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Abstract

Tobias Gerken has very recently solved a well-known open problem of Erdds
by showing that there is an integer ¢ with the following property. If P is a
finite set of at least ¢ points in general position in the plane then there is
a convex hexagon with all vertices lying in P and with no point of P lying
inside the hexagon. We give a proof of this result that is directed somewhat
differently than Gerken’s proof. We also give a simple algorithm that finds an
empty hexagon in a given point set in the optimal linear time.

1 Introduction

Let X be a finite set of points in the plane. We say that X is in general position,
if no three points of X lie on a line. The convex hull of X is denoted by convX.
We say that X is in convex position, if each point of X is a vertex of convX. The
interior of convX is denoted by int X.

A classical result in discrete geometry is the following theorem:

Theorem 1 (Erdés—Szekeres Theorem [5]) For every k > 3 there is a (small-
est) integer ES(k) such that any set of at least ES(k) points in general position in
the plane contains k points in convex position.

Let P be a finite set of points in general position in the plane. A convex k-gon
G is called a k-hole (or empty convex k-gon) of P, if all vertices of G lie in P and
no point of P lies inside G.

Erdds [4] asked if, for a fixed k, any sufficiently large point set has a k-hole.
Already many years ago, this was known to be true for k£ < 5 [7] and false for k > 7
[8]. The remaining case k¥ = 6 became a well-known open problem. Gerken [6] has
very recently solved it in the affirmative:

Theorem 2 (The Empty Hexagon Theorem [6]) There is an integer ¢ such
that any set of at least ¢ points in general position in the plane has a 6-hole.

In this paper we give a proof of Theorem 2 that is directed somewhat differently
than the proof of Gerken (see also Paragraph 4.1 for remarks on Gerken’s proof).
Our proof gives another view at the structure of point set with no empty hexagons
(or with a small number of empty hexagons).

Dobkin et al. [3] gave algorithms for finding empty triangles, for finding empty
r-gons (r > 3), and for determining a largest empty convex subset. Based on
Theorem 2, in the next section we give a simple algorithm that finds an empty
hexagon in a given planar point set in the optimal linear time.

Further research related to Theorems 1 and 2 is described in several survey
papers [1, 2, 9, 11].
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2 The algorithm

Every point of the input set must be visited at least once, since otherwise we
couldn’t exclude that a convex hexagon found by the algorithm contains some of
the unvisited points in its interior. This gives a linear lower bound.

Let P be a set of n > ¢ points in general position in the plane, where ¢ is the
constant from Theorem 2. We may assume that the z-coordinates of the points in
P are pairwise different. The idea of the algorithm is to find a subset Q C P of size
from [e, 2¢] such that the convex hull of @) contains no other points of P and then
to find an empty hexagon of @ in time O(1).

If P has size at most 2¢ then an empty hexagon can be found in time O(1) using,
for example, the algorithm of [3]. We further suppose that the size of P is bigger
than 2c. We take arbitrary 2¢ + 1 points of P and find the median, m, among their
z-coordinates. This can done in time O(1). We then compare the z-coordinate of
each point in P with m. Let Py contain the points p € P with z(p) < m and let P,
contain the points p € P with xz(p) > m. Let P’ be the smaller of the sets Py, Ps.
We then repeat the above process for the set P’ (of size satisfying ¢ < |P'| < |P|/2).
The process is repeated at most log, n times. Thus, an empty hexagon is found in
time O(logn-1) + O(n+n/2+n/4+---)+ O(1) = O(n).

3 Proof of Theorem 2

3.1 Outline of the proof

Let P be a finite set of points in general position in the plane, containing no 6-hole.
Let k > 3. A convex k-gon convX, X C P, is minimal (for P), if no k-gon convY,
Y C P, satisfies convY C convX and convY # convX.

Let A be the vertex set of a minimal convex polygon for P. We will prove
Theorem 2 by showing that |A| is bounded by an absolute constant.

Let B be the vertex set of conv(P NintA) (naturally, if X C P,|X| < 2, then
X is taken for the vertex set of convX). Similarly, let C be the vertex set of
conv(P NintB) and let D be the vertex set of conv(P NintC) (see Figure 1).
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Figure 1: The “layers” A, B, C, D.
Here is our key lemma:

Lemma 1 If |A| > 7 then D = 0.



