Helly numbers and topological complexity

Xavier Goaoc (Université Paris-Est Marne-la-Vallée)
joint works with

Pavel Patak (Charles University)
Éric Colin de Verdière (ENS, Paris)
Grégory Ginot (UPMC, Paris)
Zuzana Safernova (Charles University)
Martin Tancer (IST Vienna) Uli Wagner (IST Vienna)

Helly's Theorem. Any finite family of convex sets in \mathbb{R}^{d} has non-empty intersection if any $d+1$ elements have non-empty intersection.

Classical result in convex geometry
Related to Radon and Caratheodory's theorems...

Helly's Theorem. Any finite family of convex sets in \mathbb{R}^{d} has non-empty intersection if any $d+1$ elements have non-empty intersection.

Classical result in convex geometry
Related to Radon and Caratheodory's theorems...

In the contrapositive:
If finitely many convex sets in \mathbb{R}^{d} have empty intersection, some d of them have empty intersection.

Statement about size of witnesses for empty intersection

Helly's Theorem. Any finite family of convex sets in \mathbb{R}^{d} has non-empty intersection if any $d+1$ elements have non-empty intersection.

Classical result in convex geometry

Related to Radon and Caratheodory's theorems...

In the contrapositive:
If finitely many convex sets in \mathbb{R}^{d} have empty intersection, some d of them have empty intersection.

Statement about size of witnesses for empty intersection

Family-based rather than class-based formulation:
The Helly number of a family \mathcal{F} of sets is the maximum size of an inclusion-minimum sub-family of \mathcal{F} with empty intersection.

We implicitly assume that \mathcal{F} has empty intersection

$\operatorname{Helly}(\mathcal{F})=\max \{|\mathcal{G}|: \mathcal{G} \subseteq \mathcal{F}, \cap \mathcal{G}=\emptyset, \forall A \in \mathcal{G}, \cap(\mathcal{G} \backslash\{A\}) \neq \emptyset\}$

Helly's Theorem. If \mathcal{F} is a finite family of convex sets in \mathbb{R}^{d} then $\operatorname{Helly}(\mathcal{F}) \leq d+1$.

The Helly number of a family \mathcal{F} of sets is the maximum size of an inclusion-minimum sub-family of \mathcal{F} with empty intersection.

$$
\operatorname{Helly}(\mathcal{F})=\max \{|\mathcal{G}|: \mathcal{G} \subseteq \mathcal{F}, \cap \mathcal{G}=\emptyset, \forall A \in \mathcal{G}, \cap(\mathcal{G} \backslash\{A\}) \neq \emptyset\}
$$

Helly numbers arise naturally e.g. in optimization:

The Helly number of a family \mathcal{F} of sets is the maximum size of an inclusion-minimum sub-family of \mathcal{F} with empty intersection.

$$
\operatorname{Helly}(\mathcal{F})=\max \{|\mathcal{G}|: \mathcal{G} \subseteq \mathcal{F}, \cap \mathcal{G}=\emptyset, \forall A \in \mathcal{G}, \cap(\mathcal{G} \backslash\{A\}) \neq \emptyset\}
$$

Helly numbers arise naturally e.g. in optimization:

Convex
programming

Generalized linear programming

Which families of sets have bounded Helly numbers? What are these bounds?

A whole industry of bounds on Helly numbers (a.k.a "Helly-type theorems").

Star-shapness in the plane 3 [Breen 1985]

Homothets of a convex curve in \mathbb{R}^{2} 4 [Swanepoel 2003]

Convexity spaces [Kolodziejczyk 1991], Matroids [Edmonds 2001], ...

A whole industry of bounds on Helly numbers (a.k.a "Helly-type theorems").

Star-shapness in the plane 3 [Breen 1985]

Homothets of a convex curve in \mathbb{R}^{2}
4 [Swanepoel 2003]

Convexity spaces [Kolodziejczyk 1991], Matroids [Edmonds 2001], ...

A line transversal to a family is a line that intersects each of its members.
Helly numbers of sets of line transversals to
disjoint unit disks in $\mathbb{R}^{2}: \leq 5$ [Danzer 1957]
disjoint translates of a convex figure in $\mathbb{R}^{2}: \leq 5$ [Tverberg 1989]
disjoint translates of a convex polyhedron in \mathbb{R}^{3} : unbounded [Holmsen-Matoušek 2004] disjoint unit balls in $\mathbb{R}^{d}: \leq 4 d-1$ [Cheong-Holmsen-G-Petitjean 2006]

A whole industry of bounds on Helly numbers (a.k.a "Helly-type theorems").

Star-shapness in the plane 3 [Breen 1985]

Homothets of a convex curve in \mathbb{R}^{2}
4 [Swanepoel 2003]

Convexity spaces [Kolodziejczyk 1991], Matroids [Edmonds 2001], ...

A line transversal to a family is a line that intersects each of its members.
Helly numbers of sets of line transversals to
disjoint unit disks in $\mathbb{R}^{2}: \leq 5$ [Danzer 1957]
disjoint translates of a convex figure in $\mathbb{R}^{2}: \leq 5$ [Tverberg 1989] (conj. 1960)
disjoint translates of a convex polyhedron in \mathbb{R}^{3} : unbounded [Holmsen-Matoušek 2004] disjoint unit balls in $\mathbb{R}^{d}: \leq 4 d-1$ [Cheong-Holmsen-G-Petitjean 2006] (conj. 1957)

Proofs are technical and somewhat ad hoc.

What systematic conditions could explain these bounds?

$$
\begin{aligned}
& \text { Convex sets in } \mathbb{R}^{d} \\
& d+1,[\text { Helly 1913] }
\end{aligned}
$$

What systematic conditions could explain these bounds?

Convex sets in \mathbb{R}^{d}
$d+1$, [Helly 1913]

Good cover in \mathbb{R}^{d}
$d+1$, [Helly 1931]

What systematic conditions could explain these bounds?

Convex sets in \mathbb{R}^{d}
$d+1$, [Helly 1913]
Good cover in \mathbb{R}^{d}
$d+1$, [Helly 1931]

The \cap of any subfamily is a \cup of $\leq r$ disjoint convex sets in \mathbb{R}^{d}
$r(d+1)$, [Amenta 1996]

What systematic conditions could explain these bounds?

Convex sets in \mathbb{R}^{d} $d+1$, [Helly 1913]

Good cover in \mathbb{R}^{d}
$d+1$, [Helly 1931]

The \cap of any subfamily is a \cup of $\leq r$ disjoint convex sets in \mathbb{R}^{d}
$r(d+1)$, [Amenta 1996]

The \cap of any subfamily is a \cup of $\leq r$ disjoint elements of a good cover in \mathbb{R}^{d}
$r(d+1)$, [Kalai-Meshulam 2008]

What systematic conditions could explain these bounds?

Convex sets in \mathbb{R}^{d} $d+1$, [Helly 1913]

Good cover in \mathbb{R}^{d}
$d+1$, [Helly 1931]

The \cap of any subfamily is a \cup of $\leq r$ disjoint convex sets in \mathbb{R}^{d}
$r(d+1)$, [Amenta 1996]

The \cap of any subfamily is a \cup of $\leq r$ disjoint elements of a good cover in \mathbb{R}^{d} $r(d+1)$, [Kalai-Meshulam 2008]

Subsets of \mathbb{R}^{d} whose intersections have $\leq r$ connected components, each ($\lceil d / 2\rceil-1$)-connected.
some fct of r and d [Matoušek 1996]

What systematic conditions could explain these bounds?

Convex sets in \mathbb{R}^{d} $d+1$, [Helly 1913]

Good cover in \mathbb{R}^{d}
$d+1$, [Helly 1931]

The \cap of any subfamily is a \cup of $\leq r$ disjoint convex sets in \mathbb{R}^{d}
$r(d+1)$, [Amenta 1996]

The \cap of any subfamily is a \cup of $\leq r$ disjoint elements of a good cover in \mathbb{R}^{d}
$r(d+1)$, [Kalai-Meshulam 2008]

Subsets of \mathbb{R}^{d} whose intersections have $\leq r$ connected components, each ($\lceil d / 2\rceil-1$)-connected.
some fct of r and d [Matoušek 1996]

New insights (1/2)

In "reasonable" topological spaces:
\cap of any subfamily has
$\leq r$ connected components, \Rightarrow Helly $\leq r *($ max. dim. of a hole in the space +2$)$ each homologically trivial

[Colin de Verdière-Ginot-G 2014]
Builds on the techniques of [Kalai-Meshulam 2008]
Common derivation of transversal theorems of [Santaló 1940],
[Tverberg 1989] and [Cheong+ 2008]

The \cap of any subfamily is a \cup of $\leq r$ disjoint elements of a good cover in \mathbb{R}^{d}
$r(d+1)$, [Kalai-Meshulam 2008]

Subsets of \mathbb{R}^{d} whose intersections have
$\leq r$ connected components, each ($\lceil d / 2\rceil-1)$-connected.
some fct of r and d [Matoušek 1996]

New insights (2/2)

In "reasonable" d-dimensional manifolds:
\cap of any subfamily has reduced \mathbb{Z}_{2}-Betti numbers $\leq r \quad \Rightarrow \quad$ Helly \leq some function of r and d in dimension $\leq\lceil d / 2\rceil-1$

[G-Paták-Safernová-Tancer-Wagner 2014] Builds on the techniques of [Matoušek 1996]

The \cap of any subfamily is a \cup of $\leq r$ disjoint elements of a good cover in \mathbb{R}^{d}
$r(d+1)$, [Kalai-Meshulam 2008]

Subsets of \mathbb{R}^{d} whose intersections have $\leq r$ connected components, each ($\lceil d / 2\rceil-1)$-connected.
some fct of r and d [Matoušek 1996]

1. Helly numbers are dimensions of holes in nerve (simplicial) complexes
2. Holes in nerve complexes correspond to holes in the union
3. Projections with small fibers are well-behaved

$$
\operatorname{Helly}(\mathcal{F}) \leq\left(\begin{array}{c}
\text { max. number of } \\
\text { connected components } \\
\text { of } \cap \mathcal{G} \text { for } \mathcal{G} \subseteq \mathcal{F}
\end{array}\right) *\left(\begin{array}{c}
\text { max. dimension of } \\
\text { a hole in the space }
\end{array}+2\right)
$$

What are simplicial complexes?
geometric simplicial complex
"A collection of geometric simplices in \mathbb{R}^{d} such that any two are disjoint or intersect in a common face."

abstract simplicial complex
"A collection of sets that is closed under taking subsets."

$$
\{\emptyset,\{1\},\{2\},\{3\},\{4\},\{1,2\},\{1,3\},\{1,4\}\}
$$

What are simplicial complexes?

```
set of vertices forming a geometric simplex
```


geometric simplicial complex
"A collection of geometric simplices in \mathbb{R}^{d} such that any two are disjoint or intersect in a common face."

abstract simplicial complex
"A collection of sets that is closed under taking subsets."

$$
\{\emptyset,\{1\},\{2\},\{3\},\{4\},\{1,2\},\{1,3\},\{1,4\}\}
$$

geometric realization
map singletons to points in general position in \mathbb{R}^{d}, d large enough take convex hulls of points corresponding to abstract simplices

The nerve $\mathcal{N}(\mathcal{F})$ of a family \mathcal{F} of sets is $\mathcal{N}(\mathcal{F})=\{\mathcal{G}: \mathcal{G} \subseteq \mathcal{F}$ and $\cap \mathcal{G} \neq \emptyset\}$.

$$
\mathcal{N}(\mathcal{F})=\{\emptyset,\{1\},\{2\},\{3\}\}
$$

The nerve $\mathcal{N}(\mathcal{F})$ of a family \mathcal{F} of sets is $\mathcal{N}(\mathcal{F})=\{\mathcal{G}: \mathcal{G} \subseteq \mathcal{F}$ and $\cap \mathcal{G} \neq \emptyset\}$.

$$
\mathcal{N}(\mathcal{F})=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\}\}
$$

The nerve $\mathcal{N}(\mathcal{F})$ of a family \mathcal{F} of sets is $\mathcal{N}(\mathcal{F})=\{\mathcal{G}: \mathcal{G} \subseteq \mathcal{F}$ and $\cap \mathcal{G} \neq \emptyset\}$.

$$
\mathcal{N}(\mathcal{F})=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}\}
$$

The nerve $\mathcal{N}(\mathcal{F})$ of a family \mathcal{F} of sets is $\mathcal{N}(\mathcal{F})=\{\mathcal{G}: \mathcal{G} \subseteq \mathcal{F}$ and $\cap \mathcal{G} \neq \emptyset\}$.

$$
\mathcal{N}(\mathcal{F})=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}
$$

The nerve $\mathcal{N}(\mathcal{F})$ of a family \mathcal{F} of sets is $\mathcal{N}(\mathcal{F})=\{\mathcal{G}: \mathcal{G} \subseteq \mathcal{F}$ and $\cap \mathcal{G} \neq \emptyset\}$.

$\mathcal{N}(\mathcal{F})=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$
Nerves are simplicial complexes.

The nerve $\mathcal{N}(\mathcal{F})$ of a family \mathcal{F} of sets is $\mathcal{N}(\mathcal{F})=\{\mathcal{G}: \mathcal{G} \subseteq \mathcal{F}$ and $\cap \mathcal{G} \neq \emptyset\}$.

