, 2012
we released the other versions of Waltz.

The expert version has played 154 games so far.7 It won 114 of them and it is
the 16th best Tzaar player with ELO 2 068.8 Most important results of the expert
version are in the left part of Table 6. We conclude that the expert version played
on the level of best players on BAJ, but sometimes intermediate players were able
to defeat it.

7 Some of these games were played for testing purposes.
8 ELOs of players and other data in this section were up to the date March 4, 2013.



The unbeatable Waltz version has ELO 2087, the 14th highest, and played 74
games from which it won 46 games.9 The most important results of the unbeatable
version are in the right part of Table 6. The 9 wins against SlowBrain are a great
success because SlowBrain is far better than other players. From these results we
conclude that more time to search helps Waltz to play better.

Player Rank ELO Wins Losses

SlowBrain 1st 2 432 1 3

Gambit 2nd 2 229 2 4

Paulie 3rd 2 220 8 3

evrardmoloic 17th 2 062 1 1

mat76 77th 1 690 16 1

Gregg 78th 1 684 14 5

PhilDakota 79th 1 684 14 3

Player Rank ELO Wins Losses

SlowBrain 1st 2 432 9 16

Paulie 3rd 2 220 1 3

mnmr 6th 2 184 0 1

Zeichner 9th 2 143 1 0

Talisac 13th 2 100 3 0

azazhel 28th 1 931 8 2

Table 6: Some results of the expert (left) and unbeatable (right) versions. Wins
and losses are counted from the Waltz’s point of view. Note that Paulie is a
nickname of one of the authors, not of one of the Waltz’s version.

The most frequently appearing reason why Waltz lost games on BAJ was
the loss of the last stack of Tzarras. We observed that in two or three last turns
of these lost games Waltz had no chance to create a stack of Tzarras which
could not be captured by the opponent—Waltz was probably not aware of such
an opponent’s trap soon enough. Another bad thing in Waltz’s behavior during
these games was losing quite high stacks (size 3, 4, or even 5) during the middle
game.

We thus tried to improve the evaluation function to avoid these problems. The
version with the enhanced evaluation function won 136 and lost 102 games against
the version with the old evaluation function. On March 4, 2013 we released the
version with the enhanced evaluation function.

5 Further Work

There are some other algorithms which we did not implement in Waltz. Monte
Carlo Tree Search is probably the most promising approach, and we consider
it to be the next direction where we would like to move Waltz’s development.
Another direction lies in parallelizing Waltz’s algorithms, which is a natural step
we would like to try. For example the DFPN algorithm can be parallelized by Job-
level Proof-number search [16], there are also parallelization approaches proposed
by Saito, Winands and van den Herik [9] or Saffdine, Jouandeau and Cazenave [8].

It turned out that the enhancement Heuristic Weak PNS was not better than
Weak PNS in the domain of Tzaar, but we leave for a future research whether it
can be useful in other domains.
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