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Helly’s Theorem. Any finite family of convex sets in Rd has non-empty
intersection if any d+ 1 elements have non-empty intersection.

Classical result in convex geometry

Related to Radon and Caratheodory’s theorems...
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In the contrapositive:

If finitely many convex sets in Rd have empty intersection,
some d of them have empty intersection.

Statement about size of witnesses for empty intersection

Helly’s Theorem. Any finite family of convex sets in Rd has non-empty
intersection if any d+ 1 elements have non-empty intersection.
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Helly’s Theorem. If F is a finite family of convex sets in Rd then Helly(F) ≤ d+ 1.

In the contrapositive:

If finitely many convex sets in Rd have empty intersection,
some d of them have empty intersection.

Statement about size of witnesses for empty intersection

Helly(F) = max{|G| : G ⊆ F ,∩G = ∅,∀A ∈ G,∩(G \ {A}) 6= ∅}

Family-based rather than class-based formulation:

The Helly number of a family F of sets is the maximum size of an
inclusion-minimum sub-family of F with empty intersection.

We implicitly assume that F has empty intersection

Helly’s Theorem. Any finite family of convex sets in Rd has non-empty
intersection if any d+ 1 elements have non-empty intersection.

Classical result in convex geometry

Related to Radon and Caratheodory’s theorems...
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Helly numbers arise naturally e.g. in optimization:

The Helly number of a family F of sets is the maximum size of an
inclusion-minimum sub-family of F with empty intersection.

Helly(F) = max{|G| : G ⊆ F ,∩G = ∅,∀A ∈ G,∩(G \ {A}) 6= ∅}
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Helly numbers arise naturally e.g. in optimization:

Which families of sets have bounded Helly numbers? What are these bounds?

The Helly number of a family F of sets is the maximum size of an
inclusion-minimum sub-family of F with empty intersection.

Helly(F) = max{|G| : G ⊆ F ,∩G = ∅,∀A ∈ G,∩(G \ {A}) 6= ∅}

Linear
programming

Convex
programming

Generalized
linear

programming
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A whole industry of bounds on Helly numbers (a.k.a “Helly-type theorems”).

Homothets of a convex curve in R2

4 [Swanepoel 2003]
convex sets in Sd

d+2

Star-shapness in the plane

3 [Breen 1985]

Convexity spaces [Kolodziejczyk 1991], Matroids [Edmonds 2001], ...
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A line transversal to a family is a line that intersects each of its members.

Helly numbers of sets of line transversals to

disjoint unit disks in R2: ≤ 5 [Danzer 1957]

disjoint translates of a convex figure in R2: ≤ 5 [Tverberg 1989]

disjoint unit balls in Rd: ≤ 4d− 1 [Cheong-Holmsen-G-Petitjean 2006]

disjoint translates of a convex polyhedron in R3: unbounded [Holmsen-Matoušek 2004]

A whole industry of bounds on Helly numbers (a.k.a “Helly-type theorems”).

Homothets of a convex curve in R2

4 [Swanepoel 2003]
convex sets in Sd

d+2

Star-shapness in the plane

3 [Breen 1985]

Convexity spaces [Kolodziejczyk 1991], Matroids [Edmonds 2001], ...
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Proofs are technical and somewhat ad hoc.

A line transversal to a family is a line that intersects each of its members.

Helly numbers of sets of line transversals to

disjoint unit disks in R2: ≤ 5 [Danzer 1957]

disjoint translates of a convex figure in R2: ≤ 5 [Tverberg 1989]

disjoint unit balls in Rd: ≤ 4d− 1 [Cheong-Holmsen-G-Petitjean 2006]

(conj. 1960)

(conj. 1957)

disjoint translates of a convex polyhedron in R3: unbounded [Holmsen-Matoušek 2004]

A whole industry of bounds on Helly numbers (a.k.a “Helly-type theorems”).

Homothets of a convex curve in R2

4 [Swanepoel 2003]
convex sets in Sd

d+2

Star-shapness in the plane

3 [Breen 1985]

Convexity spaces [Kolodziejczyk 1991], Matroids [Edmonds 2001], ...



5

What systematic conditions could explain these bounds?

Convex sets in Rd

d+ 1, [Helly 1913]
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Good cover in Rd
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The ∩ of any subfamily
is a ∪ of ≤ r disjoint

convex sets in Rd

r(d+ 1), [Amenta 1996]
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Good cover in Rd
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What systematic conditions could explain these bounds?

Good cover in Rd

d+ 1, [Helly 1931]

The ∩ of any subfamily is a
∪ of ≤ r disjoint elements

of a good cover in Rd

r(d+ 1), [Kalai-Meshulam 2008]

Convex sets in Rd
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convex sets in Rd
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some fct of r and d [Matoušek 1996]

The ∩ of any subfamily is a ∪ of
≤ r disjoint elements of a good

cover in Rd

r(d+ 1), [Kalai-Meshulam 2008]

Subsets of Rd whose intersections have
≤ r connected components, each

(dd/2e − 1)-connected.

New insights (1/2)

[Colin de Verdière-Ginot-G 2014]

Builds on the techniques of [Kalai-Meshulam 2008]

∩ of any subfamily has
≤ r connected components,

each homologically trivial

⇒ Helly ≤ r ∗ (max. dim. of a hole in the space+2)

In “reasonable” topological spaces:

Common derivation of transversal theorems of [Santaló 1940],
[Tverberg 1989] and [Cheong+ 2008]

(today)
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some fct of r and d [Matoušek 1996]

The ∩ of any subfamily is a ∪ of
≤ r disjoint elements of a good

cover in Rd

r(d+ 1), [Kalai-Meshulam 2008]

Subsets of Rd whose intersections have
≤ r connected components, each

(dd/2e − 1)-connected.

New insights (2/2)

[G-Paták-Safernová-Tancer-Wagner 2014]

∩ of any subfamily has
reduced Z2-Betti numbers ≤ r

in dimension ≤ dd/2e − 1
⇒ Helly ≤ some function of r and d

In “reasonable” d-dimensional manifolds:

Builds on the techniques of [Matoušek 1996]

(tomorrow)
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1. Helly numbers are dimensions of holes in nerve (simplicial) complexes

2. Holes in nerve complexes correspond to holes in the union

3. Projections with small fibers are well-behaved

Helly(F) ≤ ∗
max. number of

connected components
of ∩G for G ⊆ F( ) max. dimension of

a hole in the space
+2( )
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What are simplicial complexes?

geometric simplicial complex abstract simplicial complex

“A collection of geometric simplices
in Rd such that any two are disjoint
or intersect in a common face.”

“A collection of sets that is closed
under taking subsets.”

{∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}}

“A collection of sets that is closed
under taking subsets.”
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What are simplicial complexes?

geometric simplicial complex abstract simplicial complex

set of vertices forming a geometric simplex

“A collection of geometric simplices
in Rd such that any two are disjoint
or intersect in a common face.”

map singletons to points in general position in Rd, d large enough

take convex hulls of points corresponding to abstract simplices

geometric realization

“A collection of sets that is closed
under taking subsets.”

{∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}}

“A collection of sets that is closed
under taking subsets.”
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The nerve N (F) of a family F of sets is N (F) = {G : G ⊆ F and ∩ G 6= ∅}.

F
N (F) =

1

2

3

{∅, {1}, {2}, {3}}
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The nerve N (F) of a family F of sets is N (F) = {G : G ⊆ F and ∩ G 6= ∅}.

F
N (F) =

1

2

3

{∅, {1}, {2}, {3}, {1, 2}}
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The nerve N (F) of a family F of sets is N (F) = {G : G ⊆ F and ∩ G 6= ∅}.

F
N (F) =

1

2

3

{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

Nerves are simplicial complexes.

Helly(F) = max{|G| : G ⊆ F ,∩G = ∅, and ∀A ∈ G,∩(G \ {A}) 6= ∅}

N (G) = 2G \ {G}

{
boundary of a (|G| − 1)-simplex

N = {∅, , , , , , }

Families with large Helly number have nerves with “holes” of large dimension.

F has Helly number ≥ h
⇔

N (F) contains the boundary
of a k-simplex for k ≥ h− 1
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What is a hole?

Nuances not essential for many applications to discrete geometry.

Do not capture exactly the same notions.

homology theory expresses which submanifolds are not boundaries
of submanifolds.

homotopy theory expresses algebraically how continuous images of
k-spheres extends into continuous images of k-balls.
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The Leray number of a simplicial complex K with vertex set V is

L(K) = min{` ∈ N : ∀i ≥ `,∀S ⊆ V, H̃i(K[S],Q) = 0}

Maximum dimension of non-trivial homology in an induced subcomplex

K[S] = {σ : σ ∈ K and σ ⊆ S} is the subcomplex induced on K by S
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L = 2L = 1( ) L = 2( )
Lemma. For any family F of sets, Helly(F) ≤ L(N (F)) + 1

|G| = Helly(F).