$\mathcal{N}(\mathcal{F})=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$
Nerves are simplicial complexes.
$\operatorname{Helly}(\mathcal{F})=\max \{|\mathcal{G}|: \mathcal{G} \subseteq \mathcal{F}, \cap \mathcal{G}=\emptyset$, and $\forall A \in \mathcal{G}, \cap(\mathcal{G} \backslash\{A\}) \neq \emptyset\}$

The nerve $\mathcal{N}(\mathcal{F})$ of a family \mathcal{F} of sets is $\mathcal{N}(\mathcal{F})=\{\mathcal{G}: \mathcal{G} \subseteq \mathcal{F}$ and $\cap \mathcal{G} \neq \emptyset\}$.

$$
\mathcal{N}(\mathcal{F})=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}
$$

Nerves are simplicial complexes.

$$
\begin{aligned}
\operatorname{Helly}(\mathcal{F})=\max \{|\mathcal{G}|: \mathcal{G} \subseteq \mathcal{F}, \cap \mathcal{G}=\emptyset, \text { and } \forall A \in \mathcal{G}, \cap(\mathcal{G} \backslash\{A\}) \neq \emptyset\} \\
\mathcal{N}(\mathcal{G})=2^{\mathcal{G}} \backslash\{\mathcal{G}\} \\
\boldsymbol{\Delta} \text { boundary of a }(|\mathcal{G}|-1) \text {-simplex }
\end{aligned}
$$

The nerve $\mathcal{N}(\mathcal{F})$ of a family \mathcal{F} of sets is $\mathcal{N}(\mathcal{F})=\{\mathcal{G}: \mathcal{G} \subseteq \mathcal{F}$ and $\cap \mathcal{G} \neq \emptyset\}$.

$$
\mathcal{N}(\mathcal{F})=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}
$$

Nerves are simplicial complexes.

$$
\operatorname{Helly}(\mathcal{F})=\max \{|\mathcal{G}|: \mathcal{G} \subseteq \mathcal{F}, \cap \mathcal{G}=\emptyset, \text { and } \forall A \in \mathcal{G}, \cap(\mathcal{G} \backslash\{A\}) \neq \emptyset\}
$$

\triangle
boundary of a (|G|-1)-simplex
\mathcal{F} has Helly number $\geq h$

$$
\Leftrightarrow
$$

$\mathcal{N}(\mathcal{F})$ contains the boundary of a k-simplex for $k \geq h-1$

$$
\mathcal{N}=\{\emptyset, \bullet, \bullet, \circ, \bullet \bullet, \bullet \infty, \bullet \bullet\}
$$

Families with large Helly number have nerves with "holes" of large dimension.
homotopy theory expresses algebraically how continuous images of k-spheres extends into continuous images of k-balls.
homology theory expresses which submanifolds are not boundaries of submanifolds.

Do not capture exactly the same notions.

Nuances not essential for many applications to discrete geometry.

The Leray number of a simplicial complex K with vertex set V is

$$
L(K)=\min \left\{\ell \in \mathbb{N}: \quad \forall i \geq \ell, \forall S \subseteq V, \quad \tilde{H}_{i}(K[S], \mathbb{Q})=0\right\}
$$

$K[S]=\{\sigma: \sigma \in K$ and $\sigma \subseteq S\}$ is the subcomplex induced on K by S Maximum dimension of non-trivial homology in an induced subcomplex

The Leray number of a simplicial complex K with vertex set V is

$$
L(K)=\min \left\{\ell \in \mathbb{N}: \quad \forall i \geq \ell, \forall S \subseteq V, \quad \tilde{H}_{i}(K[S], \mathbb{Q})=0\right\}
$$

$K[S]=\{\sigma: \sigma \in K$ and $\sigma \subseteq S\}$ is the subcomplex induced on K by S Maximum dimension of non-trivial homology in an induced subcomplex

The Leray number of a simplicial complex K with vertex set V is

$$
L(K)=\min \left\{\ell \in \mathbb{N}: \quad \forall i \geq \ell, \forall S \subseteq V, \quad \tilde{H}_{i}(K[S], \mathbb{Q})=0\right\}
$$

$K[S]=\{\sigma: \sigma \in K$ and $\sigma \subseteq S\}$ is the subcomplex induced on K by S Maximum dimension of non-trivial homology in an induced subcomplex

The Leray number of a simplicial complex K with vertex set V is

$$
L(K)=\min \left\{\ell \in \mathbb{N}: \quad \forall i \geq \ell, \forall S \subseteq V, \quad \tilde{H}_{i}(K[S], \mathbb{Q})=0\right\}
$$

$K[S]=\{\sigma: \sigma \in K$ and $\sigma \subseteq S\}$ is the subcomplex induced on K by S Maximum dimension of non-trivial homology in an induced subcomplex

The Leray number of a simplicial complex K with vertex set V is

$$
L(K)=\min \left\{\ell \in \mathbb{N}: \quad \forall i \geq \ell, \forall S \subseteq V, \quad \tilde{H}_{i}(K[S], \mathbb{Q})=0\right\}
$$

$K[S]=\{\sigma: \sigma \in K$ and $\sigma \subseteq S\}$ is the subcomplex induced on K by S Maximum dimension of non-trivial homology in an induced subcomplex

$\left.L()_{0}^{0}\right)=2$

The Leray number of a simplicial complex K with vertex set V is

$$
L(K)=\min \left\{\ell \in \mathbb{N}: \quad \forall i \geq \ell, \forall S \subseteq V, \quad \tilde{H}_{i}(K[S], \mathbb{Q})=0\right\}
$$

$K[S]=\{\sigma: \sigma \in K$ and $\sigma \subseteq S\}$ is the subcomplex induced on K by S Maximum dimension of non-trivial homology in an induced subcomplex

Lemma. For any family \mathcal{F} of sets, $\operatorname{Helly}(\mathcal{F}) \leq L(\mathcal{N}(\mathcal{F}))+1$
Proof: Pick $\mathcal{G} \subseteq \mathcal{F}$ of maximum size such that $\cap \mathcal{G}=\emptyset$, and $\forall A \in \mathcal{G}, \cap(\mathcal{G} \backslash A) \neq \emptyset$.
$|\mathcal{G}|=\operatorname{Helly}(\mathcal{F})$.
$\mathcal{N}(\mathcal{F})[\mathcal{G}]=\mathcal{N}(\mathcal{G})=2^{\mathcal{G}} \backslash\{\mathcal{G}\} \simeq \mathfrak{S}^{|\mathcal{G}|-2}$
So $\tilde{H}_{|\mathcal{G}|-2}(\mathcal{N}(\mathcal{F})[\mathcal{G}], \mathbb{Q})=1 \neq 0$.
and $L(\mathcal{N}(\mathcal{F})) \geq|\mathcal{G}|-1=\operatorname{Helly}(\mathcal{F})-1$.

The Leray number of a simplicial complex K with vertex set V is

$$
L(K)=\min \left\{\ell \in \mathbb{N}: \quad \forall i \geq \ell, \forall S \subseteq V, \quad \tilde{H}_{i}(K[S], \mathbb{Q})=0\right\}
$$

$K[S]=\{\sigma: \sigma \in K$ and $\sigma \subseteq S\}$ is the subcomplex induced on K by S Maximum dimension of non-trivial homology in an induced subcomplex

Lemma. For any family \mathcal{F} of sets, $\operatorname{Helly}(\mathcal{F}) \leq L(\mathcal{N}(\mathcal{F}))+1$
Proof: Pick $\mathcal{G} \subseteq \mathcal{F}$ of maximum size such that $\cap \mathcal{G}=\emptyset$, and $\forall A \in \mathcal{G}, \cap(\mathcal{G} \backslash A) \neq \emptyset$.
$|\mathcal{G}|=\operatorname{Helly}(\mathcal{F})$.
$\mathcal{N}(\mathcal{F})[\mathcal{G}]=\mathcal{N}(\mathcal{G})=2^{\mathcal{G}} \backslash\{\mathcal{G}\} \simeq \mathbb{S}^{|\mathcal{G}|-2}$
So $\tilde{H}_{|\mathcal{G}|-2}(\mathcal{N}(\mathcal{F})[\mathcal{G}], \mathbb{Q})=1 \neq 0$.
and $L(\mathcal{N}(\mathcal{F})) \geq|\mathcal{G}|-1=\operatorname{Helly}(\mathcal{F})-1$.

Bounding $L(\mathcal{N}(\mathcal{F}))$ also gives a fractional Helly theorem, an ε-net theorem, a (p, q)-theorem for the intersection-closure of \mathcal{F}.
[Alon-Kalai-Matoušek-Meshulam 2002]

1. Helly numbers are dimensions of holes in nerve (simplicial) complexes
2. Holes in nerve complexes correspond to holes in the union
3. Projections with small fibers are well-behaved

$$
\operatorname{Helly}(\mathcal{F}) \leq\left(\begin{array}{c}
\text { max. number of } \\
\text { connected components } \\
\text { of } \cap \mathcal{G} \text { for } \mathcal{G} \subseteq \mathcal{F}
\end{array}\right) *\left(\begin{array}{c}
\text { max. dimension of } \\
\text { a hole in the space }
\end{array}+2\right)
$$

Consider a finite family \mathcal{F} of open sets in a topological space.
\mathcal{F} is a good cover if the intersection of any subfamily is empty or contractible.
\mathcal{F}

Consider a finite family \mathcal{F} of open sets in a topological space.
\mathcal{F} is a good cover if the intersection of any subfamily is empty or contractible.

Consider a finite family \mathcal{F} of open sets in a topological space.
\mathcal{F} is a good cover if the intersection of any subfamily is empty or contractible.

Consider a finite family \mathcal{F} of open sets in a topological space.
\mathcal{F} is a good cover if the intersection of any subfamily is empty or contractible.

Nerve Theorem. [Borsuk 1948, Leray 1945] If \mathcal{F} is a good cover in a triangulable space then $|\mathcal{N}(\mathcal{F})|$, the geometric realization of $\mathcal{N}(\mathcal{F})$, is homotopy-equivalent to $\cup \mathcal{F}$.

Holes in the nerve \rightsquigarrow hole in a subset of the ambient space

Can a subset of \mathbb{R}^{d} have holes of dimension more than $d-1$?

Can a subset of \mathbb{R}^{d} have holes of dimension more than $d-1$?

Best proceed with caution.

If $k \geq 2$ then $H_{i}\left(\odot_{k}, \mathbb{Q}\right)$ is nontrivial for all $i \equiv 1 \bmod k-1$ [Barratt-Milnor 1962]
\odot_{k} is the union of countably many k-spheres with one point in common

Can a subset of \mathbb{R}^{d} have holes of dimension more than $d-1$?

Best proceed with caution.

If $k \geq 2$ then $H_{i}\left(\odot_{k}, \mathbb{Q}\right)$ is nontrivial for all $i \equiv 1 \bmod k-1$ [Barratt-Milnor 1962]
\odot_{k} is the union of countably many k-spheres with one point in common

Lemma Any open subset of a (paracompact) manifold of dimension d has trivial \mathbb{Q}-homology in any dimension $i \geq d+1$. If the manifold is non-compact or non-orientable then this bound improves to d.

So Helly numbers \rightsquigarrow holes in nerves \rightsquigarrow holes in union looks promising

Nerve Theorem. [Borsuk 1948, Leray 1945] If \mathcal{F} is a good cover in a triangulable space then $|\mathcal{N}(\mathcal{F})|$, the geometric realization of $\mathcal{N}(\mathcal{F})$, is homotopy-equivalent to $\cup \mathcal{F}$.

Nerve Theorem. [Borsuk 1948, Leray 1945] If \mathcal{F} is a good cover in a triangulable space then $|\mathcal{N}(\mathcal{F})|$, the geometric realization of $\mathcal{N}(\mathcal{F})$, is homotopy-equivalent to $\cup \mathcal{F}$.

Proof sketch:
Build the blow-up complex $C \subseteq$

All pairs $(p, x) \in \cup \mathcal{F} \times|\mathcal{N}(\mathcal{F})|$ such that
x is in the realization of the simplex formed by all objects in \mathcal{F} containing p

Nerve Theorem. [Borsuk 1948, Leray 1945] If \mathcal{F} is a good cover in a triangulable space then $|\mathcal{N}(\mathcal{F})|$, the geometric realization of $\mathcal{N}(\mathcal{F})$, is homotopy-equivalent to $\cup \mathcal{F}$.

Proof sketch: Build the blow-up complex $C \subseteq$

All pairs $(p, x) \in \cup \mathcal{F} \times|\mathcal{N}(\mathcal{F})|$ such that
x is in the realization of the simplex formed by all objects in \mathcal{F} containing p
π_{i} the projection on the i th coordinate
$\pi_{1}(C)=\cup \mathcal{F}$ and $\pi_{2}(C)=|\mathcal{N}(\mathcal{F})|$
These projections have contractible fibers

Nerve Theorem. [Borsuk 1948, Leray 1945] If \mathcal{F} is a good cover in a triangulable space then $|\mathcal{N}(\mathcal{F})|$, the geometric realization of $\mathcal{N}(\mathcal{F})$, is homotopy-equivalent to $\cup \mathcal{F}$.

Proof sketch: Build the blow-up complex $C \subseteq$

All pairs $(p, x) \in \cup \mathcal{F} \times|\mathcal{N}(\mathcal{F})|$ such that
x is in the realization of the simplex formed by all objects in \mathcal{F} containing p
π_{i} the projection on the i th coordinate
$\pi_{1}(C)=\cup \mathcal{F}$ and $\pi_{2}(C)=|\mathcal{N}(\mathcal{F})|$
These projections have contractible fibers

The Vietoris-Begle mapping theorem yields that $C \simeq \cup \mathcal{F}$ and $C \simeq|\mathcal{N}(\mathcal{F})|$

The "Vietoris-Begle mapping theorem" asserts that if X, Y are "nice" topological spaces and $\pi: X \rightarrow Y$ is continuous, surjective, with contractible fibers and nice then $X \simeq Y$.

\mathcal{F} is acyclic if the intersection of any subfamily is empty or a disjoint union of \mathbb{Q}-homology cells.

Like good cover in homology, but allowing multiple connected components

\mathcal{F} is acyclic if the intersection of any subfamily is empty or a disjoint union of \mathbb{Q}-homology cells.

Like good cover in homology, but allowing multiple connected components
Fix the nerve by adding multiple simplices in case of multiple components
\mathcal{F} is acyclic if the intersection of any subfamily is empty or a disjoint union of \mathbb{Q}-homology cells.