Before proving Lemma 1, we show that it easily implies Theorem 2 with ¢ =
ES(216)'. Let |P| > ES(216), and let A be the vertex set of any minimal 216-
gon. Lemma 1 gives D = ). It follows that |C| < 5, since otherwise any six
vertices of C' would form a 6-hole. The convex hull of any six consecutive vertices
of convB contains a point of C, since otherwise it would be a 6-hole. It follows that
|B| < 6|C|+5 < 35. Analogously |A| < 6|B|+ 5 < 215. This contradicts |4| = 216.

It remains to prove Lemma 1.

3.2 Two observations

In the proof of Lemma 1 we often use the two observations below.

Observation 1 The only points of P lying in the interior of the region convA \
convD are the points of B and C'. O

If p1p2 ... py is a convex k-gon (k > 3), then we define a k-sector S(p1,p2, - .-, Pk)

as the region of points ¢ € R? such that gpip2...py is a convex (k + 1)-gon (see
Figure 2). Note that any k-sector is either a triangle or a region bounded by a

b1
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Figure 2: A k-sector.
segment and two half-lines.

Observation 2 If a convex pentagon pipep3paps with vertices in P is empty and
g € PN S(p1,p2,ps,p5), then P contains a 6-hole.

Proof. If the triangle gpips is empty then gpipepspsps is a 6-hole. Otherwise
rp1p2p3paPs is a 6-hole for some r € P inside the triangle gp;ps. O

3.3 Proof of Lemma 1

Set a := |A|, B8 := |B|. We will show that if & > 7 and D # () then either P contains
a 6-hole or convA is not minimal.

Suppose D # () and fix an arbitrary point d € D. Denote the vertices of B in
the clockwise order by bq,bs,...,bs (see Figure 1). For i = 1,...,5, let T; be the
triangle db;b; 1 (see Figure 3; we always identify the indices in a natural way so
that b; = bgy; for any integer 7).

Let i € {1,...,8}. If T; contains a point of C, then we fix a ¢; € C N T; such
that the triangle ¢;b;b; 11 is empty (by Observation 1, we may choose ¢; as the point
of C NT; closest to the line b;b;11). Otherwise ¢; is not defined.

1'We improve the constant relatively easily to ¢ = ES(15) in Section 4. Gerken [6] gave a more
complicated proof of Theorem 2 with ¢ = ES(9). See also further comments in Section 4.
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Figure 3: The triangle T; and the point c;.

Observation 3 For each i, T; UT; 1 contains a point of C. Thus, at least one of
Ciy Cit1 1S defined.

Proof. Suppose that T; U T;,1 contains no point of C. Since d lies inside convC,
the region T;UT;, 4 is intersected by a unique edge cc’ of convC'. By Observation 1,
the pentagon cb;b;11b;12¢" is empty (see the left picture in Figure 4). We may apply
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Figure 4: The empty pentagons constructed in the proofs of Observations 3 (left)
and 4 (right).

Observation 2 on this pentagon and on d. It implies the existence of a 6-hole — a
contradiction. O

Let ¢ € {1,...,8}. If ¢; is defined, then we define S; := S(b;,c;,bit1) (see
Figure 5). Otherwise c¢;_1,c¢;41 are defined according to Observation 3, and we
define Ri = S(bi,ci_l,ciﬂ,biﬂ).

Observe that the exterior of convB is covered by the 3-sectors S(b;,d,b;11),
i =1,...,8. Each S(b;,d,b;y1) is covered either by S; (if S; is defined) or by
Si—1 UR;US; 11 (otherwise). Thus, the 8 sectors S; and R; cover the entire exterior



Figure 5: A 3-sector S; and a 4-sector R;.

of convB. In particular, each point of A lies in at least one of them. In fact, the
R;’s contain no points of A:

Observation 4 FEach R; contains no point of A.

Proof. Suppose a point a € A lies in R;. A unique edge cc’ of convC intersects T;;
(possibly ¢ = ¢;—1 and/or ¢’ = ¢;j4+1). The convex pentagon cb;ab;y1c¢’ is empty by
Observation 1 (see the right picture in Figure 4). This pentagon and the point d sat-
isfy the assumptions of Observation 2. Thus, P contains a 6-hole — a contradiction.
O

Thus, all points of A lie in the union of the S;’s. Let t > 1. Whenever t
consecutive 3-sectors S;, Sit1, ..., Si+t—1 are defined, we denote their union by S; +:

Sit =8 USiy1U---USipe 1.

The crucial tool in our proof is the following lemma, which restates and slightly
generalizes Lemma 4 of [6].

Lemma 2 If S;; is defined and t < 3, then S;+ contains at most t + 1 points of A.

Proof. We proceed by induction on t. Without loss of generality, we suppose that
i=1.