N (F)[G] = N (G) = 2G \ {G} ' S|G|−2

So H̃|G|−2(N (F)[G],Q) = 1 6= 0.

and L(N (F)) ≥ |G| − 1 = Helly(F)− 1.

Proof: Pick G ⊆ F of maximum size such that ∩G = ∅, and ∀A ∈ G,∩(G \A) 6= ∅.

( )
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Bounding L(N (F)) also gives a fractional Helly theorem, an ε-net theorem,
a (p, q)-theorem for the intersection-closure of F .

[Alon-Kalai-Matoušek-Meshulam 2002]

The Leray number of a simplicial complex K with vertex set V is

L(K) = min{` ∈ N : ∀i ≥ `,∀S ⊆ V, H̃i(K[S],Q) = 0}

Maximum dimension of non-trivial homology in an induced subcomplex
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1. Helly numbers are dimensions of holes in nerve (simplicial) complexes

2. Holes in nerve complexes correspond to holes in the union

Helly(F) ≤ ∗
max. number of

connected components
of ∩G for G ⊆ F( ) max. dimension of

a hole in the space
+2( )

3. Projections with small fibers are well-behaved
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Consider a finite family F of open sets in a topological space.

F is a good cover if the intersection of any subfamily is empty or contractible.

F
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Nerve Theorem. [Borsuk 1948, Leray 1945] If F is a good cover in a triangulable
space then |N (F)|, the geometric realization of N (F), is homotopy-equivalent to ∪F .

Consider a finite family F of open sets in a topological space.

F is a good cover if the intersection of any subfamily is empty or contractible.

F

N (F)

Holes in the nerve  hole in a subset of the ambient space
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Can a subset of Rd have holes of dimension more than d− 1?



15

Can a subset of Rd have holes of dimension more than d− 1?

Best proceed with caution.

If k ≥ 2 then Hi(}k,Q) is nontrivial for all i ≡ 1 mod k − 1 [Barratt-Milnor 1962]

}k is the union of countably many k-spheres with one point in common
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Can a subset of Rd have holes of dimension more than d− 1?

Lemma Any open subset of a (paracompact) manifold of dimension d
has trivial Q-homology in any dimension i ≥ d+ 1. If the manifold is
non-compact or non-orientable then this bound improves to d.

So Helly numbers  holes in nerves  holes in union looks promising

Best proceed with caution.

If k ≥ 2 then Hi(}k,Q) is nontrivial for all i ≡ 1 mod k − 1 [Barratt-Milnor 1962]

}k is the union of countably many k-spheres with one point in common
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Nerve Theorem. [Borsuk 1948, Leray 1945] If F is a good cover in a triangulable
space then |N (F)|, the geometric realization of N (F), is homotopy-equivalent to ∪F .
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Nerve Theorem. [Borsuk 1948, Leray 1945] If F is a good cover in a triangulable
space then |N (F)|, the geometric realization of N (F), is homotopy-equivalent to ∪F .

All pairs (p, x) ∈ ∪F × |N (F)| such that

x is in the realization of the simplex formed by all objects in F containing p

Proof sketch: Build the blow-up complex C ⊆ ×
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Nerve Theorem. [Borsuk 1948, Leray 1945] If F is a good cover in a triangulable
space then |N (F)|, the geometric realization of N (F), is homotopy-equivalent to ∪F .

All pairs (p, x) ∈ ∪F × |N (F)| such that

x is in the realization of the simplex formed by all objects in F containing p

The Vietoris-Begle mapping theorem yields that C ' ∪F and C ' |N (F)|

C

π1 π2

∪F |N (F)|

π1(C) = ∪F and π2(C) = |N (F)|
These projections have contractible fibers

πi the projection on the ith coordinate

The “Vietoris-Begle mapping theorem” asserts that if X,Y are
“nice” topological spaces and π : X → Y is continuous, surjective,
with contractible fibers and nice then X ' Y .

X

Y

Proof sketch: Build the blow-up complex C ⊆ ×
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F is acyclic if the intersection of any subfamily is empty
or a disjoint union of Q-homology cells.

Like good cover in homology, but allowing multiple connected components
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The multinerve of F , denoted M(F), is the poset

M(F) = {(G, X) | G ⊆ F , X is a connected component of ∩ G}
ordered by (G, X) ≺ (G′, X ′) iff G ⊂ G′ and X ⊃ X ′.
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Fix the nerve by adding multiple simplices in case of multiple components

F is acyclic if the intersection of any subfamily is empty
or a disjoint union of Q-homology cells.

Like good cover in homology, but allowing multiple connected components

The multinerve of F , denoted M(F), is the poset

F M(F)N (F)

M(F) = {(G, X) | G ⊆ F , X is a connected component of ∩ G}
ordered by (G, X) ≺ (G′, X ′) iff G ⊂ G′ and X ⊃ X ′.
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M(F) = {(G, X) | G ⊆ F , X is a connected component of ∩ G}
ordered by (G, X) ≺ (G′, X ′) iff G ⊂ G′ and X ⊃ X ′.

Simplicial poset: every lower-interval is isomorphic to a the face lattice of a simplex.

Can define (topological) geometric realization, simplicial homology...

Simplices no longer defined by their vertices; explicit incidences...

Arguments about co-faces may not extend
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M(F) = {(G, X) | G ⊆ F , X is a connected component of ∩ G}
ordered by (G, X) ≺ (G′, X ′) iff G ⊂ G′ and X ⊃ X ′.

Theorem 1. If F is an acyclic family of open sets in a locally arc-wise connected
topological space then ∀i ≥ 0, H̃i(M(F),Q) ∼= H̃i(∪F ,Q).

Proof: A blow-up complex / Vietoris-Begle mapping theorem approach works (even in homotopy).

Simplicial poset: every lower-interval is isomorphic to a the face lattice of a simplex.

Can define (topological) geometric realization, simplicial homology...

Simplices no longer defined by their vertices; explicit incidences...

Arguments about co-faces may not extend
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[Hell 2005 and 2006]

Theorem 2. Let F be a family of open sets in a locally arc-wise connected
topological space. Let s ∈ N and assume H̃i(∩G,Q) = 0 for any G ⊆ F and any
i ≥ max(1, s− |G|). Then H̃i(M(F),Q) ∼= H̃i(∪F ,Q) for ` = 0 and any ` ≥ s.

If we care only about high-dimensional homology, we can allow non-trivial
low-dimensional homology in intersections of few objects

M(F) = {(G, X) | G ⊆ F , X is a connected component of ∩ G}
ordered by (G, X) ≺ (G′, X ′) iff G ⊂ G′ and X ⊃ X ′.

Proof (bis): Interpret the multinerve as a Čech chain complex and use Leray’s acyclic cover theorem.

Generalized Mayer-Vietoris principle, spectral sequences...

Theorem 1. If F is an acyclic family of open sets in a locally arc-wise connected
topological space then ∀i ≥ 0, H̃i(M(F),Q) ∼= H̃i(∪F ,Q).

Proof: A blow-up complex / Vietoris-Begle mapping theorem approach works (even in homotopy).

Simplicial poset: every lower-interval is isomorphic to a the face lattice of a simplex.

Can define (topological) geometric realization, simplicial homology...

Simplices no longer defined by their vertices; explicit incidences...

Arguments about co-faces may not extend
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1. Helly numbers are dimensions of holes in nerve (simplicial) complexes

2. Holes in nerve complexes correspond to holes in the union

Helly(F) ≤ ∗
max. number of

connected components
of ∩G for G ⊆ F( ) max. dimension of

a hole in the space
+2( )

3. Projections with small fibers are well-behaved
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N (F) = {G : G ⊆ F ,∩G 6= ∅}

M(F) = {(G, X) | G ⊆ F , X ∈ cc(∩G)}

' S2

N =

'

M =

'

... but L(M(F)) does not bound Helly(F)

multinerve theorem ⇒ L(M(F)) ≤ max. dimension of
a hole in the space

+1( )
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N (F) = {G : G ⊆ F ,∩G 6= ∅}

M(F) = {(G, X) | G ⊆ F , X ∈ cc(∩G)}

' S2

N =

'

M =

'
π :

{
M(F) → N (F)
(G, X) 7→ G

Can we understand how

“transports” the Leray number (or similar quantities)?

... but L(M(F)) does not bound Helly(F)

multinerve theorem ⇒ L(M(F)) ≤ max. dimension of
a hole in the space

+1( )
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N (F) = {G : G ⊆ F ,∩G 6= ∅}

M(F) = {(G, X) | G ⊆ F , X ∈ cc(∩G)}

' S2

N =

'

M =

'
π :

{
M(F) → N (F)
(G, X) 7→ G

Can we understand how

“transports” the Leray number (or similar quantities)?

... but L(M(F)) does not bound Helly(F)

multinerve theorem ⇒ L(M(F)) ≤ max. dimension of
a hole in the space

+1( )

π is well-behaved:
simplicial, surjective

maps a k-simplex to a k-simplex

is at most r-to-one where r = maxG⊆F #cc(∩G)
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Such maps can be found in a broader setting:

Theorem. [Eckhoff-Nischke 2009] Let G be non-additive and intersection-closed.
If every intersection of members of F is a disjoint union of at most r members of
G then Helly(F) ≤ rHelly(G).