Like good cover in homology, but allowing multiple connected components

Fix the nerve by adding multiple simplices in case of multiple components

The multinerve of \mathcal{F}, denoted $\mathcal{M}(\mathcal{F})$, is the poset

$$
\begin{aligned}
& \mathcal{M}(\mathcal{F})=\{(\mathcal{G}, X) \mid \mathcal{G} \subseteq \mathcal{F}, X \text { is a connected component of } \cap \mathcal{G}\} \\
& \quad \text { ordered by }(\mathcal{G}, X) \prec\left(\mathcal{G}^{\prime}, X^{\prime}\right) \text { iff } \mathcal{G} \subset \mathcal{G}^{\prime} \text { and } X \supset X^{\prime} .
\end{aligned}
$$

\mathcal{F} is acyclic if the intersection of any subfamily is empty or a disjoint union of \mathbb{Q}-homology cells.

Like good cover in homology, but allowing multiple connected components

Fix the nerve by adding multiple simplices in case of multiple components

The multinerve of \mathcal{F}, denoted $\mathcal{M}(\mathcal{F})$, is the poset

$$
\begin{gathered}
\mathcal{M}(\mathcal{F})=\{(\mathcal{G}, X) \mid \mathcal{G} \subseteq \mathcal{F}, X \text { is a connected component of } \cap \mathcal{G}\} \\
\quad \text { ordered by }(\mathcal{G}, X) \prec\left(\mathcal{G}^{\prime}, X^{\prime}\right) \text { iff } \mathcal{G} \subset \mathcal{G}^{\prime} \text { and } X \supset X^{\prime}
\end{gathered}
$$

\mathcal{F}

$\mathcal{M}(\mathcal{F})$

$$
\begin{gathered}
\mathcal{M}(\mathcal{F})=\{(\mathcal{G}, X) \mid \mathcal{G} \subseteq \mathcal{F}, X \text { is a connected component of } \cap \mathcal{G}\} \\
\text { ordered by }(\mathcal{G}, X) \prec\left(\mathcal{G}^{\prime}, X^{\prime}\right) \text { iff } \mathcal{G} \subset \mathcal{G}^{\prime} \text { and } X \supset X^{\prime} .
\end{gathered}
$$

Simplicial poset: every lower-interval is isomorphic to a the face lattice of a simplex.
Can define (topological) geometric realization, simplicial homology... Simplices no longer defined by their vertices; explicit incidences... Arguments about co-faces may not extend

$$
\begin{gathered}
\mathcal{M}(\mathcal{F})=\{(\mathcal{G}, X) \mid \mathcal{G} \subseteq \mathcal{F}, X \text { is a connected component of } \cap \mathcal{G}\} \\
\text { ordered by }(\mathcal{G}, X) \prec\left(\mathcal{G}^{\prime}, X^{\prime}\right) \text { iff } \mathcal{G} \subset \mathcal{G}^{\prime} \text { and } X \supset X^{\prime} .
\end{gathered}
$$

Simplicial poset: every lower-interval is isomorphic to a the face lattice of a simplex.

Can define (topological) geometric realization, simplicial homology... Simplices no longer defined by their vertices; explicit incidences... Arguments about co-faces may not extend

$$
\begin{gathered}
\mathcal{M}(\mathcal{F})=\{(\mathcal{G}, X) \mid \mathcal{G} \subseteq \mathcal{F}, X \text { is a connected component of } \cap \mathcal{G}\} \\
\quad \text { ordered by }(\mathcal{G}, X) \prec\left(\mathcal{G}^{\prime}, X^{\prime}\right) \text { iff } \mathcal{G} \subset \mathcal{G}^{\prime} \text { and } X \supset X^{\prime} .
\end{gathered}
$$

Simplicial poset: every lower-interval is isomorphic to a the face lattice of a simplex.

Can define (topological) geometric realization, simplicial homology... Simplices no longer defined by their vertices; explicit incidences... Arguments about co-faces may not extend

Theorem 1. If \mathcal{F} is an acyclic family of open sets in a locally arc-wise connected topological space then $\forall i \geq 0, \quad \tilde{H}_{i}(\mathcal{M}(\mathcal{F}), \mathbb{Q}) \cong \tilde{H}_{i}(\cup \mathcal{F}, \mathbb{Q})$.

Proof: A blow-up complex / Vietoris-Begle mapping theorem approach works (even in homotopy).

$$
\begin{gathered}
\mathcal{M}(\mathcal{F})=\{(\mathcal{G}, X) \mid \mathcal{G} \subseteq \mathcal{F}, X \text { is a connected component of } \cap \mathcal{G}\} \\
\text { ordered by }(\mathcal{G}, X) \prec\left(\mathcal{G}^{\prime}, X^{\prime}\right) \text { iff } \mathcal{G} \subset \mathcal{G}^{\prime} \text { and } X \supset X^{\prime} .
\end{gathered}
$$

Simplicial poset: every lower-interval is isomorphic to a the face lattice of a simplex.

Can define (topological) geometric realization, simplicial homology...
Simplices no longer defined by their vertices; explicit incidences...
Arguments about co-faces may not extend

Theorem 1. If \mathcal{F} is an acyclic family of open sets in a locally arc-wise connected topological space then $\forall i \geq 0, \quad \tilde{H}_{i}(\mathcal{M}(\mathcal{F}), \mathbb{Q}) \cong \tilde{H}_{i}(\cup \mathcal{F}, \mathbb{Q})$.

Proof: A blow-up complex / Vietoris-Begle mapping theorem approach works (even in homotopy).

Proof (bis): Interpret the multinerve as a Čech chain complex and use Leray's acyclic cover theorem. Generalized Mayer-Vietoris principle, spectral sequences...

Theorem 2. Let \mathcal{F} be a family of open sets in a locally arc-wise connected topological space. Let $s \in \mathbb{N}$ and assume $\tilde{H}_{i}(\cap \mathcal{G}, \mathbb{Q})=0$ for any $\mathcal{G} \subseteq \mathcal{F}$ and any $i \geq \max (1, s-|\mathcal{G}|)$. Then $\tilde{H}_{i}(\mathcal{M}(\mathcal{F}), \mathbb{Q}) \cong \tilde{H}_{i}(\cup \mathcal{F}, \mathbb{Q})$ for $\ell=0$ and any $\ell \geq s$.

If we care only about high-dimensional homology, we can allow non-trivial low-dimensional homology in intersections of few objects
[Hell 2005 and 2006]

1. Helly numbers are dimensions of holes in nerve (simplicial) complexes
2. Holes in nerve complexes correspond to holes in the union
3. Projections with small fibers are well-behaved

$$
\operatorname{Helly}(\mathcal{F}) \leq\left(\begin{array}{c}
\text { max. number of } \\
\text { connected components } \\
\text { of } \cap \mathcal{G} \text { for } \mathcal{G} \subseteq \mathcal{F}
\end{array}\right) *\left(\begin{array}{c}
\text { max. dimension of } \\
\text { a hole in the space }
\end{array}+2\right)
$$

multinerve theorem $\Rightarrow \quad L(\mathcal{M}(\mathcal{F})) \leq\left(\begin{array}{l}\text { max. dimension of } \\ \text { a hole in the space }\end{array}+1\right)$
... but $L(\mathcal{M}(\mathcal{F}))$ does not bound $\operatorname{Helly}(\mathcal{F})$

$\simeq \mathbb{S}^{2}$

$$
\begin{array}{r}
\mathcal{N}(\mathcal{F})=\{\mathcal{G}: \mathcal{G} \subseteq \mathcal{F}, \cap \mathcal{G} \neq \emptyset\} \\
\mathcal{M}(\mathcal{F})=\{(\mathcal{G}, X) \mid \mathcal{G} \subseteq \mathcal{F}, X \in c c(\cap \mathcal{G})\}
\end{array}
$$

multinerve theorem $\Rightarrow \quad L(\mathcal{M}(\mathcal{F})) \leq\left(\begin{array}{l}\text { max. dimension of } \\ \text { a hole in the space }\end{array}+1\right)$
... but $L(\mathcal{M}(\mathcal{F}))$ does not bound $\operatorname{Helly}(\mathcal{F})$

Can we understand how

$$
\pi:\left\{\begin{array}{lll}
\mathcal{M}(\mathcal{F}) & \rightarrow \mathcal{N}(\mathcal{F}) \\
(\mathcal{G}, X) & \mapsto & \mathcal{G}
\end{array}\right.
$$

"transports" the Leray number (or similar quantities)?

$\simeq \mathbb{S}^{2}$

$$
\begin{array}{r}
\mathcal{N}(\mathcal{F})=\{\mathcal{G}: \mathcal{G} \subseteq \mathcal{F}, \cap \mathcal{G} \neq \emptyset\} \\
\mathcal{M}(\mathcal{F})=\{(\mathcal{G}, X) \mid \mathcal{G} \subseteq \mathcal{F}, X \in c c(\cap \mathcal{G})\}
\end{array}
$$

multinerve theorem $\Rightarrow \quad L(\mathcal{M}(\mathcal{F})) \leq\left(\begin{array}{l}\text { max. dimension of } \\ \text { a hole in the space }\end{array}+1\right)$
... but $L(\mathcal{M}(\mathcal{F}))$ does not bound $\operatorname{Helly}(\mathcal{F})$

Can we understand how

$$
\pi:\left\{\begin{array}{lll}
\mathcal{M}(\mathcal{F}) & \rightarrow \mathcal{N}(\mathcal{F}) \\
(\mathcal{G}, X) & \mapsto \mathcal{G}
\end{array}\right.
$$

"transports" the Leray number (or similar quantities)?

$\simeq \bullet \bullet$

π is well-behaved:
simplicial, surjective
maps a k-simplex to a k-simplex
is at most r-to-one where $r=\max _{\mathcal{G} \subseteq \mathcal{F}} \# c c(\cap \mathcal{G})$

$$
\begin{array}{r}
\mathcal{N}(\mathcal{F})=\{\mathcal{G}: \mathcal{G} \subseteq \mathcal{F}, \cap \mathcal{G} \neq \emptyset\} \\
\mathcal{M}(\mathcal{F})=\{(\mathcal{G}, X) \mid \mathcal{G} \subseteq \mathcal{F}, X \in c c(\cap \mathcal{G})\}
\end{array}
$$

Such maps can be found in a broader setting:

Theorem. [Eckhoff-Nischke 2009] Let \mathcal{G} be non-additive and intersection-closed. If every intersection of members of \mathcal{F} is a disjoint union of at most r members of \mathcal{G} then $\operatorname{Helly}(\mathcal{F}) \leq r \operatorname{Helly}(\mathcal{G})$.

Conjectured by [Grünbaum-Motzkin 63]

Such maps can be found in a broader setting:

Theorem. [Eckhoff-Nischke 2009] Let \mathcal{G} be non-additive and intersection-closed. If every intersection of members of \mathcal{F} is a disjoint union of at most r members of \mathcal{G} then $\operatorname{Helly}(\mathcal{F}) \leq r \operatorname{Helly}(\mathcal{G})$.

Conjectured by [Grünbaum-Motzkin 63]

$\mathcal{G}=$ Convex sets in $\mathbb{R}^{d} \quad$| $\mathcal{G}=$ Good cover in \mathbb{R}^{d} |
| :---: |
| $r(d+1)$, [Amenta 1996] |
| $r(d+1)$, [Kalai-Meshulam 2008] |

Intersection-closed and non-additive \Rightarrow components over \mathcal{G} are well-defined.
Let $D_{1}, D_{2} \subseteq \mathcal{G}$ with $\cup D_{1}=\cup D_{2}$. Pick $A \in D_{1}$ and write $A=\cup_{B \in D_{2}} A \cap B$.
The $A \cap B$'s are in $\mathcal{G} \Rightarrow$ at most one $A \cap B$ is nonempty
Symmetric argument with $B \Rightarrow B=A$

Such maps can be found in a broader setting:

Theorem. [Eckhoff-Nischke 2009] Let \mathcal{G} be non-additive and intersection-closed. If every intersection of members of \mathcal{F} is a disjoint union of at most r members of \mathcal{G} then $\operatorname{Helly}(\mathcal{F}) \leq r \operatorname{Helly}(\mathcal{G})$.

Conjectured by [Grünbaum-Motzkin 63]

| | $\mathcal{G}=$ Convex sets in \mathbb{R}^{d} | $\mathcal{G}=$ Good cover in \mathbb{R}^{d} |
| :---: | :---: | :---: | :---: |
| $r(d+1),[$ Amenta 1996] | $r(d+1),[$ Kalai-Meshulam 2008] | |

Intersection-closed and non-additive \Rightarrow components over \mathcal{G} are well-defined.

$$
\begin{array}{r}
\text { Let } D_{1}, D_{2} \subseteq \mathcal{G} \text { with } \cup D_{1}=\cup D_{2} \text {. Pick } A \in D_{1} \text { and write } A=\cup_{B \in D_{2}} A \cap B . \\
\text { The } A \cap B \text { 's are in } \mathcal{G} \Rightarrow \text { at most one } A \cap B \text { is nonempty } \\
\text { Symmetric argument with } B \Rightarrow B=A
\end{array}
$$

There is an underlying nice projection from $\mathcal{N}(\mathcal{G})$ to $\mathcal{N}(\mathcal{F})$
Map every element of \mathcal{G} to the element of \mathcal{F} it is a component over \mathcal{G} of
This map extends into a simplicial map $\pi: \mathcal{N}(\mathcal{G}) \rightarrow \mathcal{N}(\mathcal{F})$
π is dimension-preserving and at most r-to-one

Let X and Y be simplicial complexes.
Let $\pi: X \rightarrow Y$ be a surjective, dimension preserving, $\leq r$-to-one simplicial map.
dimension-preserving: the image of a simplex is a simplex of the same dimension at most r-to-one: the fiber of every simplex of Y has cardinality at most r

Theorem. [Kalai-Meshulam 2008] $L(Y)+1 \leq r(L(X)+1)$.

Let X and Y be simplicial complexes.
Let $\pi: X \rightarrow Y$ be a surjective, dimension preserving, $\leq r$-to-one simplicial map.
dimension-preserving: the image of a simplex is a simplex of the same dimension at most r-to-one: the fiber of every simplex of Y has cardinality at most r

Theorem. [Kalai-Meshulam 2008] $L(Y)+1 \leq r(L(X)+1)$.