If ¢t =1, then S;; = Si contains at most two points of A since otherwise
the points b1, c¢1,be and any three points of A N Sy form a 6-hole according to
Observation 1.

Suppose now that ¢ > 1 and that the lemma holds for ¢ — 1. We partition S,
into Sa;—1 and W := 51,4\ S2,1—1 (see the left picture in Figure 6). Note that Sa;_1
contains at most ¢ points by the inductive assumption.

Suppose that the quadrilateral Q := bicicabs is convex. Then W does not
contain two different points a,a’ € A, since otherwise the 5-hole c¢1b1aa’bs and the
point cp satisfy the assumptions of Observation 2. Therefore Si; = W U Sa 41
contains at most 1 + ¢ points of A in this case.

Thus, we may suppose that the quadrilateral @) is non-convex. This means that
the point c¢; lies inside the triangle b1baco. Analogously we may suppose on the
“opposite” side of Si; that the point ¢; lies inside the triangle bib;y1c,—1. Then
the polygon H := bicica...cibsy1 is convex. Let A’ be the set in convex position



Figure 6: The partition of S into Sa;—1 and W (left) and four of the regions S;
(right).

obtained from A by replacing the points of A N .S;, by the t + 2 vertices of H.
Observe that S1 ¢ = S1 U Ss ;1 contains at most 2 + ¢ points of A by the inductive
assumption. Thus |A'| > a — a contradiction with the minimality of convA. O

We now derive Lemma, 1 from Lemma, 2.

Suppose first that there is a d € D such that at least one of the triangles T; =
db;b;11 contains no point of C. Let i1 < iz < --- < is be the indices ¢ € {1,...,0}
for which the triangle T; contains no point of C. For each j = 1,...,s — 1, the
union of the 3-sectors S; with ¢; < ¢ < ¢;4; contains at most ;4 — ¢; points of A
according to Lemma 2. Similarly the union of the remaining S;’s with ¢ > is and
i < 41 contains at most (8 + i1) — is points of A. It follows that the union of all
Si’s contains at most (ip — 1) + (i3 —d2) + -+ - + (is —is—1) + (B +1i1) —is) = B
points of A. Since the union of all S;’s contains all points of A, we obtain a < f —
a contradiction with the minimality of convA.

Thus we may suppose in the rest of the proof that the following condition holds:

(C) For any d € D and i € {1,...,8}, the triangle T; = db;b; 11 contains at least
one point of C.

Fix any d € D. Note that under condition (C), ¢; and S; are defined for each
i =1,...,8. Recall that the set S := S; U Sz U---U Sg contains the a points of
A. Since § = 51 U S25-1, an application of Lemma 2 on S; = Si,1 and Sa5-1
therefore gives a < 24 . On the other hand, the minimality of convA implies that
a > f+ 1. We distinguish the two possible cases a = 8+ 1 and a = § + 2.

First suppose that @ = 8 + 2. For each i, set S} := S\ Siy1,5-1 (see the right
picture in Figure 6). Each S} contains at least two points of A, since otherwise
Lemma 2 would imply that S = S;;1,31US] contains at most f+1 = a—1 points of
A. Since the 3 regions S} are pairwise disjoint, A contains at least 3-2 > f+3 = a+1
points — a contradiction.

It remains to settle the case a = 8 + 1. We can argue similarly as above that
each of the 8 pairwise disjoint regions S; contains at least one point of A. For each
i=1,...,0, fixapoint a; € Ain S}. Since & = f+ 1, there is a unique point a € A
different from aq,...,ag. Without loss of generality, we may suppose that a lies
between ag and a; in the clockwise order along the boundary of convA. For each
i, the intersection of S; with the boundary of A is connected and contains a; and
no aj,j # ¢. It follows that a does not lie in S; for any ¢ # 1, 8. Since we suppose
that & > 7, a does not lie in Sy 5 = Sp US3U---U Sg. It follows that the points of
A lying in Sy 5 are exactly the five points as, as, ..., ag.



If d lies inside the convex pentagon G = cacscacscg then the convex a-gon
aibacadegbrazasg . . . aga contradicts the minimality of convA (see Figure 7).
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Figure 7: The convex a-gon aibacadcgbrazas . . .aga (for § =9).

Suppose now that d does not lie in the pentagon G. The pentagon G is non-
empty, since otherwise Observation 2 applied on G and d would imply the existence
of a 6-hole. It follows that there is a d' € D inside G. Note that C = {¢1,...,cs},
since the existence of other points in C' would imply that |C| > 84+ 1 =a — a
contradiction with the minimality of convA.