Conjectured by [Grünbaum-Motzkin 63]

G = Convex sets in Rd

r(d+ 1), [Amenta 1996]

G = Good cover in Rd

r(d+ 1), [Kalai-Meshulam 2008]



21

Such maps can be found in a broader setting:

Theorem. [Eckhoff-Nischke 2009] Let G be non-additive and intersection-closed.
If every intersection of members of F is a disjoint union of at most r members of
G then Helly(F) ≤ rHelly(G).

Conjectured by [Grünbaum-Motzkin 63]

G = Convex sets in Rd

r(d+ 1), [Amenta 1996]

G = Good cover in Rd

r(d+ 1), [Kalai-Meshulam 2008]

Intersection-closed and non-additive ⇒ components over G are well-defined.

Symmetric argument with B ⇒ B = A

Let D1, D2 ⊆ G with ∪D1 = ∪D2. Pick A ∈ D1 and write A = ∪B∈D2
A ∩B.

The A ∩B’s are in G ⇒ at most one A ∩B is nonempty
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Such maps can be found in a broader setting:

Theorem. [Eckhoff-Nischke 2009] Let G be non-additive and intersection-closed.
If every intersection of members of F is a disjoint union of at most r members of
G then Helly(F) ≤ rHelly(G).

Conjectured by [Grünbaum-Motzkin 63]

G = Convex sets in Rd

r(d+ 1), [Amenta 1996]

G = Good cover in Rd

r(d+ 1), [Kalai-Meshulam 2008]

Map every element of G to the element of F it is a component over G of
This map extends into a simplicial map π : N (G)→ N (F)

π is dimension-preserving and at most r-to-one

There is an underlying nice projection from N (G) to N (F)

Intersection-closed and non-additive ⇒ components over G are well-defined.

Symmetric argument with B ⇒ B = A

Let D1, D2 ⊆ G with ∪D1 = ∪D2. Pick A ∈ D1 and write A = ∪B∈D2
A ∩B.

The A ∩B’s are in G ⇒ at most one A ∩B is nonempty
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Theorem. [Kalai-Meshulam 2008] L(Y ) + 1 ≤ r(L(X) + 1).

dimension-preserving: the image of a simplex is a simplex of the same dimension

at most r-to-one: the fiber of every simplex of Y has cardinality at most r

Let X and Y be simplicial complexes.

Let π : X → Y be a surjective, dimension preserving, ≤ r-to-one simplicial map.
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Theorem. [Kalai-Meshulam 2008] L(Y ) + 1 ≤ r(L(X) + 1).

Theorem. [Eckhoff-Nishke 2009] H(Y ) ≤ rH(X).

A simplicial hole is an induced subcomplex isomorphic to the boundary of a simplex.

Define H(K) as the maximum dimension of a simplicial hole of K.

dimension-preserving: the image of a simplex is a simplex of the same dimension

at most r-to-one: the fiber of every simplex of Y has cardinality at most r

Let X and Y be simplicial complexes.

Let π : X → Y be a surjective, dimension preserving, ≤ r-to-one simplicial map.
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Theorem. [Kalai-Meshulam 2008] L(Y ) + 1 ≤ r(L(X) + 1).

Theorem. [Eckhoff-Nishke 2009] H(Y ) ≤ rH(X).

Theorem. [Amenta 1996] ∆(Y ) + 1 ≤ r∆(X).

A simplicial hole is an induced subcomplex isomorphic to the boundary of a simplex.

Define H(K) as the maximum dimension of a simplicial hole of K.

A “good” filtration of K is a sequence ∅ = K0 ⊂ K1 ⊂ . . . ⊂ Km = K such that

(i) each Ki is a simplicial complex

(ii) each Ki \Ki−1 has a unique inclusion-maximal element

Define ∆(K) as the maximum dimension, over all “good” filtrations of K, of a simplicial hole in Ki for
some i < m that is not a simplicial hole in K.

dimension-preserving: the image of a simplex is a simplex of the same dimension

at most r-to-one: the fiber of every simplex of Y has cardinality at most r

Let X and Y be simplicial complexes.

Let π : X → Y be a surjective, dimension preserving, ≤ r-to-one simplicial map.
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Question. is L(Y ) + 1 ≤ r(L(X) + 1)?

Let X be a simplicial poset and Y a simplicial complex.

Let π : X → Y be a surjective, dimension preserving, ≤ r-to-one simplicial map.
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Question. is L(Y ) + 1 ≤ r(L(X) + 1)?

Let X be a simplicial poset and Y a simplicial complex.

Let π : X → Y be a surjective, dimension preserving, ≤ r-to-one simplicial map.

Links behave differently for simplicial complexes and posets.

The proof for simplicial complexes uses properties of links.

For a simplicial complex K, ∀i ≥ L(K) and ∀σ ∈ K, H̃i(lkK(σ),Q) = 0
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Theorem 3. L(Y ) + 1 ≤ r(J(X) + 1).

Question. is L(Y ) + 1 ≤ r(L(X) + 1)?

Let X be a simplicial poset and Y a simplicial complex.

Let π : X → Y be a surjective, dimension preserving, ≤ r-to-one simplicial map.

Links behave differently for simplicial complexes and posets.

The proof for simplicial complexes uses properties of links.

For a simplicial complex K, ∀i ≥ L(K) and ∀σ ∈ K, H̃i(lkK(σ),Q) = 0

Define the J-index of a simplicial poset K with vertex set V as

J(K) = min{` ∈ N : ∀i ≥ `,∀S ⊆ V,∀σ ∈ K, H̃i(ḊK[S](σ),Q) = 0}
ḊK(σ) is the order complex of [σ, ·), a sub-complex of sdK

J(X) = L(X) if X is a simplicial complex. [Kalai-Meshulam 2006]

The multinerve theorem bounds J of multinerves of acyclic families.
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1. Helly numbers are dimensions of holes in nerve (simplicial) complexes

2. Holes in nerve complexes correspond to holes in the union

Helly(F) ≤ ∗
max. number of

connected components
of ∩G for G ⊆ F( ) max. dimension of

a hole in the space
+2( )

3. Projections with small fibers are well-behaved
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{ }, Family F

M(F)N (F)

(G,X)→ G

1. Control homology of M(F)
(via the multinerve theorem)

2. Control homology of N (F)
(via the projection)

Theorem 4. If F is a finite family of open subsets of a locally arc-wise connected
topological space Γ such for every subfamily G of size at least t the intersection ∩G
has at most r connected components, each with trivial homology in dimension
max(1, s− |G|) and more, then Helly(F) ≤ r(max(dΓ, s, t) + 1).

dΓ is the dimension of vanishing Q-homology for open sets in Γ
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Shape Previous bound Our bound dΓ s t r

Parallelotopes in Rd (d ≥ 2) 2d−1(2d− 1) [Santaló 1940] 2d−1(2d− 1) 2d− 2 d+ 1 1 2d−1

Disjoint translates of a planar
convex figure

5 [Tverberg 1989] 10 2 3 4 2

Disjoint unit balls in Rd:
d = 2 5 [Danzer 1957] 12 2d− 2 d+ 1 1 3
d = 3 11 [Cheong+ 2008] 15 2d− 2 d+ 1 1 3
d = 4 15 [Cheong+ 2008] 20 2d− 2 d+ 1 9 2
d = 5 19 [Cheong+ 2008] 20 2d− 2 d+ 1 9 2
d ≥ 6 4d− 1 [Cheong+ 2008] 4d− 2 2d− 2 d+ 1 9 2

Theorem 4. If F is a finite family of open subsets of a locally arc-wise connected
topological space Γ such for every subfamily G of size at least t the intersection ∩G
has at most r connected components, each with trivial homology in dimension
max(1, s− |G|) and more, then Helly(F) ≤ r(max(dΓ, s, t) + 1).

Γ a non-compact sub-manifold of G2,d+1, the Grassmannian of lines in Rd so dΓ = dim(Γ) = 2d− 2.

Line transversals to ≥ 2 convex planar figures or balls are acyclic.

Numbers of cc of line transversals to convex planar figures or balls are counted by geometric permutations.

s = d+ 1 to account for transversals to a convex ' RPd−1.

t used to optimize the use of bounds on number of geometric permutations.
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Shape Previous bound Our bound dΓ s t r

Parallelotopes in Rd (d ≥ 2) 2d−1(2d− 1) [Santaló 1940] 2d−1(2d− 1) 2d− 2 d+ 1 1 2d−1

Disjoint translates of a planar
convex figure

5 [Tverberg 1989] 10 2 3 4 2

Disjoint unit balls in Rd:
d = 2 5 [Danzer 1957] 12 2d− 2 d+ 1 1 3
d = 3 11 [Cheong+ 2008] 15 2d− 2 d+ 1 1 3
d = 4 15 [Cheong+ 2008] 20 2d− 2 d+ 1 9 2
d = 5 19 [Cheong+ 2008] 20 2d− 2 d+ 1 9 2
d ≥ 6 4d− 1 [Cheong+ 2008] 4d− 2 2d− 2 d+ 1 9 2

Theorem 4. If F is a finite family of open subsets of a locally arc-wise connected
topological space Γ such for every subfamily G of size at least t the intersection ∩G
has at most r connected components, each with trivial homology in dimension
max(1, s− |G|) and more, then Helly(F) ≤ r(max(dΓ, s, t) + 1).