A simplicial hole is an induced subcomplex isomorphic to the boundary of a simplex.
Define $H(K)$ as the maximum dimension of a simplicial hole of K.

Theorem. [Eckhoff-Nishke 2009] $\quad H(Y) \leq r H(X)$.

Let X and Y be simplicial complexes.
Let $\pi: X \rightarrow Y$ be a surjective, dimension preserving, $\leq r$-to-one simplicial map. dimension-preserving: the image of a simplex is a simplex of the same dimension at most r-to-one: the fiber of every simplex of Y has cardinality at most r

Theorem. [Kalai-Meshulam 2008] $L(Y)+1 \leq r(L(X)+1)$.

A simplicial hole is an induced subcomplex isomorphic to the boundary of a simplex.
Define $H(K)$ as the maximum dimension of a simplicial hole of K.

Theorem. [Eckhoff-Nishke 2009] $\quad H(Y) \leq r H(X)$.

A "good" filtration of K is a sequence $\emptyset=K_{0} \subset K_{1} \subset \ldots \subset K_{m}=K$ such that
(i) each K_{i} is a simplicial complex
(ii) each $K_{i} \backslash K_{i-1}$ has a unique inclusion-maximal element

Define $\Delta(K)$ as the maximum dimension, over all "good" filtrations of K, of a simplicial hole in K_{i} for some $i<m$ that is not a simplicial hole in K.

Theorem. [Amenta 1996] $\Delta(Y)+1 \leq r \Delta(X)$.

Let X be a simplicial poset and Y a simplicial complex.
Let $\pi: X \rightarrow Y$ be a surjective, dimension preserving, $\leq r$-to-one simplicial map.
Question. is $L(Y)+1 \leq r(L(X)+1)$?

Let X be a simplicial poset and Y a simplicial complex.
Let $\pi: X \rightarrow Y$ be a surjective, dimension preserving, $\leq r$-to-one simplicial map.
Question. is $L(Y)+1 \leq r(L(X)+1)$?
The proof for simplicial complexes uses properties of links.

$$
\text { For a simplicial complex } K, \forall i \geq L(K) \text { and } \forall \sigma \in K, \tilde{H}_{i}\left(I k_{K}(\sigma), \mathbb{Q}\right)=0
$$

Links behave differently for simplicial complexes and posets.

Let X be a simplicial poset and Y a simplicial complex.
Let $\pi: X \rightarrow Y$ be a surjective, dimension preserving, $\leq r$-to-one simplicial map.
Question. is $L(Y)+1 \leq r(L(X)+1)$?
The proof for simplicial complexes uses properties of links.

$$
\text { For a simplicial complex } K, \forall i \geq L(K) \text { and } \forall \sigma \in K, \tilde{H}_{i}\left(1 k_{K}(\sigma), \mathbb{Q}\right)=0
$$

Links behave differently for simplicial complexes and posets.

Define the J-index of a simplicial poset K with vertex set V as

$$
J(K)=\min \left\{\ell \in \mathbb{N}: \quad \forall i \geq \ell, \forall S \subseteq V, \forall \sigma \in K, \quad \tilde{H}_{i}\left(\dot{D}_{K[S]}(\sigma), \mathbb{Q}\right)=0\right\}
$$

$$
\begin{gathered}
\dot{D}_{K}(\sigma) \text { is the order complex of }[\sigma, \cdot) \text {, a sub-complex of sdK } \\
J(X)=L(X) \text { if } X \text { is a simplicial complex. [Kalai-Meshulam 2006] }
\end{gathered}
$$

The multinerve theorem bounds J of multinerves of acyclic families.

Theorem 3. $L(Y)+1 \leq r(J(X)+1)$.

1. Helly numbers are dimensions of holes in nerve (simplicial) complexes
2. Holes in nerve complexes correspond to holes in the union
3. Projections with small fibers are well-behaved
$\operatorname{Helly}(\mathcal{F}) \leq\left(\begin{array}{c}\text { max. number of } \\ \text { connected components } \\ \text { of } \cap \mathcal{G} \text { for } \mathcal{G} \subseteq \mathcal{F}\end{array}\right) *\left(\begin{array}{l}\text { max. dimension of } \\ \text { a hole in the space }\end{array}+2\right)$
4. Control homology of $\mathcal{M}(\mathcal{F})$ (via the multinerve theorem)
5. Control homology of $\mathcal{N}(\mathcal{F})$ (via the projection)
$\mathcal{N}(\mathcal{F})$

Theorem 4. If \mathcal{F} is a finite family of open subsets of a locally arc-wise connected topological space Γ such for every subfamily \mathcal{G} of size at least t the intersection $\cap \mathcal{G}$ has at most r connected components, each with trivial homology in dimension $\max (1, s-|\mathcal{G}|)$ and more, then $\operatorname{Helly}(\mathcal{F}) \leq r\left(\max \left(d_{\Gamma}, s, t\right)+1\right)$.

Theorem 4. If \mathcal{F} is a finite family of open subsets of a locally arc-wise connected topological space Γ such for every subfamily \mathcal{G} of size at least t the intersection $\cap \mathcal{G}$ has at most r connected components, each with trivial homology in dimension $\max (1, s-|\mathcal{G}|)$ and more, then $\operatorname{Helly}(\mathcal{F}) \leq r\left(\max \left(d_{\Gamma}, s, t\right)+1\right)$.
Γ a non-compact sub-manifold of $\mathbb{G}_{2, d+1}$, the Grassmannian of lines in \mathbb{R}^{d} so $d_{\Gamma}=\operatorname{dim}(\Gamma)=2 d-2$.
Line transversals to ≥ 2 convex planar figures or balls are acyclic.
Numbers of cc of line transversals to convex planar figures or balls are counted by geometric permutations.
$s=d+1$ to account for transversals to a convex $\simeq \mathbb{R P}^{d-1}$.
t used to optimize the use of bounds on number of geometric permutations.

Shape	Previous bound	Our bound	d_{Γ}	s	t	r
Parallelotopes in $\mathbb{R}^{d}(d \geq 2)$	$2^{d-1}(2 d-1)$ [Santaló 1940]	$2^{d-1}(2 d-1)$	$2 d-2$	$d+1$	1	2^{d-1}
Disjoint translates of a planar	5 [Tverberg 1989]	10	2	3	4	2
convex figure						
Disjoint unit balls in $\mathbb{R}^{d}:$						
	$d=2$	[Danzer 1957]	12	$2 d-2$	$d+1$	1
$d=3$	11 [Cheong+ 2008]	15	$2 d-2$	$d+1$	1	3
$d=4$	15 [Cheong+ 2008]	20	$2 d-2$	$d+1$	9	2
$d=5$	19 [Cheong+ 2008]	20	$2 d-2$	$d+1$	9	2
$d \geq 6$	$4 d-1$ [Cheong+ 2008]	$4 d-2$	$2 d-2$	$d+1$	9	2

Theorem 4. If \mathcal{F} is a finite family of open subsets of a locally arc-wise connected topological space Γ such for every subfamily \mathcal{G} of size at least t the intersection $\cap \mathcal{G}$ has at most r connected components, each with trivial homology in dimension $\max (1, s-|\mathcal{G}|)$ and more, then $\operatorname{Helly}(\mathcal{F}) \leq r\left(\max \left(d_{\Gamma}, s, t\right)+1\right)$.
Γ a non-compact sub-manifold of $\mathbb{G}_{2, d+1}$, the Grassmannian of lines in \mathbb{R}^{d} so $d_{\Gamma}=\operatorname{dim}(\Gamma)=2 d-2$.
Line transversals to ≥ 2 convex planar figures or balls are acyclic.
Numbers of cc of line transversals to convex planar figures or balls are counted by geometric permutations.
$s=d+1$ to account for transversals to a convex $\simeq \mathbb{R P}^{d-1}$.
t used to optimize the use of bounds on number of geometric permutations.

Shape	Previous bound	Our bound	d_{Γ}	s	t	r
Parallelotopes in $\mathbb{R}^{d}(d \geq 2)$	$2^{d-1}(2 d-1)$ [Santaló 1940]	$2^{d-1}(2 d-1)$	$2 d-2$	$d+1$	1	2^{d-1}
Disjoint translates of a planar convex figure	5 [Tverberg 1989]	10	2	3	4	2
Disjoint unit balls in $\mathbb{R}^{d}:$						
$d=2$	5 [Danzer 1957]	12	$2 d-2$	$d+1$	1	3
$d=3$	11 [Cheong+ 2008]	15	$2 d-2$	$d+1$	1	3
$d=4$	15 [Cheong+ 2008]	16	$2 d-2$	$d+1$	7	2
	19 [Cheong+2008]	18	$2 d-2$	$d+1$	7	2
$d=5$	$4 d-1$ [Cheong+ 2008]	$4 d-2$	$2 d-2$	$d+1$	7	2

To summarize...

The Helly number of a family \mathcal{F} of sets is the maximum size of a minimum sub-family of \mathcal{F} with empty intersection.

$$
\operatorname{Helly}(\mathcal{F})=\max \{|\mathcal{G}|: \mathcal{G} \subseteq \mathcal{F}, \cap \mathcal{G}=\emptyset, \forall A \in \mathcal{G}, \cap(\mathcal{G} \backslash A) \neq \emptyset\}
$$

1. Helly numbers are dimensions of holes in nerve complexes

$$
\mathcal{N}(\mathcal{F})=\{\mathcal{G}: \mathcal{G} \subseteq \mathcal{F} \text { and } \cap \mathcal{G} \neq \emptyset\}
$$

\mathcal{F} has Helly number $\geq h \Leftrightarrow \mathcal{N}(\mathcal{F})$ contains the boundary of a k-simplex for $k \geq h-2$
Use Leray numbers: $L(K)=\min \left\{\ell \in \mathbb{N}: \quad \forall i \geq \ell, \forall S \subseteq V, \quad \tilde{H}_{i}(K[S], \mathbb{Q})=0\right\}$
2. Holes in nerve complexes correspond to holes in the union

Nerve theorem for good covers
Multinerve and multinerve theorem for acyclic families
Vietoris-Begle mapping theorem
3. Projections with small fibers are well-behaved

Underlying the (partial) proofs of the Grünbaum-Motzkin conjecture Somewhat extend to maps between simplicial posets
$\operatorname{Helly}(\mathcal{F}) \leq\left(\begin{array}{c}\text { max. number of } \\ \text { connected components } \\ \text { of } \cap \mathcal{G} \text { for } \mathcal{G} \subseteq \mathcal{F}\end{array}\right) *\left(\begin{array}{c}\text { max. dimension of } \\ \text { a hole in the space }\end{array}+2\right)$
Common derivation of transversal theorems of [Santaló 1940], [Tverberg 1989] and [Cheong+ 2008]

End of part I

Helly numbers and topological complexity

Part II

The Helly number of a family \mathcal{F} of sets is the maximum size of a minimum sub-family of \mathcal{F} with empty intersection.

$$
\operatorname{Helly}(\mathcal{F})=\max \{|\mathcal{G}|: \mathcal{G} \subseteq \mathcal{F}, \cap \mathcal{G}=\emptyset, \forall A \in \mathcal{G}, \cap(\mathcal{G} \backslash\{A\}) \neq \emptyset\}
$$

Many Helly-type theorems.

Goal: some common topological explanation.

1. Helly numbers are dimensions of holes in nerve complexes

$$
\mathcal{N}(\mathcal{F})=\{\mathcal{G}: \mathcal{G} \subseteq \mathcal{F} \text { and } \cap \mathcal{G} \neq \emptyset\}
$$

\mathcal{F} has Helly number $\geq h \Leftrightarrow \mathcal{N}(\mathcal{F})$ contains the boundary of a k-simplex for $k \geq h-2$
Use Leray numbers: $L(K)=\min \left\{\ell \in \mathbb{N}: \quad \forall i \geq \ell, \forall S \subseteq V, \quad \tilde{H}_{i}(K[S], \mathbb{Q})=0\right\}$
2. Holes in nerve complexes correspond to holes in the union

Nerve theorem for good covers
Multinerve and multinerve theorem for acyclic families
Vietoris-Begle mapping theorem
3. Dimension-preserving, bounded degree projections are well-behaved

Underlying the (partial) proofs of the Grünbaum-Motzkin conjecture Somewhat extend to maps between simplicial posets
$\operatorname{Helly}(\mathcal{F}) \leq\left(\begin{array}{c}\text { max. number of } \\ \text { connected components } \\ \text { of } \cap \mathcal{G} \text { for } \mathcal{G} \subseteq \mathcal{F}\end{array}\right) *\left(\begin{array}{c}\text { max. dimension of } \\ \text { a hole in the space }\end{array}+2\right)$ Common derivation of transversal theorems of [Santaló 1940], [Tverberg 1989] and [Cheong+ 2008]
4. Bounds on Helly numbers arise from non-embeddability
5. Ramsey's theorem helps finding non-embeddable structures
6. Non-embeddability can be argued at the level of chain maps

$$
\begin{gathered}
\tilde{\beta}_{i}(\cap \mathcal{G}) \leq b \\
\text { for all } \mathcal{G} \subseteq \mathcal{F} \text { and } i \leq\lceil d / 2\rceil-1
\end{gathered} \Rightarrow \begin{gathered}
\operatorname{Helly}(\mathcal{F}) \text { is bounded } \\
\text { by some function of } d \text { and } b
\end{gathered}
$$

4. Bounds on Helly numbers arise from non-embeddability
5. Ramsey's theorem helps finding non-embeddable structures
6. Non-embeddability can be argued at the level of chain maps

$$
\begin{gathered}
\tilde{\beta}_{i}(\cap \mathcal{G}) \leq b \\
\text { for all } \mathcal{G} \subseteq \mathcal{F} \text { and } i \leq\lceil d / 2\rceil-1
\end{gathered} \Rightarrow \quad \begin{gathered}
\operatorname{Helly}(\mathcal{F}) \text { is bounded } \\
\text { by some function of } d \text { and } b
\end{gathered}
$$

Let K be a simplicial complex with geometric realization $|K|$.