By (C) and by |C| = B, each triangle T} = d'b;b;+1 contains exactly one point
of C. The cyclic order of the points of C' in which they appear in the triangles
T{,T;,...,T4 equals the cyclic order in which they appear along the convex hull
of C, which is the cyclic order in which they appear in the triangles T4, T5,...,T3.
Thus, there is an integer A € Z such that T} contains ¢;ya for each i. Now, let j
be the unique index with d € T}. Then T; C T} and therefore T} contains c;. It
follows that A = 0. Therefore, we may replace d by d' and argue as above.

This concludes the proof of Lemma 1. Theorem 2 is proved.

4 Concluding remarks

4.1 Gerken’s proof

Gerken [6] proves Theorem 2 by showing that a 6-hole appears in every minimal
convex 9-gon A. He distinguishes, in our notation, various cases according to the
sizes of the sets B, C, D. Gerken [6] achieves a reasonable bound ¢ < ES(9) < 1717
by considering the possible cases for |A| = 9. Instead of this approach, we have
presented a general argument working for any sufficiently large |A|. Our approach
in the case D # () resembles the approach in one of the cases considered in [6]. A
disadvantage of our proof is that it gives a worse bound on ¢ than Gerken’s proof.

4.2 A bound on the second innermost layer

The following lemma of independent interest is used in next paragraph for obtaining
a better constant in Theorem 2:



Lemma 3 Let X UY be a finite set of points in general position in the plane with
no 6-hole. Suppose that X,Y are in convex position and each point of Y lies inside
convX. Then |Y| <5 and |X| < 7. (Thus, if D = 0 in the proof of Theorem 2 then
|C|<5and |B|<T7.)

Proof. 'The bound on |Y| is obvious. If Y = () then |X| < 5 and the lemma holds.
If 1 < Y| < 2 then we define an auxiliary line [ as follows. If |Y| = 1 then [ is
chosen as a line connecting the point of Y with an arbitrary point of X. If |Y| = 2
then [ is the line through the two points of Y. In either case, each side of [ contains
at most three points of X. It follows that |[X|<2-3+1=7.
Now, let |Y'| > 3. Denote the vertices of Y in the clockwise order by y1,y2, ..., y|y|-

For |Y| = 3, let s1, 82, 53,t1,t2,t3 be the numbers of points of X lying in the six
regions depicted in the left picture in Figure 8. Then

Si+ti+s’i+1 S 3 (7'217273)7
t < 2 (i=1,2,3).

If we sup up these six inequalities and divide the resulting inequality by two, we
obtain Y s; + Y. t; < 7.5, which implies | X|=>"s;+ > t; < 7.
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Figure 8: The regions considered in the proof of Lemma, 3.

If |Y| = 4 then similarly (see the middle picture in Figure 8) |X| = (u1 + ua +
uz) + (ug + us) + (ug + ur + ug) <3+ 1+ 3 =7 in this case.

If |Y| = 5 then the five shaded 4-sectors S(y;—1, Yi, Yi+1, Yitr2) in the right picture
in Figure 8 contain no point of X (by Observation 2). Therefore each point of X is
separated from convY by at least two of the five lines y;y;11. If | X| > 7 was satisfied,
then some line y;y;+1 would separate at least [(|X]-2)/5] > [(8-2)/5] = 4 points
of X and any such four points and the corresponding points y;, y;+1 would form a
6-hole — a contradiction. O

4.3 Better bounds in Theorem 2

Here we refine the argument given in Paragraph 3.1. Let P, A, B,C,D be as in
Paragraph 3.1. We will prove Theorem 2 with ¢ = ES(15) by showing that |A| < 15.

We may suppose that D = @, since otherwise |A| < 6 by Lemma 1. If C = {)
then |4| < 7 by Lemma 3. Otherwise fix an arbitrary ¢ € C. Lemma 3 implies
B < 7. Each of the 8 3-sectors S(b;, ¢, b;+1) contains at most two points of A. Thus,
A contains at most -2 < 14 points. Since any set of at least ES(15) points in
general position in the plane contains a (minimal) convex 15-gon, Theorem 2 with
¢ = ES(15) follows.

The bound ¢ = ES(15) may be further improved relatively easily (using a modi-
fication of Lemma 2, for example). However, we do not see how to achieve Gerken’s
constant ¢ = ES(9) without an extensive case analysis as in [6]. A lower bound



¢ > 30 follows from Overmars’ construction [10] of 29 points in general position
with no 6-hole.
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