7

7
7

16
18

Γ a non-compact sub-manifold of G2,d+1, the Grassmannian of lines in Rd so dΓ = dim(Γ) = 2d− 2.

Line transversals to ≥ 2 convex planar figures or balls are acyclic.

Numbers of cc of line transversals to convex planar figures or balls are counted by geometric permutations.

s = d+ 1 to account for transversals to a convex ' RPd−1.

t used to optimize the use of bounds on number of geometric permutations.
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To summarize...
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Common derivation of transversal theorems of [Santaló 1940], [Tverberg 1989] and [Cheong+ 2008]

Helly(F) ≤ ∗
max. number of

connected components
of ∩G for G ⊆ F( ) max. dimension of

a hole in the space
+2( )

3. Projections with small fibers are well-behaved

Underlying the (partial) proofs of the Grünbaum-Motzkin conjecture

Somewhat extend to maps between simplicial posets

2. Holes in nerve complexes correspond to holes in the union

Nerve theorem for good covers

Multinerve and multinerve theorem for acyclic families

Vietoris-Begle mapping theorem

F has Helly number ≥ h ⇔ N (F) contains the boundary of a k-simplex for k ≥ h− 2

Use Leray numbers: L(K) = min{` ∈ N : ∀i ≥ `,∀S ⊆ V, H̃i(K[S],Q) = 0}

1. Helly numbers are dimensions of holes in nerve complexes

N (F) = {G : G ⊆ F and ∩ G 6= ∅}

The Helly number of a family F of sets is the maximum size of a
minimum sub-family of F with empty intersection.

Helly(F) = max{|G| : G ⊆ F ,∩G = ∅,∀A ∈ G,∩(G \A) 6= ∅}
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End of part I
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Helly numbers and topological complexity

Part II
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What is it about?

Goal: some common topological explanation.

Many Helly-type theorems.

The Helly number of a family F of sets is the maximum size of a
minimum sub-family of F with empty intersection.

Helly(F) = max{|G| : G ⊆ F ,∩G = ∅,∀A ∈ G,∩(G \ {A}) 6= ∅}
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Yesterday

F has Helly number ≥ h ⇔ N (F) contains the boundary of a k-simplex for k ≥ h− 2

Use Leray numbers: L(K) = min{` ∈ N : ∀i ≥ `,∀S ⊆ V, H̃i(K[S],Q) = 0}

1. Helly numbers are dimensions of holes in nerve complexes

N (F) = {G : G ⊆ F and ∩ G 6= ∅}

2. Holes in nerve complexes correspond to holes in the union

Nerve theorem for good covers

Multinerve and multinerve theorem for acyclic families

Vietoris-Begle mapping theorem

3. Dimension-preserving, bounded degree projections are well-behaved

Underlying the (partial) proofs of the Grünbaum-Motzkin conjecture

Somewhat extend to maps between simplicial posets

Common derivation of transversal theorems of [Santaló 1940], [Tverberg 1989] and [Cheong+ 2008]

Helly(F) ≤ ∗
max. number of

connected components
of ∩G for G ⊆ F( ) max. dimension of

a hole in the space
+2( )
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Today

4. Bounds on Helly numbers arise from non-embeddability

5. Ramsey’s theorem helps finding non-embeddable structures

6. Non-embeddability can be argued at the level of chain maps

β̃i(∩G) ≤ b
for all G ⊆ F and i ≤ dd/2e − 1

⇒ Helly(F) is bounded
by some function of d and b
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4. Bounds on Helly numbers arise from non-embeddability

5. Ramsey’s theorem helps finding non-embeddable structures

6. Non-embeddability can be argued at the level of chain maps

β̃i(∩G) ≤ b
for all G ⊆ F and i ≤ dd/2e − 1

⇒ Helly(F) is bounded
by some function of d and b
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Map singletons to points, edges to arcs, triangles to disks... satisfying boundary conditions.
Images of simplices intersect in exactly the image of their common face

Let K be a simplicial complex with geometric realization |K|.

An embedding of K into Rd is a map from |K| into Rd that is
an homeomorphism on its image.

Linear embeddings Piece-wise linear embeddings Topological embeddings
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∆
(t)
m =

(
[m+1]
t+1

)
is the t-dimensional skeleton of the m-dimensional simplex

[x] = {1, 2, . . . , x} and
(

[x]
t

)
= all t-elements subsets of [x]

“Radon’s theorem. Any subset of at least d+ 2 points
in Rd can be partitioned into two subsets whose convex
hulls intersect.”

= “∆
(d)
n does not embed linearly into Rd for n ≥ d+ 1.”
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Helly from Radon

∆
(t)
m =

(
[m+1]
t+1

)
is the t-dimensional skeleton of the m-dimensional simplex

[x] = {1, 2, . . . , x} and
(

[x]
t

)
= all t-elements subsets of [x]

Pick pj ∈ ∩i 6=jAi

“Radon’s theorem. Any subset of at least d+ 2 points
in Rd can be partitioned into two subsets whose convex
hulls intersect.”

= “∆
(d)
n does not embed linearly into Rd for n ≥ d+ 1.”

Let F = {A1, A2, . . . Ak} be convex sets in Rd such that

k ≥ d+ 2 and ∀j ≤ k, ∩i 6=jAi 6= ∅
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Helly from Radon

∆
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m =
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[m+1]
t+1

)
is the t-dimensional skeleton of the m-dimensional simplex

[x] = {1, 2, . . . , x} and
(

[x]
t

)
= all t-elements subsets of [x]

Pick pj ∈ ∩i 6=jAi

h ∈ (∩i:pi /∈XAi) ∩ (∩i:pi /∈YAi) = ∩F

There exists a partition X ∪ Y of {p1, p2, . . . , pk}
and h ∈ conv(X) ∩ conv(Y )

“Radon’s theorem. Any subset of at least d+ 2 points
in Rd can be partitioned into two subsets whose convex
hulls intersect.”

= “∆
(d)
n does not embed linearly into Rd for n ≥ d+ 1.”

Let F = {A1, A2, . . . Ak} be convex sets in Rd such that

k ≥ d+ 2 and ∀j ≤ k, ∩i 6=jAi 6= ∅
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Helly from Radon

f(τ) ⊆ ∩i/∈τAi so h ∈ (∩i/∈σAi) ∩ (∩i:pi /∈τAi) = ∩F

Extend linearly i 7→ pi into f : ∆
(d)
k−1 → Rd

There exists σ, τ ∈ ∆
(d)
k−1 such that σ ∩ τ = ∅

and h ∈ f(σ) ∩ f(τ)

∆
(t)
m =
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t+1
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is the t-dimensional skeleton of the m-dimensional simplex

[x] = {1, 2, . . . , x} and
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= all t-elements subsets of [x]
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h ∈ (∩i:pi /∈XAi) ∩ (∩i:pi /∈YAi) = ∩F

There exists a partition X ∪ Y of {p1, p2, . . . , pk}
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“Radon’s theorem. Any subset of at least d+ 2 points
in Rd can be partitioned into two subsets whose convex
hulls intersect.”

= “∆
(d)
n does not embed linearly into Rd for n ≥ d+ 1.”

Let F = {A1, A2, . . . Ak} be convex sets in Rd such that

k ≥ d+ 2 and ∀j ≤ k, ∩i 6=jAi 6= ∅
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(
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)
= all t-elements subsets of [x]
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h ∈ (∩i:pi /∈XAi) ∩ (∩i:pi /∈YAi) = ∩F

There exists a partition X ∪ Y of {p1, p2, . . . , pk}
and h ∈ conv(X) ∩ conv(Y )

“Radon’s theorem. Any subset of at least d+ 2 points
in Rd can be partitioned into two subsets whose convex
hulls intersect.”

= “∆
(d)
n does not embed linearly into Rd for n ≥ d+ 1.”

Let F = {A1, A2, . . . Ak} be convex sets in Rd such that

k ≥ d+ 2 and ∀j ≤ k, ∩i 6=jAi 6= ∅
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Non-planarity of K5 ⇒ Helly number for path-connected intersections in R2.

Corollary. If F is a family of sets in R2 such that the intersection of any subfamily
is empty or path-connected then Helly(F) ≤ 4.

Proof: Let F = {A1, A2, . . . Ak} such that k ≥ 5 and ∀j ≤ k, ∩i 6=jAi 6= ∅
Pick pj ∈ ∩i 6=jAi

∆
(1)
n 6↪→ R2 for n ≥ 5
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Non-planarity of K5 ⇒ Helly number for path-connected intersections in R2.