An embedding of K into \mathbb{R}^{d} is a map from $|K|$ into \mathbb{R}^{d} that is an homeomorphism on its image.

Map singletons to points, edges to arcs, triangles to disks... satisfying boundary conditions. Images of simplices intersect in exactly the image of their common face

Linear embeddings

Piece-wise linear embeddings

Topological embeddings

$\Delta_{m}^{(t)}=\binom{[m+1]}{t+1}$ is the t-dimensional skeleton of the m-dimensional simplex

$$
[x]=\{1,2, \ldots, x\} \text { and }\binom{[x]}{t}=\text { all t-elements subsets of }[x]
$$

"Radon's theorem. Any subset of at least $d+2$ points in \mathbb{R}^{d} can be partitioned into two subsets whose convex hulls intersect."
$=" \Delta_{n}^{(d)}$ does not embed linearly into \mathbb{R}^{d} for $n \geq d+1$."

$$
[x]=\{1,2, \ldots, x\} \text { and }\binom{[x]}{t}=\text { all t-elements subsets of }[x]
$$

"Radon's theorem. Any subset of at least $d+2$ points in \mathbb{R}^{d} can be partitioned into two subsets whose convex hulls intersect."
$=" \Delta_{n}^{(d)}$ does not embed linearly into \mathbb{R}^{d} for $n \geq d+1$."

Helly from Radon

Let $\mathcal{F}=\left\{A_{1}, A_{2}, \ldots A_{k}\right\}$ be convex sets in \mathbb{R}^{d} such that
 $k \geq d+2$ and $\forall j \leq k, \cap_{i \neq j} A_{i} \neq \emptyset$

Pick $p_{j} \in \cap_{i \neq j} A_{i}$
$\Delta_{m}^{(t)}=\binom{[m+1]}{t+1}$ is the t-dimensional skeleton of the m-dimensional simplex

$$
[x]=\{1,2, \ldots, x\} \text { and }\binom{[x]}{t}=\text { all } t \text {-elements subsets of }[x]
$$

"Radon's theorem. Any subset of at least $d+2$ points in \mathbb{R}^{d} can be partitioned into two subsets whose convex hulls intersect."
$=" \Delta_{n}^{(d)}$ does not embed linearly into \mathbb{R}^{d} for $n \geq d+1$."

Helly from Radon

Let $\mathcal{F}=\left\{A_{1}, A_{2}, \ldots A_{k}\right\}$ be convex sets in \mathbb{R}^{d} such that
 $k \geq d+2$ and $\forall j \leq k, \cap_{i \neq j} A_{i} \neq \emptyset$

Pick $p_{j} \in \cap_{i \neq j} A_{i}$

There exists a partition $X \cup Y$ of $\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$
and $h \in \operatorname{conv}(X) \cap \operatorname{conv}(Y)$
$h \in\left(\cap_{i: p_{i} \notin X} A_{i}\right) \cap\left(\cap_{i: p_{i} \notin Y} A_{i}\right)=\cap \mathcal{F}$
$\Delta_{m}^{(t)}=\binom{[m+1]}{t+1}$ is the t-dimensional skeleton of the m-dimensional simplex

$$
[x]=\{1,2, \ldots, x\} \text { and }\binom{[x]}{t}=\text { all } t \text {-elements subsets of }[x]
$$

"Radon's theorem. Any subset of at least $d+2$ points in \mathbb{R}^{d} can be partitioned into two subsets whose convex hulls intersect."
$=" \Delta_{n}^{(d)}$ does not embed linearly into \mathbb{R}^{d} for $n \geq d+1$."

Helly from Radon

Let $\mathcal{F}=\left\{A_{1}, A_{2}, \ldots A_{k}\right\}$ be convex sets in \mathbb{R}^{d} such that $k \geq d+2$ and $\forall j \leq k, \cap_{i \neq j} A_{i} \neq \emptyset$

Pick $p_{j} \in \cap_{i \neq j} A_{i}$
There exists a partition $X \cup Y$ of $\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$
and $h \in \operatorname{conv}(X) \cap \operatorname{conv}(Y)$
$h \in\left(\cap_{i: p_{i} \notin X} A_{i}\right) \cap\left(\cap_{i: p_{i} \notin Y} A_{i}\right)=\cap \mathcal{F}$

Extend linearly $i \mapsto p_{i}$ into $f: \Delta_{k-1}^{(d)} \rightarrow \mathbb{R}^{d}$
There exists $\sigma, \tau \in \Delta_{k-1}^{(d)}$ such that $\sigma \cap \tau=\emptyset$ and $h \in f(\sigma) \cap f(\tau)$
$f(\tau) \subseteq \cap_{i \notin \tau} A_{i}$ so $h \in\left(\cap_{i \notin \sigma} A_{i}\right) \cap\left(\cap_{i: p_{i} \notin \tau} A_{i}\right)=\cap \mathcal{F}$
$\Delta_{m}^{(t)}=\binom{[m+1]}{t+1}$ is the t-dimensional skeleton of the m-dimensional simplex

$$
[x]=\{1,2, \ldots, x\} \text { and }\binom{[x]}{t}=\text { all } t \text {-elements subsets of }[x]
$$

"Radon's theorem. Any subset of at least $d+2$ points in \mathbb{R}^{d} can be partitioned into two subsets whose convex hulls intersect."
$=" \Delta_{n}^{(d)}$ does not embed linearly into \mathbb{R}^{d} for $n \geq d+1$."

Helly from Radon

Let $\mathcal{F}=\left\{A_{1}, A_{2}, \ldots A_{k}\right\}$ be convex sets in \mathbb{R}^{d} such that $k \geq d+2$ and $\forall j \leq k, \cap_{i \neq j} A_{i} \neq \emptyset$

Pick $p_{j} \in \cap_{i \neq j} A_{i}$
There exists a partition $X \cup Y$ of $\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$
and $h \in \operatorname{conv}(X) \cap \operatorname{conv}(Y)$
$h \in\left(\cap_{i: p_{i} \notin X} A_{i}\right) \cap\left(\cap_{i: p_{i} \notin Y} A_{i}\right)=\cap \mathcal{F}$

Extend linearly $i \mapsto p_{i}$ into $f: \Delta_{k-1}^{(d)} \rightarrow \mathbb{R}^{d}$
There exists $\sigma, \tau \in \Delta_{k-1}^{(d)}$ such that $\sigma \cap \tau=\emptyset$ and $h \in f(\sigma) \cap f(\tau)$
$f(\tau) \subseteq \cap_{i \notin \tau} A_{i}$ so $h \in\left(\cap_{i \notin \sigma} A_{i}\right) \cap\left(\cap_{i: p_{i} \notin \tau} A_{i}\right)=\cap \mathcal{F}$

Non-planarity of $K_{5} \Rightarrow$ Helly number for path-connected intersections in \mathbb{R}^{2}.

$$
\Delta_{n}^{(1)} \nrightarrow \mathbb{R}^{2} \text { for } n \geq 5
$$

Corollary. If \mathcal{F} is a family of sets in \mathbb{R}^{2} such that the intersection of any subfamily is empty or path-connected then $\operatorname{Helly}(\mathcal{F}) \leq 4$.

Proof: Let $\mathcal{F}=\left\{A_{1}, A_{2}, \ldots A_{k}\right\}$ such that $k \geq 5$ and $\forall j \leq k, \cap_{i \neq j} A_{i} \neq \emptyset$

0
-
。

Non-planarity of $K_{5} \Rightarrow$ Helly number for path-connected intersections in \mathbb{R}^{2}.

$$
\Delta_{n}^{(1)} \nrightarrow \mathbb{R}^{2} \text { for } n \geq 5
$$

Corollary. If \mathcal{F} is a family of sets in \mathbb{R}^{2} such that the intersection of any subfamily is empty or path-connected then $\operatorname{Helly}(\mathcal{F}) \leq 4$.

Proof: Let $\mathcal{F}=\left\{A_{1}, A_{2}, \ldots A_{k}\right\}$ such that $k \geq 5$ and $\forall j \leq k, \cap_{i \neq j} A_{i} \neq \emptyset$ Pick $p_{j} \in \cap_{i \neq j} A_{i}$
Connect every p_{a} and p_{b} inside $\cap_{i \neq a, b} A_{i}$

Non-planarity of $K_{5} \Rightarrow$ Helly number for path-connected intersections in \mathbb{R}^{2}.

$$
\Delta_{n}^{(1)} \nrightarrow \mathbb{R}^{2} \text { for } n \geq 5
$$

Corollary. If \mathcal{F} is a family of sets in \mathbb{R}^{2} such that the intersection of any subfamily is empty or path-connected then $\operatorname{Helly}(\mathcal{F}) \leq 4$.

Proof: Let $\mathcal{F}=\left\{A_{1}, A_{2}, \ldots A_{k}\right\}$ such that $k \geq 5$ and $\forall j \leq k, \cap_{i \neq j} A_{i} \neq \emptyset$
Pick $p_{j} \in \cap_{i \neq j} A_{i}$
Connect every p_{a} and p_{b} inside $\cap_{i \neq a, b} A_{i}$
Two edges $p_{a} p_{b}$ and $p_{u} p_{v}$ cross, with $\{a, b\} \cap\{u, v\}=\emptyset$.

The intersection point belongs to $\left(\cap_{i \neq a, b} A_{i}\right) \cap\left(\cap_{i \neq u, v} A_{i}\right)=\cap_{i} A_{i}$.

4	Assumption on nonempty intersections	Bound on the Helly number
Topological Radon: $\Delta_{d+1}^{(d)} \nrightarrow \mathbb{R}^{d}$ [Bajmóczy-Bárány 1979]	contractible	$d+1$
$\Delta_{2[d / 2\rceil+2}^{(\lceil d / 2\rceil)} \nrightarrow \mathbb{R}^{d}$ [Van Kampen 1931, Flores 1932]	$\lceil d / 2\rceil$-connected	$2\lceil d / 2\rceil+2$

$\stackrel{4}{4}$	Assumption on nonempty intersections	Bound on the Helly number
Topological Radon: $\Delta_{d+1}^{(d)} \nrightarrow \mathbb{R}^{d}$ [Bajmóczy-Bárány 1979]	contractible	$d+1$
$\Delta_{2\lceil d / 2\rceil+2}^{(\lceil d / 2\rceil)} \nrightarrow \mathbb{R}^{d}$ [Van Kampen 1931, Flores 1932]	$\lceil d / 2\rceil$-connected	$2\lceil d / 2\rceil+2$

Can we allow some disconnection?

4. Bounds on Helly numbers arise from non-embeddability
5. Ramsey's theorem helps finding non-embeddable structures
6. Non-embeddability can be argued at the level of chain maps

$$
\begin{gathered}
\tilde{\beta}_{i}(\cap \mathcal{G}) \leq b \\
\text { for all } \mathcal{G} \subseteq \mathcal{F} \text { and } i \leq\lceil d / 2\rceil-1
\end{gathered} \Rightarrow \quad \begin{gathered}
\operatorname{Helly}(\mathcal{F}) \text { is bounded } \\
\text { by some function of } d \text { and } b
\end{gathered}
$$

Ramsey's theorem. For any x, y and z there exists $R=R_{x, y, z} \in \mathbb{N}$ such that any coloring of the complete x-uniform hypergraph on at least R vertices by y colors contains z vertices inducing a monochromatic sub-hypergraph.
complete x-uniform hypergraph: all subsets of size x of a finite set

Ramsey's theorem. For any x, y and z there exists $R=R_{x, y, z} \in \mathbb{N}$ such that any coloring of the complete x-uniform hypergraph on at least R vertices by y colors contains z vertices inducing a monochromatic sub-hypergraph.
complete x-uniform hypergraph: all subsets of size x of a finite set

Lemma. Let G be a graph on n vertices where any 3 vertices span at least one edge. If $n \geq R_{3,3,9}$ then G contains K_{5} as an induced subgraph.

Ramsey's theorem. For any x, y and z there exists $R=R_{x, y, z} \in \mathbb{N}$ such that any coloring of the complete x-uniform hypergraph on at least R vertices by y colors contains z vertices inducing a monochromatic sub-hypergraph.
complete x-uniform hypergraph: all subsets of size x of a finite set

Lemma. Let G be a graph on n vertices where any 3 vertices span at least one edge. If $n \geq R_{3,3,9}$ then G contains K_{5} as an induced subgraph.

Proof: Number the vertices $1,2, \ldots, n$.

Ramsey's theorem. For any x, y and z there exists $R=R_{x, y, z} \in \mathbb{N}$ such that any coloring of the complete x-uniform hypergraph on at least R vertices by y colors contains z vertices inducing a monochromatic sub-hypergraph.
complete x-uniform hypergraph: all subsets of size x of a finite set

Lemma. Let G be a graph on n vertices where any 3 vertices span at least one edge. If $n \geq R_{3,3,9}$ then G contains K_{5} as an induced subgraph.

Proof: Number the vertices $1,2, \ldots, n$.
Color $\left\{i_{1}, i_{2}, i_{3}\right\}$ with $i_{1}<i_{2}<i_{3}$ by a pair $\{a, b\}$ such that $i_{a} i_{b}$ is an edge.

$\{1,2,5\}$ labelled $\{1,2\}$
$\{1,2,4\}$ labelled $\{2,3\}$
$\{2,3,4\}$ labelled $\{1,3\}$

Ramsey's theorem. For any x, y and z there exists $R=R_{x, y, z} \in \mathbb{N}$ such that any coloring of the complete x-uniform hypergraph on at least R vertices by y colors contains z vertices inducing a monochromatic sub-hypergraph.
complete x-uniform hypergraph: all subsets of size x of a finite set

Lemma. Let G be a graph on n vertices where any 3 vertices span at least one edge. If $n \geq R_{3,3,9}$ then G contains K_{5} as an induced subgraph.