Corollary. If F is a family of sets in R2 such that the intersection of any subfamily
is empty or path-connected then Helly(F) ≤ 4.

Proof: Let F = {A1, A2, . . . Ak} such that k ≥ 5 and ∀j ≤ k, ∩i 6=jAi 6= ∅
Pick pj ∈ ∩i 6=jAi
Connect every pa and pb inside ∩i 6=a,bAi

∆
(1)
n 6↪→ R2 for n ≥ 5
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Non-planarity of K5 ⇒ Helly number for path-connected intersections in R2.

Corollary. If F is a family of sets in R2 such that the intersection of any subfamily
is empty or path-connected then Helly(F) ≤ 4.

Proof: Let F = {A1, A2, . . . Ak} such that k ≥ 5 and ∀j ≤ k, ∩i 6=jAi 6= ∅
Pick pj ∈ ∩i 6=jAi
Connect every pa and pb inside ∩i 6=a,bAi
Two edges papb and pupv cross, with {a, b} ∩ {u, v} = ∅.
The intersection point belongs to (∩i 6=a,bAi) ∩ (∩i6=u,vAi) = ∩iAi.

∆
(1)
n 6↪→ R2 for n ≥ 5
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Bound on the
Helly number

2dd/2e+ 2

d+ 1

Assumption on
nonempty intersections

dd/2e-connected

contractible

6↪→

Topological Radon: ∆
(d)
d+1 6↪→ Rd

[Bajmóczy-Bárány 1979]

∆
(dd/2e)
2dd/2e+2 6↪→ Rd

[Van Kampen 1931, Flores 1932]
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Bound on the
Helly number

2dd/2e+ 2

d+ 1

Assumption on
nonempty intersections

dd/2e-connected

contractible

Can we allow some disconnection?

6↪→

Topological Radon: ∆
(d)
d+1 6↪→ Rd

[Bajmóczy-Bárány 1979]

∆
(dd/2e)
2dd/2e+2 6↪→ Rd

[Van Kampen 1931, Flores 1932]
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4. Bounds on Helly numbers arise from non-embeddability

5. Ramsey’s theorem helps finding non-embeddable structures

6. Non-embeddability can be argued at the level of chain maps

β̃i(∩G) ≤ b
for all G ⊆ F and i ≤ dd/2e − 1

⇒ Helly(F) is bounded
by some function of d and b
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Ramsey’s theorem. For any x, y and z there exists R = Rx,y,z ∈ N such that
any coloring of the complete x-uniform hypergraph on at least R vertices by y
colors contains z vertices inducing a monochromatic sub-hypergraph.

complete x-uniform hypergraph: all subsets of size x of a finite set
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Lemma. Let G be a graph on n vertices where any 3 vertices span at least one
edge. If n ≥ R3,3,9 then G contains K5 as an induced subgraph.

Ramsey’s theorem. For any x, y and z there exists R = Rx,y,z ∈ N such that
any coloring of the complete x-uniform hypergraph on at least R vertices by y
colors contains z vertices inducing a monochromatic sub-hypergraph.

complete x-uniform hypergraph: all subsets of size x of a finite set
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Lemma. Let G be a graph on n vertices where any 3 vertices span at least one
edge. If n ≥ R3,3,9 then G contains K5 as an induced subgraph.

Proof: Number the vertices 1, 2, . . . , n.

1

2

3

4 5

Ramsey’s theorem. For any x, y and z there exists R = Rx,y,z ∈ N such that
any coloring of the complete x-uniform hypergraph on at least R vertices by y
colors contains z vertices inducing a monochromatic sub-hypergraph.

complete x-uniform hypergraph: all subsets of size x of a finite set
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Lemma. Let G be a graph on n vertices where any 3 vertices span at least one
edge. If n ≥ R3,3,9 then G contains K5 as an induced subgraph.

Color {i1, i2, i3} with i1 < i2 < i3 by a pair {a, b} such that iaib is an edge.

Proof: Number the vertices 1, 2, . . . , n.

1

2

3

4 5

{1, 2, 5} labelled {1, 2}

{2, 3, 4} labelled {1, 3}
{1, 2, 4} labelled {2, 3}

Ramsey’s theorem. For any x, y and z there exists R = Rx,y,z ∈ N such that
any coloring of the complete x-uniform hypergraph on at least R vertices by y
colors contains z vertices inducing a monochromatic sub-hypergraph.

complete x-uniform hypergraph: all subsets of size x of a finite set
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Lemma. Let G be a graph on n vertices where any 3 vertices span at least one
edge. If n ≥ R3,3,9 then G contains K5 as an induced subgraph.

Color {i1, i2, i3} with i1 < i2 < i3 by a pair {a, b} such that iaib is an edge.

This colors the complete 3-uniform hypergraph by {1, 2}, {1, 3} and {2, 3}.
For n ≥ R3,3,9 some 9 vertices span triples all colored by the same pair {a, b}.

Proof: Number the vertices 1, 2, . . . , n.

1

2

3

4 5

{1, 2, 5} labelled {1, 2}

{2, 3, 4} labelled {1, 3}
{1, 2, 4} labelled {2, 3}

Ramsey’s theorem. For any x, y and z there exists R = Rx,y,z ∈ N such that
any coloring of the complete x-uniform hypergraph on at least R vertices by y
colors contains z vertices inducing a monochromatic sub-hypergraph.

complete x-uniform hypergraph: all subsets of size x of a finite set
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Lemma. Let G be a graph on n vertices where any 3 vertices span at least one
edge. If n ≥ R3,3,9 then G contains K5 as an induced subgraph.

Color {i1, i2, i3} with i1 < i2 < i3 by a pair {a, b} such that iaib is an edge.

This colors the complete 3-uniform hypergraph by {1, 2}, {1, 3} and {2, 3}.
For n ≥ R3,3,9 some 9 vertices span triples all colored by the same pair {a, b}.
If {a, b} = {1, 2} then the vertices with rank {1, 2, 3, 4, 5} span a K5.

. . . . . . . . .{2, 3} {2, 3, 4, 5, 6}

Proof: Number the vertices 1, 2, . . . , n.

. . . . . . . . .{1, 3, 5, 7, 9}{1, 3}

1

2

3

4 5

{1, 2, 5} labelled {1, 2}

{2, 3, 4} labelled {1, 3}
{1, 2, 4} labelled {2, 3}

Ramsey’s theorem. For any x, y and z there exists R = Rx,y,z ∈ N such that
any coloring of the complete x-uniform hypergraph on at least R vertices by y
colors contains z vertices inducing a monochromatic sub-hypergraph.

complete x-uniform hypergraph: all subsets of size x of a finite set
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Lemma. Let G be a graph on n vertices where any 3 vertices span at least one edge. If n ≥ R3,3,9

then G contains K5 as an induced subgraph.

Corollary. If F is a family of sets in R2 such that the intersection of any subfamily
has at most two path-connected components then Helly(F) ≤ R3,3,9 − 1.
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Lemma. Let G be a graph on n vertices where any 3 vertices span at least one edge. If n ≥ R3,3,9

then G contains K5 as an induced subgraph.

Corollary. If F is a family of sets in R2 such that the intersection of any subfamily
has at most two path-connected components then Helly(F) ≤ R3,3,9 − 1.

Let F = {A1, A2, . . . Ak} such that k ≥ R3,3,9 and ∀j ≤ k, ∩i6=jAi 6= ∅
Pick pj ∈ ∩i 6=jAi

Proof:

In any {pa, pb, pc} two can be connected inside ∩i 6=a,b,cAi.
In the graph that was drawn, 5 vertices must span a complete graph.

The intersection point of these edges lies in ∩F .
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then G contains K5 as an induced subgraph.

Wrong: the two edges could be papb inside ∩i6=a,b,cAi and pupv inside ∩i 6=u,v,cAi...

Corollary. If F is a family of sets in R2 such that the intersection of any subfamily
has at most two path-connected components then Helly(F) ≤ R3,3,9 − 1.

Let F = {A1, A2, . . . Ak} such that k ≥ R3,3,9 and ∀j ≤ k, ∩i6=jAi 6= ∅
Pick pj ∈ ∩i 6=jAi

Proof:

In any {pa, pb, pc} two can be connected inside ∩i 6=a,b,cAi.
In the graph that was drawn, 5 vertices must span a complete graph.

The intersection point of these edges lies in ∩F .
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Lemma. Let G be a graph on n vertices where any 3 vertices span at least one edge. If n ≥ R3,3,9

then G contains K5 as an induced subgraph.

Wrong: the two edges could be papb inside ∩i6=a,b,cAi and pupv inside ∩i 6=u,v,cAi...

Corollary. If F is a family of sets in R2 such that the intersection of any subfamily
has at most two path-connected components then Helly(F) ≤ R3,3,9 − 1.

We need a stronger statement where triples use different “dummy” vertices

Lemma. Let G be a graph on n vertices where any 3 vertices span at least one
edge. If n ≥ R3,3,9 then G contains 5 vertices such that for any two there exists
a triple in which they span an edge.

We actually proved:

Let F = {A1, A2, . . . Ak} such that k ≥ R3,3,9 and ∀j ≤ k, ∩i6=jAi 6= ∅
Pick pj ∈ ∩i 6=jAi

Proof:

In any {pa, pb, pc} two can be connected inside ∩i 6=a,b,cAi.
In the graph that was drawn, 5 vertices must span a complete graph.

The intersection point of these edges lies in ∩F .
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Lemma. Let {a, b} ∈
(

[3]
2

)
. There exists an injection from I into any ordered set of

size ≥ 15 such that any {iu, iv} are in {a, b}th position in {iu, iv, iu,v}.

Let I = {i1, i2, . . . , i5} ∪ {i1,2, i1,3, . . . , i4,5}.

Proof:

1

2

3

4 5

Label the vertices of
K5 by [5].

1

2

3

4 5

1 2
3

4

5

6

7 8
9

1011
12

13 14 15

Given {a, b}, label the edges by distinct rationals
such that in every ”edge+vertices” triple the

vertices are in positions a and b

map these labels to Z increasingly.

2.71.
3

3.5

i1, . . . , i5 = labels of the vertices

iu,v = label of the edge iuiv
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Corollary. If F is a family of sets in R2 such that the intersection of any subfamily
has at most two path-connected components then Helly(F) ≤ R3,3,15 − 1.

Lemma. Let {a, b} ∈
(

[3]
2

)
. There exists an injection from {i1, i2, . . . , i5} ∪ {i1,2, i1,3, . . . , i4,5}

into any ordered set of size ≥ 15 such that any {iu, iv} are in {a, b}th position in {iu, iv, iu,v}.

Let F = {A1, A2, . . . Ak} such that k ≥ R3,3,15 and ∀j ≤ k, ∩i 6=jAi 6= ∅
Pick pj ∈ ∩i 6=jAi

Proof:

In any {pa, pb, pc} two can be connected inside ∩i 6=a,b,cAi.
Color {i1, i2, i3} with i1 < i2 < i3 by a pair {a, b} such that iaib is an edge in ∩i 6=i1,i2,i3Ai.
For n ≥ R3,3,15 some 15 vertices span triples all colored by the same pair {a, b}.

Two edges in this K5 intersect and that intersection point lies in ∩F .

Lemma ⇒ i1, . . . , i5 and distinct iu,v for each {u, v} ∈
(

[5]
2

)
such that every piupiv can be drawn in ∩i 6=iu,iv,iu,vAi.
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` indices i1, i2, . . . , i`(
`
2

)
sets of r + 1 indices Qu,v

The same idea works in higher dimension using that ∆
(dd/2e)
2dd/2e+2 6↪→ Rd.

⇒ If F is a family of sets in Rd such that the intersection of any subfamily has at most 2
connected components, each (dd/2e − 1)-connected, then Helly(F) ≤ f(d).

Assuming intersections are k-connected, each “constrained” drawing of Kn extends

into a “constrained” drawing of ∆
(k)
n−1.

Every piupiv is drawn in ∩i 6=iu,iv,iu,vAi

Every piupivpw is drawn in ∩i 6=iu,iv,iu,v,iw,iu,w,iv,wAi, etc...

Vertex-disjoint faces are drawn missing disjoint sets of Ai’s
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` indices i1, i2, . . . , i`(
`
2

)
sets of r + 1 indices Qu,v

The same idea works in higher dimension using that ∆
(dd/2e)
2dd/2e+2 6↪→ Rd.

⇒ If F is a family of sets in Rd such that the intersection of any subfamily has at most 2
connected components, each (dd/2e − 1)-connected, then Helly(F) ≤ f(d).

This was essentially the proof of:

Theorem. [Matoušek 1996] If F is a family of sets in Rd such that the intersection
of any subfamily has at most r connected components, each dd/2e-connected, then
Helly(F) ≤ f(r, d).

Uses a generalization of the “selection trick”

Assuming intersections are k-connected, each “constrained” drawing of Kn extends

into a “constrained” drawing of ∆
(k)
n−1.

Every piupiv is drawn in ∩i 6=iu,iv,iu,vAi

Every piupivpw is drawn in ∩i 6=iu,iv,iu,v,iw,iu,w,iv,wAi, etc...

Vertex-disjoint faces are drawn missing disjoint sets of Ai’s
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4. Bounds on Helly numbers arise from non-embeddability

5. Ramsey’s theorem helps finding non-embeddable structures

6. Non-embeddability can be argued at the level of chain maps

β̃i(∩G) ≤ b
for all G ⊆ F and i ≤ dd/2e − 1

⇒ Helly(F) is bounded
by some function of d and b
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K a simplicial complex and γ : C∗(K)→ C∗(Rd) a chain map.

A chain map γ : C∗ → D∗ is a sequence of homomorphisms γn : Cn → Dn

that commute with ∂.
γn−1 ◦ ∂Cn = ∂Dn ◦ γn

Chain complex of a space or a simplicial complex.

⊕nCn where Cn is the Z2-vector space generated by the n-simplices

∂n : Cn → Cn−1 are the boundary operators and satisfy ∂n ◦ ∂n+1 = 0

γ is non-trivial if every vertex of K is mapped to a sum of an odd number of points.

γ is an homological almost embedding if it is non-trivial and for
disjoint simplices σ, τ ∈ K, γ(σ) and γ(τ) have disjoint supports.

7→
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A continuous map f : |K| → Rd induces a non-trivial chain map f] : C∗(K)→ C∗(Rd).

If f is an almost-embedding then f] is an homological almost embedding.
Almost embedding for maps: disjoint simplices have disjoint images
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A continuous map f : |K| → Rd induces a non-trivial chain map f] : C∗(K)→ C∗(Rd).

If f is an almost-embedding then f] is an homological almost embedding.
Almost embedding for maps: disjoint simplices have disjoint images

Theorem 5. There is no homological almost embedding from C∗

(
∆

(d)
d+1

)
or from C∗

(
∆

(dd/2e)
d+2

)
into C∗(Rd).

Homological versions of the Radon and Van Kampen-Flores theorems
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A continuous map f : |K| → Rd induces a non-trivial chain map f] : C∗(K)→ C∗(Rd).

If f is an almost-embedding then f] is an homological almost embedding.
Almost embedding for maps: disjoint simplices have disjoint images

Proof shows that the Van Kampen obstruction to embeddability into Rd also forbids homological
almost embeddings.

Technique: adapt the classical proof...

... using equivariant chain homotopy [Wagner 2011]

Z2 spaces, equivariant maps, deleted products, Gauss map, Van Kampen obstruction

Theorem 5. There is no homological almost embedding from C∗

(
∆

(d)
d+1

)
or from C∗

(
∆

(dd/2e)
d+2

)
into C∗(Rd).

Homological versions of the Radon and Van Kampen-Flores theorems
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Corollary. Let F be a family of sets in Rd. If for any G ⊆ F , ∩G is empty or
has β̃i(∩G,Z2) = 0 for i = 0, 1, . . . , dd/2e − 1 then Helly(F) ≤ d+ 2.
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Corollary. Let F be a family of sets in Rd. If for any G ⊆ F , ∩G is empty or
has β̃i(∩G,Z2) = 0 for i = 0, 1, . . . , dd/2e − 1 then Helly(F) ≤ d+ 2.

Pick pj ∈ ∩i 6=jAi, define γ({j}) = pj

Proof: Let F = {A1, A2, . . . Ak} such that k ≥ d+ 3 and ∀j ≤ k, ∩i 6=jAi 6= ∅

Construct a non-trivial chain map γ : C∗

(
∆

(dd/2e)
d+2

)
→ C∗(Rd) “constrained by F”.
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Corollary. Let F be a family of sets in Rd. If for any G ⊆ F , ∩G is empty or
has β̃i(∩G,Z2) = 0 for i = 0, 1, . . . , dd/2e − 1 then Helly(F) ≤ d+ 2.

Pick pj ∈ ∩i 6=jAi, define γ({j}) = pj

γ(∂{u, v}) = γ({u}) + γ({v}) is a cycle in ∩i 6=u,vAi
β̃1(∩i6=u,vAi,Z2) = 0 so γ({u}) + γ({v}) is a boundary.

We define γ({u, v}) as a 1-chain supported in ∩i 6=u,vAi with boundary γ({u}) + γ({v}).
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has β̃i(∩G,Z2) = 0 for i = 0, 1, . . . , dd/2e − 1 then Helly(F) ≤ d+ 2.

Pick pj ∈ ∩i 6=jAi, define γ({j}) = pj

If ∩F = then γ is an homological almost embedding.

γ(∂{u, v, w}) is a boundary in ∩i6=u,v,wAi . . .