Proof: Number the vertices $1,2, \ldots, n$.
Color $\left\{i_{1}, i_{2}, i_{3}\right\}$ with $i_{1}<i_{2}<i_{3}$ by a pair $\{a, b\}$ such that $i_{a} i_{b}$ is an edge.
This colors the complete 3 -uniform hypergraph by $\{1,2\},\{1,3\}$ and $\{2,3\}$.
For $n \geq R_{3,3,9}$ some 9 vertices span triples all colored by the same pair $\{a, b\}$.

$\{1,2,5\}$ labelled $\{1,2\}$
$\{1,2,4\}$ labelled $\{2,3\}$
$\{2,3,4\}$ labelled $\{1,3\}$

Ramsey's theorem. For any x, y and z there exists $R=R_{x, y, z} \in \mathbb{N}$ such that any coloring of the complete x-uniform hypergraph on at least R vertices by y colors contains z vertices inducing a monochromatic sub-hypergraph.
complete x-uniform hypergraph: all subsets of size x of a finite set

Lemma. Let G be a graph on n vertices where any 3 vertices span at least one edge. If $n \geq R_{3,3,9}$ then G contains K_{5} as an induced subgraph.

Proof: Number the vertices $1,2, \ldots, n$.
Color $\left\{i_{1}, i_{2}, i_{3}\right\}$ with $i_{1}<i_{2}<i_{3}$ by a pair $\{a, b\}$ such that $i_{a} i_{b}$ is an edge.
This colors the complete 3 -uniform hypergraph by $\{1,2\},\{1,3\}$ and $\{2,3\}$.
For $n \geq R_{3,3,9}$ some 9 vertices span triples all colored by the same pair $\{a, b\}$.
If $\{a, b\}=\{1,2\}$ then the vertices with rank $\{1,2,3,4,5\}$ span a K_{5}.

$$
\begin{array}{lllll}
\ldots & \{2,3\} & \ldots & \{2,3,4,5,6\} & \ldots \\
\ldots & \{1,3\} & \ldots & \{1,3,5,7,9\} & \ldots
\end{array}
$$

$\{1,2,5\}$ labelled $\{1,2\}$
$\{1,2,4\}$ labelled $\{2,3\}$
$\{2,3,4\}$ labelled $\{1,3\}$

Lemma. Let G be a graph on n vertices where any 3 vertices span at least one edge. If $n \geq R_{3,3,9}$ then G contains K_{5} as an induced subgraph.

Corollary. If \mathcal{F} is a family of sets in \mathbb{R}^{2} such that the intersection of any subfamily has at most two path-connected components then $\operatorname{Helly}(\mathcal{F}) \leq R_{3,3,9}-1$.

Lemma. Let G be a graph on n vertices where any 3 vertices span at least one edge. If $n \geq R_{3,3,9}$ then G contains K_{5} as an induced subgraph.

Corollary. If \mathcal{F} is a family of sets in \mathbb{R}^{2} such that the intersection of any subfamily has at most two path-connected components then $\operatorname{Helly}(\mathcal{F}) \leq R_{3,3,9}-1$.

Proof: Let $\mathcal{F}=\left\{A_{1}, A_{2}, \ldots A_{k}\right\}$ such that $k \geq R_{3,3,9}$ and $\forall j \leq k, \cap_{i \neq j} A_{i} \neq \emptyset$
Pick $p_{j} \in \cap_{i \neq j} A_{i}$
In any $\left\{p_{a}, p_{b}, p_{c}\right\}$ two can be connected inside $\cap_{i \neq a, b, c} A_{i}$.
In the graph that was drawn, 5 vertices must span a complete graph.
The intersection point of these edges lies in $\cap \mathcal{F}$.

Lemma. Let G be a graph on n vertices where any 3 vertices span at least one edge. If $n \geq R_{3,3,9}$ then G contains K_{5} as an induced subgraph.

Corollary. If \mathcal{F} is a family of sets in \mathbb{R}^{2} such that the intersection of any subfamily has at most two path-connected components then $\operatorname{Helly}(\mathcal{F}) \leq R_{3,3,9}-1$.

Proof: Let $\mathcal{F}=\left\{A_{1}, A_{2}, \ldots A_{k}\right\}$ such that $k \geq R_{3,3,9}$ and $\forall j \leq k, \cap_{i \neq j} A_{i} \neq \emptyset$
Pick $p_{j} \in \cap_{i \neq j} A_{i}$
In any $\left\{p_{a}, p_{b}, p_{c}\right\}$ two can be connected inside $\cap_{i \neq a, b, c} A_{i}$.
In the graph that was drawn, 5 vertices must span a complete graph.
The intersection point of these edges lies in $\cap \mathcal{F}$.

Wrong: the two edges could be $p_{a} p_{b}$ inside $\cap_{i \neq a, b, c} A_{i}$ and $p_{u} p_{v}$ inside $\cap_{i \neq u, v, c} A_{i} \ldots$

Lemma. Let G be a graph on n vertices where any 3 vertices span at least one edge. If $n \geq R_{3,3,9}$ then G contains K_{5} as an induced subgraph.

Corollary. If \mathcal{F} is a family of sets in \mathbb{R}^{2} such that the intersection of any subfamily has at most two path-connected components then $\operatorname{Helly}(\mathcal{F}) \leq R_{3,3,9}-1$.

Proof: Let $\mathcal{F}=\left\{A_{1}, A_{2}, \ldots A_{k}\right\}$ such that $k \geq R_{3,3,9}$ and $\forall j \leq k, \cap_{i \neq j} A_{i} \neq \emptyset$
Pick $p_{j} \in \cap_{i \neq j} A_{i}$
In any $\left\{p_{a}, p_{b}, p_{c}\right\}$ two can be connected inside $\cap_{i \neq a, b, c} A_{i}$.
In the graph that was drawn, 5 vertices must span a complete graph.
The intersection point of these edges lies in $\cap \mathcal{F}$.
Wrong: the two edges could be $p_{a} p_{b}$ inside $\cap_{i \neq a, b, c} A_{i}$ and $p_{u} p_{v}$ inside $\cap_{i \neq u, v, c} A_{i} \ldots$

We actually proved:
Lemma. Let G be a graph on n vertices where any 3 vertices span at least one edge. If $n \geq R_{3,3,9}$ then G contains 5 vertices such that for any two there exists a triple in which they span an edge.

We need a stronger statement where triples use different "dummy" vertices

Let $I=\left\{i_{1}, i_{2}, \ldots, i_{5}\right\} \cup\left\{i_{1,2}, i_{1,3}, \ldots, i_{4,5}\right\}$.
Lemma. Let $\{a, b\} \in\binom{[3]}{2}$. There exists an injection from I into any ordered set of size ≥ 15 such that any $\left\{i_{u}, i_{v}\right\}$ are in $\{a, b\}$ th position in $\left\{i_{u}, i_{v}, i_{u, v}\right\}$.

Proof:

Label the vertices of K_{5} by [5].
$i_{1}, \ldots, i_{5}=$ labels of the vertices
$i_{u, v}=$ label of the edge $i_{u} i_{v}$

Given $\{a, b\}$, label the edges by distinct rationals such that in every "edge+vertices" triple the vertices are in positions a and b

map these labels to Z increasingly.

Lemma. Let $\{a, b\} \in\binom{[3]}{2}$. There exists an injection from $\left\{i_{1}, i_{2}, \ldots, i_{5}\right\} \cup\left\{i_{1,2}, i_{1,3}, \ldots, i_{4,5}\right\}$ into any ordered set of size ≥ 15 such that any $\left\{i_{u}, i_{v}\right\}$ are in $\{a, b\}$ th position in $\left\{i_{u}, i_{v}, i_{u, v}\right\}$.

Corollary. If \mathcal{F} is a family of sets in \mathbb{R}^{2} such that the intersection of any subfamily has at most two path-connected components then $\operatorname{Helly}(\mathcal{F}) \leq R_{3,3,15}-1$.

Proof: Let $\mathcal{F}=\left\{A_{1}, A_{2}, \ldots A_{k}\right\}$ such that $k \geq R_{3,3,15}$ and $\forall j \leq k, \cap_{i \neq j} A_{i} \neq \emptyset$
Pick $p_{j} \in \cap_{i \neq j} A_{i}$
In any $\left\{p_{a}, p_{b}, p_{c}\right\}$ two can be connected inside $\cap_{i \neq a, b, c} A_{i}$.
Color $\left\{i_{1}, i_{2}, i_{3}\right\}$ with $i_{1}<i_{2}<i_{3}$ by a pair $\{a, b\}$ such that $i_{a} i_{b}$ is an edge in $\cap_{i \neq i_{1}, i_{2}, i_{3}} A_{i}$.
For $n \geq R_{3,3,15}$ some 15 vertices span triples all colored by the same pair $\{a, b\}$.
Lemma $\Rightarrow i_{1}, \ldots, i_{5}$ and distinct $i_{u, v}$ for each $\{u, v\} \in\binom{[5]}{2}$ such that every $p_{i_{u}} p_{i_{v}}$ can be drawn in $\cap_{i \neq i_{u}, i_{v}, i_{u, v}} A_{i}$.
Two edges in this K_{5} intersect and that intersection point lies in $\cap \mathcal{F}$.

The same idea works in higher dimension using that $\Delta_{2\lceil d / 2\rceil+2}^{(\lceil d / 2\rceil)} \nVdash \mathbb{R}^{d}$.

Assuming intersections are k-connected, each "constrained" drawing of K_{n} extends into a "constrained" drawing of $\Delta_{n-1}^{(k)}$.

Every $p_{i_{u}} p_{i_{v}}$ is drawn in $\cap_{i \neq i_{u}, i_{v}, i_{u, v}} A_{i}$ Every $p_{i_{u}} p_{i_{v}} p_{w}$ is drawn in $\cap_{i \neq i_{u}, i_{v}, i_{u, v}, i_{w}, i_{u, w}, i_{v, w}} A_{i}$, etc... Vertex-disjoint faces are drawn missing disjoint sets of A_{i} 's
\Rightarrow If \mathcal{F} is a family of sets in \mathbb{R}^{d} such that the intersection of any subfamily has at most 2 connected components, each $(\lceil d / 2\rceil-1)$-connected, then $\operatorname{Helly}(\mathcal{F}) \leq f(d)$.

The same idea works in higher dimension using that $\Delta_{2\lceil d / 2\rceil+2}^{(\lceil d / 2\rceil)} \hookrightarrow \mathbb{R}^{d}$.

Assuming intersections are k-connected, each "constrained" drawing of K_{n} extends into a "constrained" drawing of $\Delta_{n-1}^{(k)}$.

Every $p_{i_{u}} p_{i_{v}}$ is drawn in $\cap_{i \neq i_{u}, i_{v}, i_{u, v}} A_{i}$
Every $p_{i_{u}} p_{i_{v}} p_{w}$ is drawn in $\cap_{i \neq i_{u}, i_{v}, i_{u, v}, i_{w}, i_{u, w}, i_{v, w}} A_{i}$, etc...
Vertex-disjoint faces are drawn missing disjoint sets of A_{i} 's
\Rightarrow If \mathcal{F} is a family of sets in \mathbb{R}^{d} such that the intersection of any subfamily has at most 2 connected components, each $(\lceil d / 2\rceil-1)$-connected, then $\operatorname{Helly}(\mathcal{F}) \leq f(d)$.

This was essentially the proof of:

Theorem. [Matoušek 1996] If \mathcal{F} is a family of sets in \mathbb{R}^{d} such that the intersection of any subfamily has at most r connected components, each $\lceil d / 2\rceil$-connected, then $\operatorname{Helly}(\mathcal{F}) \leq f(r, d)$.
4. Bounds on Helly numbers arise from non-embeddability
5. Ramsey's theorem helps finding non-embeddable structures
6. Non-embeddability can be argued at the level of chain maps

$$
\begin{gathered}
\tilde{\beta}_{i}(\cap \mathcal{G}) \leq b \\
\text { for all } \mathcal{G} \subseteq \mathcal{F} \text { and } i \leq\lceil d / 2\rceil-1
\end{gathered} \Rightarrow \quad \begin{gathered}
\operatorname{Helly}(\mathcal{F}) \text { is bounded } \\
\text { by some function of } d \text { and } b
\end{gathered}
$$

Chain complex of a space or a simplicial complex.
$\oplus_{n} C_{n}$ where C_{n} is the \mathbb{Z}_{2}-vector space generated by the n-simplices $\partial_{n}: C_{n} \rightarrow C_{n-1}$ are the boundary operators and satisfy $\partial_{n} \circ \partial_{n+1}=0$

A chain map $\gamma: C_{*} \rightarrow D_{*}$ is a sequence of homomorphisms $\gamma_{n}: C_{n} \rightarrow D_{n}$ that commute with ∂.

$$
\gamma_{n-1} \circ \partial_{n}^{C}=\partial_{n}^{D} \circ \gamma_{n}
$$

K a simplicial complex and $\gamma: C_{*}(K) \rightarrow C_{*}\left(\mathbb{R}^{d}\right)$ a chain map.
γ is non-trivial if every vertex of K is mapped to a sum of an odd number of points.
γ is an homological almost embedding if it is non-trivial and for disjoint simplices $\sigma, \tau \in K, \gamma(\sigma)$ and $\gamma(\tau)$ have disjoint supports.

A continuous map $f:|K| \rightarrow \mathbb{R}^{d}$ induces a non-trivial chain map $f_{\sharp}: C_{*}(K) \rightarrow C_{*}\left(\mathbb{R}^{d}\right)$.

If f is an almost-embedding then f_{\sharp} is an homological almost embedding.
Almost embedding for maps: disjoint simplices have disjoint images

A continuous map $f:|K| \rightarrow \mathbb{R}^{d}$ induces a non-trivial chain map $f_{\sharp}: C_{*}(K) \rightarrow C_{*}\left(\mathbb{R}^{d}\right)$.

If f is an almost-embedding then f_{\sharp} is an homological almost embedding.
Almost embedding for maps: disjoint simplices have disjoint images

Theorem 5. There is no homological almost embedding from $C_{*}\left(\Delta_{d+1}^{(d)}\right)$ or from $C_{*}\left(\Delta_{d+2}^{(\lceil d / 2\rceil)}\right)$ into $C_{*}\left(\mathbb{R}^{d}\right)$.

Homological versions of the Radon and Van Kampen-Flores theorems

A continuous map $f:|K| \rightarrow \mathbb{R}^{d}$ induces a non-trivial chain map $f_{\sharp}: C_{*}(K) \rightarrow C_{*}\left(\mathbb{R}^{d}\right)$.

If f is an almost-embedding then f_{\sharp} is an homological almost embedding.
Almost embedding for maps: disjoint simplices have disjoint images

Theorem 5. There is no homological almost embedding from $C_{*}\left(\Delta_{d+1}^{(d)}\right)$ or from $C_{*}\left(\Delta_{d+2}^{(\lceil d / 2\rceil)}\right)$ into $C_{*}\left(\mathbb{R}^{d}\right)$.

Homological versions of the Radon and Van Kampen-Flores theorems

Proof shows that the Van Kampen obstruction to embeddability into \mathbb{R}^{d} also forbids homological almost embeddings.

Technique: adapt the classical proof...
\mathbb{Z}_{2} spaces, equivariant maps, deleted products, Gauss map, Van Kampen obstruction
... using equivariant chain homotopy [Wagner 2011]

Corollary. Let \mathcal{F} be a family of sets in \mathbb{R}^{d}. If for any $\mathcal{G} \subseteq \mathcal{F}, \cap \mathcal{G}$ is empty or has $\tilde{\beta}_{i}\left(\cap \mathcal{G}, \mathbb{Z}_{2}\right)=0$ for $i=0,1, \ldots,\lceil d / 2\rceil-1$ then $\operatorname{Helly}(\mathcal{F}) \leq d+2$.

Corollary. Let \mathcal{F} be a family of sets in \mathbb{R}^{d}. If for any $\mathcal{G} \subseteq \mathcal{F}, \cap \mathcal{G}$ is empty or has $\tilde{\beta}_{i}\left(\cap \mathcal{G}, \mathbb{Z}_{2}\right)=0$ for $i=0,1, \ldots,\lceil d / 2\rceil-1$ then $\operatorname{Helly}(\mathcal{F}) \leq d+2$.

Proof: Let $\mathcal{F}=\left\{A_{1}, A_{2}, \ldots A_{k}\right\}$ such that $k \geq d+3$ and $\forall j \leq k, \cap_{i \neq j} A_{i} \neq \emptyset$ Construct a non-trivial chain map $\gamma: C_{*}\left(\Delta_{d+2}^{[d / 2])}\right) \rightarrow C_{*}\left(\mathbb{R}^{d}\right)$ "constrained by $F^{\prime \prime}$.
Pick $p_{j} \in \cap_{i \neq j} A_{i}$, define $\gamma(\{j\})=p_{j}$

Corollary. Let \mathcal{F} be a family of sets in \mathbb{R}^{d}. If for any $\mathcal{G} \subseteq \mathcal{F}, \cap \mathcal{G}$ is empty or has $\tilde{\beta}_{i}\left(\cap \mathcal{G}, \mathbb{Z}_{2}\right)=0$ for $i=0,1, \ldots,\lceil d / 2\rceil-1$ then $\operatorname{Helly}(\mathcal{F}) \leq d+2$.

Proof: Let $\mathcal{F}=\left\{A_{1}, A_{2}, \ldots A_{k}\right\}$ such that $k \geq d+3$ and $\forall j \leq k, \cap_{i \neq j} A_{i} \neq \emptyset$
Construct a non-trivial chain map $\gamma: C_{*}\left(\Delta_{d+2}^{([d / 2\rceil)}\right) \rightarrow C_{*}\left(\mathbb{R}^{d}\right)$ "constrained by \mathcal{F}^{\prime}.
Pick $p_{j} \in \cap_{i \neq j} A_{i}$, define $\gamma(\{j\})=p_{j}$
$\gamma(\partial\{u, v\})=\gamma(\{u\})+\gamma(\{v\})$ is a cycle in $\cap_{i \neq u, v} A_{i}$
$\tilde{\beta}_{1}\left(\cap_{i \neq u, v} A_{i}, \mathbb{Z}_{2}\right)=0$ so $\gamma(\{u\})+\gamma(\{v\})$ is a boundary.
We define $\gamma(\{u, v\})$ as a 1 -chain supported in $\cap_{i \neq u, v} A_{i}$ with boundary $\gamma(\{u\})+\gamma(\{v\})$.

Corollary. Let \mathcal{F} be a family of sets in \mathbb{R}^{d}. If for any $\mathcal{G} \subseteq \mathcal{F}, \cap \mathcal{G}$ is empty or has $\tilde{\beta}_{i}\left(\cap \mathcal{G}, \mathbb{Z}_{2}\right)=0$ for $i=0,1, \ldots,\lceil d / 2\rceil-1$ then $\operatorname{Helly}(\mathcal{F}) \leq d+2$.

Proof: Let $\mathcal{F}=\left\{A_{1}, A_{2}, \ldots A_{k}\right\}$ such that $k \geq d+3$ and $\forall j \leq k, \cap_{i \neq j} A_{i} \neq \emptyset$
Construct a non-trivial chain map $\gamma: C_{*}\left(\Delta_{d+2}^{(\lceil d / 2\rceil)}\right) \rightarrow C_{*}\left(\mathbb{R}^{d}\right)$ "constrained by \mathcal{F}^{\prime}.
Pick $p_{j} \in \cap_{i \neq j} A_{i}$, define $\gamma(\{j\})=p_{j}$
$\gamma(\partial\{u, v\})=\gamma(\{u\})+\gamma(\{v\})$ is a cycle in $\cap_{i \neq u, v} A_{i}$
$\tilde{\beta}_{1}\left(\cap_{i \neq u, v} A_{i}, \mathbb{Z}_{2}\right)=0$ so $\gamma(\{u\})+\gamma(\{v\})$ is a boundary.
We define $\gamma(\{u, v\})$ as a 1 -chain supported in $\cap_{i \neq u, v} A_{i}$ with boundary $\gamma(\{u\})+\gamma(\{v\})$.
$\gamma(\partial\{u, v, w\})$ is a boundary in $\cap_{i \neq u, v, w} A_{i} \ldots$
Inductive construction on $\Delta_{d+2}^{(\lceil d / 27)}$ then linear extension to $C_{*}\left(\Delta_{d+2}^{(\lceil d / 27)}\right)$.
If $\cap \mathcal{F}=$ then γ is an homological almost embedding.

Corollary. Let \mathcal{F} be a family of sets in \mathbb{R}^{d}. If for any $\mathcal{G} \subseteq \mathcal{F}, \cap \mathcal{G}$ is empty or has $\tilde{\beta}_{i}\left(\cap \mathcal{G}, \mathbb{Z}_{2}\right)=0$ for $i=0,1, \ldots,\lceil d / 2\rceil-1$ then $\operatorname{Helly}(\mathcal{F}) \leq d+2$.

Proof: Let $\mathcal{F}=\left\{A_{1}, A_{2}, \ldots A_{k}\right\}$ such that $k \geq d+3$ and $\forall j \leq k, \cap_{i \neq j} A_{i} \neq \emptyset$
Construct a non-trivial chain map $\gamma: C_{*}\left(\Delta_{d+2}^{([d / 2\rceil)}\right) \rightarrow C_{*}\left(\mathbb{R}^{d}\right)$ "constrained by \mathcal{F}^{\prime}.
Pick $p_{j} \in \cap_{i \neq j} A_{i}$, define $\gamma(\{j\})=p_{j}$
$\gamma(\partial\{u, v\})=\gamma(\{u\})+\gamma(\{v\})$ is a cycle in $\cap_{i \neq u, v} A_{i}$
$\tilde{\beta}_{1}\left(\cap_{i \neq u, v} A_{i}, \mathbb{Z}_{2}\right)=0$ so $\gamma(\{u\})+\gamma(\{v\})$ is a boundary.
We define $\gamma(\{u, v\})$ as a 1 -chain supported in $\cap_{i \neq u, v} A_{i}$ with boundary $\gamma(\{u\})+\gamma(\{v\})$.
$\gamma(\partial\{u, v, w\})$ is a boundary in $\cap_{i \neq u, v, w} A_{i} \ldots$
Inductive construction on $\Delta_{d+2}^{(\lceil d / 27)}$ then linear extension to $C_{*}\left(\Delta_{d+2}^{(\lceil d / 27)}\right)$.
If $\cap \mathcal{F}=$ then γ is an homological almost embedding.

This simply repeats the previous homotopic arguments in a homological language.

Consider a chain map $\gamma: C_{*}\left(K_{n}\right) \rightarrow C_{*}(X)$ where X is an annulus.
X has two \mathbb{Z}_{2}-homology class in dimension 1 .

Consider a chain map $\gamma: C_{*}\left(K_{n}\right) \rightarrow C_{*}(X)$ where X is an annulus.
X has two \mathbb{Z}_{2}-homology class in dimension 1 .
Pick four vertices $v_{1}, v_{2}, v_{3}, v_{4} \in K_{n}$

$$
\partial v_{1} v_{2} v_{3}+\partial v_{1} v_{2} v_{4}=v_{1} v_{3}+v_{3} v_{2}+v_{2} v_{4}+v_{4} v_{1}
$$

so one of these three cycles is a boundary.

Consider a chain map $\gamma: C_{*}\left(K_{n}\right) \rightarrow C_{*}(X)$ where X is an annulus. X has two \mathbb{Z}_{2}-homology class in dimension 1 .

Pick four vertices $v_{1}, v_{2}, v_{3}, v_{4} \in K_{n}$

$$
\partial v_{1} v_{2} v_{3}+\partial v_{1} v_{2} v_{4}=v_{1} v_{3}+v_{3} v_{2}+v_{2} v_{4}+v_{4} v_{1}
$$

so one of these three cycles is a boundary.
Lemma. Let $f: C_{*}\left(K_{n}\right) \rightarrow C_{*}(X)$ be a chain map and let $s \in \mathbb{N}$. For n large enough there exists a PL-embedding $g: K_{s} \rightarrow K_{n}$ such that for any $u, v, w \in K_{s}, f \circ g_{\sharp}(\partial u v w)$ is a boundary.

Consider a chain map $\gamma: C_{*}\left(K_{n}\right) \rightarrow C_{*}(X)$ where X is an annulus. X has two \mathbb{Z}_{2}-homology class in dimension 1 .

Pick four vertices $v_{1}, v_{2}, v_{3}, v_{4} \in K_{n}$

$$
\partial v_{1} v_{2} v_{3}+\partial v_{1} v_{2} v_{4}=v_{1} v_{3}+v_{3} v_{2}+v_{2} v_{4}+v_{4} v_{1}
$$

so one of these three cycles is a boundary.
Lemma. Let $f: C_{*}\left(K_{n}\right) \rightarrow C_{*}(X)$ be a chain map and let $s \in \mathbb{N}$. For n large enough there exists a PL-embedding $g: K_{s} \rightarrow K_{n}$ such that for any $u, v, w \in K_{s}, f \circ g_{\sharp}(\partial u v w)$ is a boundary.

Proof: \quad Color every triangle $x y z$ of K_{n} by the homology class of $\gamma(\partial x y z)$ in \mathbf{X}. Use Ramsey's theorem to find t vertices so that all triangles have the same homology class under γ.

Consider a chain map $\gamma: C_{*}\left(K_{n}\right) \rightarrow C_{*}(X)$ where X is an annulus. X has two \mathbb{Z}_{2}-homology class in dimension 1 .

Pick four vertices $v_{1}, v_{2}, v_{3}, v_{4} \in K_{n}$

$$
\partial v_{1} v_{2} v_{3}+\partial v_{1} v_{2} v_{4}=v_{1} v_{3}+v_{3} v_{2}+v_{2} v_{4}+v_{4} v_{1}
$$

so one of these three cycles is a boundary.
Lemma. Let $f: C_{*}\left(K_{n}\right) \rightarrow C_{*}(X)$ be a chain map and let $s \in \mathbb{N}$. For n large enough there exists a PL-embedding $g: K_{s} \rightarrow K_{n}$ such that for any $u, v, w \in K_{s}, f \circ g_{\sharp}(\partial u v w)$ is a boundary.

Proof: \quad Color every triangle $x y z$ of K_{n} by the homology class of $\gamma(\partial x y z)$ in \mathbf{X}. Use Ramsey's theorem to find t vertices so that all triangles have the same homology class under γ.
PL-map $\Delta_{s-1}^{(2)}$ to its barycentric subdivision sd $\Delta_{s-1}^{(2)}$.
Then map the 1-skeleton of $s d \Delta_{s-1}^{(2)}$ to these t vertices (assuming t is large enough).

Consider a chain map $\gamma: C_{*}\left(K_{n}\right) \rightarrow C_{*}(X)$ where X is an annulus. X has two \mathbb{Z}_{2}-homology class in dimension 1 .