Inductive construction on ∆
(dd/2e)
d+2 then linear extension to C∗

(
∆

(dd/2e)
d+2

)
.
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Corollary. Let F be a family of sets in Rd. If for any G ⊆ F , ∩G is empty or
has β̃i(∩G,Z2) = 0 for i = 0, 1, . . . , dd/2e − 1 then Helly(F) ≤ d+ 2.

Pick pj ∈ ∩i 6=jAi, define γ({j}) = pj

If ∩F = then γ is an homological almost embedding.

γ(∂{u, v, w}) is a boundary in ∩i6=u,v,wAi . . .

Inductive construction on ∆
(dd/2e)
d+2 then linear extension to C∗

(
∆

(dd/2e)
d+2

)
.

γ(∂{u, v}) = γ({u}) + γ({v}) is a cycle in ∩i 6=u,vAi
β̃1(∩i6=u,vAi,Z2) = 0 so γ({u}) + γ({v}) is a boundary.

We define γ({u, v}) as a 1-chain supported in ∩i 6=u,vAi with boundary γ({u}) + γ({v}).

This simply repeats the previous homotopic arguments in a homological language.

Proof: Let F = {A1, A2, . . . Ak} such that k ≥ d+ 3 and ∀j ≤ k, ∩i 6=jAi 6= ∅

Construct a non-trivial chain map γ : C∗

(
∆

(dd/2e)
d+2

)
→ C∗(Rd) “constrained by F”.
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X

Consider a chain map γ : C∗(Kn)→ C∗(X) where X is an annulus.

X has two Z2-homology class in dimension 1.
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X

Consider a chain map γ : C∗(Kn)→ C∗(X) where X is an annulus.

X has two Z2-homology class in dimension 1.

Pick four vertices v1, v2, v3, v4 ∈ Kn

∂v1v2v3 + ∂v1v2v4 = v1v3 + v3v2 + v2v4 + v4v1

so one of these three cycles is a boundary.



49

Lemma. Let f : C∗(Kn)→ C∗(X) be a chain map and let s ∈ N.
For n large enough there exists a PL-embedding g : Ks → Kn such
that for any u, v, w ∈ Ks, f ◦ g](∂uvw) is a boundary.

X

Consider a chain map γ : C∗(Kn)→ C∗(X) where X is an annulus.

X has two Z2-homology class in dimension 1.

Pick four vertices v1, v2, v3, v4 ∈ Kn

∂v1v2v3 + ∂v1v2v4 = v1v3 + v3v2 + v2v4 + v4v1

so one of these three cycles is a boundary.
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Lemma. Let f : C∗(Kn)→ C∗(X) be a chain map and let s ∈ N.
For n large enough there exists a PL-embedding g : Ks → Kn such
that for any u, v, w ∈ Ks, f ◦ g](∂uvw) is a boundary.

X

Consider a chain map γ : C∗(Kn)→ C∗(X) where X is an annulus.

X has two Z2-homology class in dimension 1.

Proof: Color every triangle xyz of Kn by the homology class of γ(∂xyz) in X.

Use Ramsey’s theorem to find t vertices so that all triangles have the
same homology class under γ.

Pick four vertices v1, v2, v3, v4 ∈ Kn

∂v1v2v3 + ∂v1v2v4 = v1v3 + v3v2 + v2v4 + v4v1

so one of these three cycles is a boundary.
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Lemma. Let f : C∗(Kn)→ C∗(X) be a chain map and let s ∈ N.
For n large enough there exists a PL-embedding g : Ks → Kn such
that for any u, v, w ∈ Ks, f ◦ g](∂uvw) is a boundary.

X

Consider a chain map γ : C∗(Kn)→ C∗(X) where X is an annulus.

X has two Z2-homology class in dimension 1.

Proof: Color every triangle xyz of Kn by the homology class of γ(∂xyz) in X.

Use Ramsey’s theorem to find t vertices so that all triangles have the
same homology class under γ.

PL-map ∆
(2)
s−1 to its barycentric subdivision sd ∆

(2)
s−1.

Then map the 1-skeleton of sd ∆
(2)
s−1 to these t vertices (assuming t is large enough).

Pick four vertices v1, v2, v3, v4 ∈ Kn

∂v1v2v3 + ∂v1v2v4 = v1v3 + v3v2 + v2v4 + v4v1

so one of these three cycles is a boundary.
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Lemma. Let f : C∗(Kn)→ C∗(X) be a chain map and let s ∈ N.
For n large enough there exists a PL-embedding g : Ks → Kn such
that for any u, v, w ∈ Ks, f ◦ g](∂uvw) is a boundary.

X

Consider a chain map γ : C∗(Kn)→ C∗(X) where X is an annulus.

X has two Z2-homology class in dimension 1.

Applies in any dimension, provided the number of Z2-homology classes
of the target space is bounded.

Proof: Color every triangle xyz of Kn by the homology class of γ(∂xyz) in X.

Use Ramsey’s theorem to find t vertices so that all triangles have the
same homology class under γ.

PL-map ∆
(2)
s−1 to its barycentric subdivision sd ∆

(2)
s−1.

Then map the 1-skeleton of sd ∆
(2)
s−1 to these t vertices (assuming t is large enough).

Every triangle in Ks is the sum of 6 triangles in sdKs.

A sum of an even number of times the same homology class is a Z2-boundary.

Pick four vertices v1, v2, v3, v4 ∈ Kn

∂v1v2v3 + ∂v1v2v4 = v1v3 + v3v2 + v2v4 + v4v1

so one of these three cycles is a boundary.
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4. Bounds on Helly numbers arise from non-embeddability

5. Ramsey’s theorem helps finding non-embeddable structures

6. Non-embeddability can be argued at the level of chain maps

β̃i(∩G) ≤ b
for all G ⊆ F and i ≤ dd/2e − 1

⇒ Helly(F) is bounded
by some function of d and b
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Pick pj ∈ ∩i 6=jAi and define γ(j) = pj

Let F = {A1, A2, . . . Ak} such that ∀j ≤ k, ∩i 6=jAi 6= ∅

Assume that ∀G ⊆ F , ∩G has at most r connected components and β̃1(∩G,Z2) ≤ r

Goal: build a chain map from C∗

(
∆

(2)
7

)
into C∗(Rd) such that

disjoint faces σ, τ are mapped to chains supported in ∩i/∈Φ(σ)Ai
and ∩i/∈Φ(τ)Ai with Φ(σ) ∩ Φ(τ) = ∅
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Pick pj ∈ ∩i 6=jAi and define γ(j) = pj

Let F = {A1, A2, . . . Ak} such that ∀j ≤ k, ∩i 6=jAi 6= ∅

For any J ⊂ [k] of size r + 1 there is a pair PJ = {u, v} ⊂ J such that
γ(u) + γ(v) is a boundary in ∩i/∈JAi

Assume that ∀G ⊆ F , ∩G has at most r connected components and β̃1(∩G,Z2) ≤ r

Goal: build a chain map from C∗

(
∆

(2)
7

)
into C∗(Rd) such that

disjoint faces σ, τ are mapped to chains supported in ∩i/∈Φ(σ)Ai
and ∩i/∈Φ(τ)Ai with Φ(σ) ∩ Φ(τ) = ∅

Injection lemma  a chain map γ1 : C∗(Kn)→ C∗ (∩i/∈TAi)

Ramsey  T ⊂ [k] such that the positions of PJ for all J ⊂ T are identical
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Pick pj ∈ ∩i 6=jAi and define γ(j) = pj

Let F = {A1, A2, . . . Ak} such that ∀j ≤ k, ∩i 6=jAi 6= ∅

For any J ⊂ [k] of size r + 1 there is a pair PJ = {u, v} ⊂ J such that
γ(u) + γ(v) is a boundary in ∩i/∈JAi

Filling lemma  γ′1 : C∗(Ks)→ C∗ (∩i/∈TAi) such that the
image of every triangle is a boundary in ∩i/∈TAi.

We can define γ2 : C∗(∆
(2)
s−1)→ C∗ (∩i/∈TAi)

Assume that ∀G ⊆ F , ∩G has at most r connected components and β̃1(∩G,Z2) ≤ r

Goal: build a chain map from C∗

(
∆

(2)
7

)
into C∗(Rd) such that

disjoint faces σ, τ are mapped to chains supported in ∩i/∈Φ(σ)Ai
and ∩i/∈Φ(τ)Ai with Φ(σ) ∩ Φ(τ) = ∅

Injection lemma  a chain map γ1 : C∗(Kn)→ C∗ (∩i/∈TAi)

Ramsey  T ⊂ [k] such that the positions of PJ for all J ⊂ T are identical

Filling lemma. Let f : C∗(Kn)→ C∗(X) be a chain map and let s ∈ N.
For n large enough there exists a PL-embedding g : Ks → Kn such that
for any u, v, w ∈ Ks, f ◦ g](∂uvw) is a boundary.
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Injection lemma  a chain map γ1 : C∗(Kn)→ C∗ (∩i/∈TAi)

Ramsey  T ⊂ [k] such that the positions of PJ for all J ⊂ T are identical

n ≥ R∗,∗,s∗ , |T | ≥ R∗,∗,n∗ and k ≥ R∗,∗,|T |∗

Filling lemma. Let f : C∗(Kn)→ C∗(X) be a chain map and let s ∈ N.
For n large enough there exists a PL-embedding g : Ks → Kn such that
for any u, v, w ∈ Ks, f ◦ g](∂uvw) is a boundary.
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(
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)
into C∗(Rd) such that

disjoint faces σ, τ are mapped to chains supported in ∩i/∈Φ(σ)Ai
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Ramsey  T ⊂ [k] such that the positions of PJ for all J ⊂ T are identical

n ≥ R∗,∗,s∗ , |T | ≥ R∗,∗,n∗ and k ≥ R∗,∗,|T |∗

Filling lemma. Let f : C∗(Kn)→ C∗(X) be a chain map and let s ∈ N.
For n large enough there exists a PL-embedding g : Ks → Kn such that
for any u, v, w ∈ Ks, f ◦ g](∂uvw) is a boundary.

Problem: everything is
supported in ∩i/∈TAi
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For n large enough there exists a PL-embedding g : Ks → Kn such that
for any u, v, w ∈ Ks, f ◦ g](∂uvw) is a boundary.

Problem: everything is
supported in ∩i/∈TAi
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Let F = {A1, A2, . . . Ak} such that ∀j ≤ k, ∩i 6=jAi 6= ∅ and pick pj ∈ ∩i6=jAi and define γ(j) = pj

∀G ⊆ F , ∩G has at most r connected components and β̃1(∩G,Z2) ≤ r

Goal: build γ : C∗

(
∆

(2)
7

)
→ C∗(Rd) with γ(σ) supported in ∩i/∈Φ(σ)Ai and σ ∩ τ = ∅ ⇒ Φ(σ) ∩ Φ(τ) = ∅

Ramsey  any set of size m = R∗,∗,`∗ contains an `-elements subset in which
the relative positions are identical for all (r + 1)-elements subsets.

Color the (r + 1)-uniform hypergraph on [k] by the
(
r+1

2

)
relative positions of these pairs.

Pigeonhole any (r+ 1)-elements subset J ⊆ [k] has a pair of points that forms a boundary in ∩i/∈JAi.
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Injection lemma. Let {a, b} ∈
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→ C∗(Rd) with γ(σ) supported in ∩i/∈Φ(σ)Ai and σ ∩ τ = ∅ ⇒ Φ(σ) ∩ Φ(τ) = ∅

Choosing ` large enough, for any set M of size m we can extend γ over some Ks

inside ∩i/∈MAi

Ramsey  any set of size m = R∗,∗,`∗ contains an `-elements subset in which
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For n large enough there exists a PL-embedding g : Ks → Kn such that
for any u, v, w ∈ Ks, f ◦ g](∂uvw) is a boundary.

Ramsey  any set of size m = R∗,∗,`∗ contains an `-elements subset in which
the relative positions are identical for all (r + 1)-elements subsets.

Color the (r + 1)-uniform hypergraph on [k] by the
(
r+1

2

)
relative positions of these pairs.

Pigeonhole any (r+ 1)-elements subset J ⊆ [k] has a pair of points that forms a boundary in ∩i/∈JAi.

⇒ We can extend γ over one (2D) triangle inside ∩i/∈MAi
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Injection lemma. Let {a, b} ∈
(

[3]
2

)
. There exists an injection from

{i1, i2, . . . , i5} ∪ {i1,2, i1,3, . . . , i4,5} into any ordered set of size ≥ 15
such that any {iu, iv} are in {a, b}th position in {iu, iv, iu,v}.

Let F = {A1, A2, . . . Ak} such that ∀j ≤ k, ∩i 6=jAi 6= ∅ and pick pj ∈ ∩i6=jAi and define γ(j) = pj

∀G ⊆ F , ∩G has at most r connected components and β̃1(∩G,Z2) ≤ r

Goal: build γ : C∗

(
∆

(2)
7

)
→ C∗(Rd) with γ(σ) supported in ∩i/∈Φ(σ)Ai and σ ∩ τ = ∅ ⇒ Φ(σ) ∩ Φ(τ) = ∅

Choosing ` large enough, for any set M of size m we can extend γ over some Ks

inside ∩i/∈MAi

Filling Lemma. Let f : C∗(Kn)→ C∗(X) be a chain map and let s ∈ N.
For n large enough there exists a PL-embedding g : Ks → Kn such that
for any u, v, w ∈ Ks, f ◦ g](∂uvw) is a boundary.

Ramsey  any set of size m = R∗,∗,`∗ contains an `-elements subset in which
the relative positions are identical for all (r + 1)-elements subsets.

Color the (r + 1)-uniform hypergraph on [k] by the
(
r+1

2

)
relative positions of these pairs.

Pigeonhole any (r+ 1)-elements subset J ⊆ [k] has a pair of points that forms a boundary in ∩i/∈JAi.

⇒ We can extend γ over one (2D) triangle inside ∩i/∈MAi
Recurse...
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To summarize...
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β̃i(∩G) ≤ b
for all G ⊆ F and i ≤ dd/2e − 1

⇒ Helly(F) is bounded
by some function of d and b

6. Non-embeddability can be argued at the level of chain maps

Classical proofs carry from almost embedding to homological almost embeddings

This makes finding boundaries much easier (mod 2)

5. Ramsey’s theorem helps finding non-embeddable structures

Uniform “r in `” selection

4. Bounds on Helly numbers arise from non-embeddability

Via embedding “constrained” by the intersection structure

Already hinted in the classical derivation of Helly from Radon
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A consequence on the complexity of optimization problems

min∩iCi
f

where f : Rd → R and C1, C2, . . . , Cn subsets of Rd
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A consequence on the complexity of optimization problems

This problem has a GLP formulation if the local
minima of f have distinct values.

min∩iCi
f

where f : Rd → R and C1, C2, . . . , Cn subsets of Rd
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A consequence on the complexity of optimization problems

This problem has a GLP formulation if the local
minima of f have distinct values.

min∩iCi
f

where f : Rd → R and C1, C2, . . . , Cn subsets of Rd

If the maximum Helly number of the sets {C1, C2, . . . , Cn, f
−1 ((−∞, t))} is some

constant h (indpt of n) then there exists i1, i2, . . . , ih such that

min∩iCi
f = min∩h

j=1Cij
f

and they can be computed “efficiently”.
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A consequence on the complexity of optimization problems

This problem has a GLP formulation if the local
minima of f have distinct values.

For this number not to be bounded requires “unbounded topological complexity”
in the level sets of the Ci.

min∩iCi
f

where f : Rd → R and C1, C2, . . . , Cn subsets of Rd

If the maximum Helly number of the sets {C1, C2, . . . , Cn, f
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constant h (indpt of n) then there exists i1, i2, . . . , ih such that

min∩iCi
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f

and they can be computed “efficiently”.
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Perspectives
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F is a (r,G)-family if every intersection of members of F is a disjoint union of at most r members of G.

Good cover in Rd

d+ 1, [Helly 1931]

(convex, r)-families in Rd

r(d+ 1), [Amenta 1996]

Convex sets in Rd

d+ 1, [Helly 1913]

(good cover, r)-families in Rd

r(d+ 1), [Kalai-Meshulam 2008]

(G, r)-families

rHelly(G), [Eckhoff-Nischke 2009]

Subsets of Rd such that ∩G has ≤ r
connected components, each

dd/2e-connected.

finite [Matoušek 1996]
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F is a (r,G)-family if every intersection of members of F is a disjoint union of at most r members of G.
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Acyclic families with
bounded #c.c. in
topological spaces

r(dΓ + 1)
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dd/2e-connected.

finite [Matoušek 1996]
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Helly numbers of sets of line transversals to

Could we also obtain

from topological arguments?

Hadwiger’s transversal theorem. Let C1, C2, . . . Cn be disjoint convex
sets in the plane. If any three have an oriented line transversal in increasing
order then they all have a line transversal.

disjoint unit disks in R2: ≤ 5 [Danzer 1957]

disjoint translates of a convex figure in R2: ≤ 5 [Tverberg 1989]

disjoint unit balls in Rd: ≤ 4d− 1 [Cheong-Holmsen-G-Petitjean 2006]

disjoint translates of a convex polyhedron in R3: unbounded [Holmsen-Matoušek 2004]



59

Is there some common generalization?

Let X and Y be simplicial complexes.

Let π : X → Y be a surjective, dimension preserving, ≤ r-to-one simplicial map.

Theorem. [Kalai-Meshulam 2008] L(Y ) + 1 ≤ r(L(X) + 1).

Theorem. [Eckhoff-Nishke 2009] H(Y ) ≤ rH(X).

Theorem. [Amenta 1996] ∆(Y ) + 1 ≤ r(∆(X) + 1).

A simplicial hole is an induced subcomplex isomorphic to the boundary of a simplex.

Define H(K) as the maximum dimension of a simplicial hole of K.

∆(K) ' the collapsibility of K.
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Thank you for your attention