Pick four vertices $v_{1}, v_{2}, v_{3}, v_{4} \in K_{n}$

Applies in any dimension, provided the number of \mathbb{Z}_{2}-homology classes of the target space is bounded.
4. Bounds on Helly numbers arise from non-embeddability
5. Ramsey's theorem helps finding non-embeddable structures
6. Non-embeddability can be argued at the level of chain maps

$$
\begin{gathered}
\tilde{\beta}_{i}(\cap \mathcal{G}) \leq b \\
\text { for all } \mathcal{G} \subseteq \mathcal{F} \text { and } i \leq\lceil d / 2\rceil-1
\end{gathered} \Rightarrow \quad \begin{gathered}
\operatorname{Helly}(\mathcal{F}) \text { is bounded } \\
\text { by some function of } d \text { and } b
\end{gathered}
$$

Let $\mathcal{F}=\left\{A_{1}, A_{2}, \ldots A_{k}\right\}$ such that $\forall j \leq k, \cap_{i \neq j} A_{i} \neq \emptyset$
Assume that $\forall \mathcal{G} \subseteq \mathcal{F}, \cap \mathcal{G}$ has at most r connected components and $\tilde{\beta}_{1}\left(\cap \mathcal{G}, \mathbb{Z}_{2}\right) \leq r$
Goal: build a chain map from $C_{*}\left(\Delta_{7}^{(2)}\right)$ into $C_{*}\left(\mathbb{R}^{d}\right)$ such that disjoint faces σ, τ are mapped to chains supported in $\cap_{i \notin \Phi(\sigma)} A_{i}$ and $\cap_{i \notin \Phi(\tau)} A_{i}$ with $\Phi(\sigma) \cap \Phi(\tau)=\emptyset$

Pick $p_{j} \in \cap_{i \neq j} A_{i}$ and define $\gamma(j)=p_{j}$

Let $\mathcal{F}=\left\{A_{1}, A_{2}, \ldots A_{k}\right\}$ such that $\forall j \leq k, \cap_{i \neq j} A_{i} \neq \emptyset$
Assume that $\forall \mathcal{G} \subseteq \mathcal{F}, \cap \mathcal{G}$ has at most r connected components and $\tilde{\beta}_{1}\left(\cap \mathcal{G}, \mathbb{Z}_{2}\right) \leq r$
Goal: build a chain map from $C_{*}\left(\Delta_{7}^{(2)}\right)$ into $C_{*}\left(\mathbb{R}^{d}\right)$ such that disjoint faces σ, τ are mapped to chains supported in $\cap_{i \notin \Phi(\sigma)} A_{i}$ and $\cap_{i \notin \Phi(\tau)} A_{i}$ with $\Phi(\sigma) \cap \Phi(\tau)=\emptyset$

Pick $p_{j} \in \cap_{i \neq j} A_{i}$ and define $\gamma(j)=p_{j}$
For any $J \subset[k]$ of size $r+1$ there is a pair $P_{J}=\{u, v\} \subset J$ such that $\gamma(u)+\gamma(v)$ is a boundary in $\cap_{i \notin J} A_{i}$

Ramsey $\rightsquigarrow T \subset[k]$ such that the positions of P_{J} for all $J \subset T$ are identical Injection lemma \rightsquigarrow a chain map $\gamma_{1}: C_{*}\left(K_{n}\right) \rightarrow C_{*}\left(\cap_{i \notin T} A_{i}\right)$

Let $\mathcal{F}=\left\{A_{1}, A_{2}, \ldots A_{k}\right\}$ such that $\forall j \leq k, \cap_{i \neq j} A_{i} \neq \emptyset$
Assume that $\forall \mathcal{G} \subseteq \mathcal{F}, \cap \mathcal{G}$ has at most r connected components and $\tilde{\beta}_{1}\left(\cap \mathcal{G}, \mathbb{Z}_{2}\right) \leq r$
Goal: build a chain map from $C_{*}\left(\Delta_{7}^{(2)}\right)$ into $C_{*}\left(\mathbb{R}^{d}\right)$ such that disjoint faces σ, τ are mapped to chains supported in $\cap_{i \notin \Phi(\sigma)} A_{i}$ and $\cap_{i \notin \Phi(\tau)} A_{i}$ with $\Phi(\sigma) \cap \Phi(\tau)=\emptyset$

Pick $p_{j} \in \cap_{i \neq j} A_{i}$ and define $\gamma(j)=p_{j}$
For any $J \subset[k]$ of size $r+1$ there is a pair $P_{J}=\{u, v\} \subset J$ such that $\gamma(u)+\gamma(v)$ is a boundary in $\cap_{i \notin J} A_{i}$

Ramsey $\rightsquigarrow T \subset[k]$ such that the positions of P_{J} for all $J \subset T$ are identical
Injection lemma \rightsquigarrow a chain map $\gamma_{1}: C_{*}\left(K_{n}\right) \rightarrow C_{*}\left(\cap_{i \notin T} A_{i}\right)$
Filling lemma $\rightsquigarrow \gamma_{1}^{\prime}: C_{*}\left(K_{s}\right) \rightarrow C_{*}\left(\cap_{i \notin T} A_{i}\right)$ such that the image of every triangle is a boundary in $\cap_{i \notin T} A_{i}$.

We can define $\gamma_{2}: C_{*}\left(\Delta_{s-1}^{(2)}\right) \rightarrow C_{*}\left(\cap_{i \notin T} A_{i}\right)$

Filling lemma. Let $f: C_{*}\left(K_{n}\right) \rightarrow C_{*}(X)$ be a chain map and let $s \in \mathbb{N}$. For n large enough there exists a PL-embedding $g: K_{s} \rightarrow K_{n}$ such that for any $u, v, w \in K_{s}, f \circ g_{\sharp}(\partial u v w)$ is a boundary.

Let $\mathcal{F}=\left\{A_{1}, A_{2}, \ldots A_{k}\right\}$ such that $\forall j \leq k, \cap_{i \neq j} A_{i} \neq \emptyset$
Assume that $\forall \mathcal{G} \subseteq \mathcal{F}, \cap \mathcal{G}$ has at most r connected components and $\tilde{\beta}_{1}\left(\cap \mathcal{G}, \mathbb{Z}_{2}\right) \leq r$
Goal: build a chain map from $C_{*}\left(\Delta_{7}^{(2)}\right)$ into $C_{*}\left(\mathbb{R}^{d}\right)$ such that disjoint faces σ, τ are mapped to chains supported in $\cap_{i \notin \Phi(\sigma)} A_{i}$ and $\cap_{i \notin \Phi(\tau)} A_{i}$ with $\Phi(\sigma) \cap \Phi(\tau)=\emptyset$

Pick $p_{j} \in \cap_{i \neq j} A_{i}$ and define $\gamma(j)=p_{j}$
For any $J \subset[k]$ of size $r+1$ there is a pair $P_{J}=\{u, v\} \subset J$ such that $\gamma(u)+\gamma(v)$ is a boundary in $\cap_{i \notin J} A_{i}$

Ramsey $\rightsquigarrow T \subset[k]$ such that the positions of P_{J} for all $J \subset T$ are identical Injection lemma \rightsquigarrow a chain map $\gamma_{1}: C_{*}\left(K_{n}\right) \rightarrow C_{*}\left(\cap_{i \notin T} A_{i}\right)$

Filling lemma $\rightsquigarrow \gamma_{1}^{\prime}: C_{*}\left(K_{s}\right) \rightarrow C_{*}\left(\cap_{i \notin T} A_{i}\right)$ such that the image of every triangle is a boundary in $\cap_{i \notin T} A_{i}$.

We can define $\gamma_{2}: C_{*}\left(\Delta_{s-1}^{(2)}\right) \rightarrow C_{*}\left(\cap_{i \notin T} A_{i}\right)$
$n \geq R_{*, *, s^{*}},|T| \geq R_{*, *, n^{*}}$ and $k \geq R_{*, *,|T|^{*}}$

Filling lemma. Let $f: C_{*}\left(K_{n}\right) \rightarrow C_{*}(X)$ be a chain map and let $s \in \mathbb{N}$. For n large enough there exists a PL-embedding $g: K_{s} \rightarrow K_{n}$ such that for any $u, v, w \in K_{s}, f \circ g_{\sharp}(\partial u v w)$ is a boundary.

Let $\mathcal{F}=\left\{A_{1}, A_{2}, \ldots A_{k}\right\}$ such that $\forall j \leq k, \cap_{i \neq j} A_{i} \neq \emptyset$
Assume that $\forall \mathcal{G} \subseteq \mathcal{F}, \cap \mathcal{G}$ has at most r connected components and $\tilde{\beta}_{1}\left(\cap \mathcal{G}, \mathbb{Z}_{2}\right) \leq r$
Goal: build a chain map from $C_{*}\left(\Delta_{7}^{(2)}\right)$ into $C_{*}\left(\mathbb{R}^{d}\right)$ such that disjoint faces σ, τ are mapped to chains supported in $\cap_{i \notin \Phi(\sigma)} A_{i}$ and $\cap_{i \notin \Phi(\tau)} A_{i}$ with $\Phi(\sigma) \cap \Phi(\tau)=\emptyset$

Pick $p_{j} \in \cap_{i \neq j} A_{i}$ and define $\gamma(j)=p_{j}$
For any $J \subset[k]$ of size $r+1$ there is a pair $P_{J}=\{u, v\} \subset J$ such that $\gamma(u)+\gamma(v)$ is a boundary in $\cap_{i \notin J} A_{i}$

Ramsey $\rightsquigarrow T \subset[k]$ such that the positions of P_{J} for all $J \subset T$ are identical
Injection lemma \rightsquigarrow a chain map $\gamma_{1}: C_{*}\left(K_{n}\right) \rightarrow C_{*}\left(\cap_{i \notin T} A_{i}\right)$
Filling lemma $\rightsquigarrow \gamma_{1}^{\prime}: C_{*}\left(K_{s}\right) \rightarrow C_{*}\left(\cap_{i \notin T} A_{i}\right)$ such that the image of every triangle is a boundary in $\cap_{i \notin T} A_{i}$.

We can define $\gamma_{2}: C_{*}\left(\Delta_{s-1}^{(2)}\right) \rightarrow C_{*}\left(\cap_{i \notin T} A_{i}\right)$
$n \geq R_{*, *, s^{*}},|T| \geq R_{*, *, n^{*}}$ and $k \geq R_{*, *,|T|^{*}}$

Filling lemma. Let $f: C_{*}\left(K_{n}\right) \rightarrow C_{*}(X)$ be a chain map and let $s \in \mathbb{N}$.

Problem: everything is supported in $\cap_{i \notin T} A_{i}$

For n large enough there exists a PL-embedding $g: K_{s} \rightarrow K_{n}$ such that for any $u, v, w \in K_{s}, f \circ g_{\sharp}(\partial u v w)$ is a boundary.

Let $\mathcal{F}=\left\{A_{1}, A_{2}, \ldots A_{k}\right\}$ such that $\forall j \leq k, \cap_{i \neq j} A_{i} \neq \emptyset$
Assume that $\forall \mathcal{G} \subseteq \mathcal{F}, \cap \mathcal{G}$ has at most r connected components and $\tilde{\beta}_{1}\left(\cap \mathcal{G}, \mathbb{Z}_{2}\right) \leq r$
Goal: build a chain map from $C_{*}\left(\Delta_{7}^{(2)}\right)$ into $C_{*}\left(\mathbb{R}^{d}\right)$ such that disjoint faces σ, τ are mapped to chains supported in $\cap_{i \notin \Phi(\sigma)} A_{i}$ and $\cap_{i \notin \Phi(\tau)} A_{i}$ with $\Phi(\sigma) \cap \Phi(\tau)=\emptyset$

Pick $p_{j} \in \cap_{i \neq j} A_{i}$ and define $\gamma(j)=p_{j}$
For any $J \subset[k]$ of size $r+1$ there is a pair $P_{J}=\{u, v\} \subset J$ such that $\gamma(u)+\gamma(v)$ is a boundary in $\cap_{i \notin J} A_{i}$

Ramsey $\rightsquigarrow T \subset[k]$ such that the positions of P_{J} for all $J \subset T$ are identical
Injection lemma \rightsquigarrow a chain map $\gamma_{1}: C_{*}\left(K_{n}\right) \rightarrow C_{*}\left(\cap_{i \notin T} A_{i}\right)$
Filling lemma $\rightsquigarrow \gamma_{1}^{\prime}: C_{*}\left(K_{s}\right) \rightarrow C_{*}\left(\cap_{i \notin T} A_{i}\right)$ such that the image of every triangle is a boundary in $\cap_{i \notin T} A_{i}$.

We can define $\gamma_{2}: C_{*}\left(\Delta_{s-1}^{(2)}\right) \rightarrow C_{*}\left(\cap_{i \notin T} A_{i}\right)$
$n \geq R_{*, *, s^{*}},|T| \geq R_{*, *, n^{*}}$ and $k \geq R_{*, *,|T|^{*}}$

Filling lemma. Let $f: C_{*}\left(K_{n}\right) \rightarrow C_{*}(X)$ be a chain map and let $s \in \mathbb{N}$.

Problem: everything is supported in $\cap_{i \notin T} A_{i}$

For n large enough there exists a PL-embedding $g: K_{s} \rightarrow K_{n}$ such that for any $u, v, w \in K_{s}, f \circ g_{\sharp}(\partial u v w)$ is a boundary.

Let $\mathcal{F}=\left\{A_{1}, A_{2}, \ldots A_{k}\right\}$ such that $\forall j \leq k, \cap_{i \neq j} A_{i} \neq \emptyset$ and pick $p_{j} \in \cap_{i \neq j} A_{i}$ and define $\gamma(j)=p_{j}$

$$
\forall \mathcal{G} \subseteq \mathcal{F}, \cap \mathcal{G} \text { has at most } r \text { connected components and } \tilde{\beta}_{1}\left(\cap \mathcal{G}, \mathbb{Z}_{2}\right) \leq r
$$

Goal: build $\gamma: C_{*}\left(\Delta_{7}^{(2)}\right) \rightarrow C_{*}\left(\mathbb{R}^{d}\right)$ with $\gamma(\sigma)$ supported in $\cap_{i \notin \Phi(\sigma)} A_{i}$ and $\sigma \cap \tau=\emptyset \Rightarrow \Phi(\sigma) \cap \Phi(\tau)=\emptyset$
Pigeonhole \rightsquigarrow any $(r+1)$-elements subset $J \subseteq[k]$ has a pair of points that forms a boundary in $\cap_{i \notin J} A_{i}$.
Color the $(r+1)$-uniform hypergraph on $[k]$ by the $\binom{r+1}{2}$ relative positions of these pairs.
Ramsey \rightsquigarrow any set of size $m=R_{*, *, \ell^{*}}$ contains an ℓ-elements subset in which the relative positions are identical for all $(r+1)$-elements subsets.

Let $\mathcal{F}=\left\{A_{1}, A_{2}, \ldots A_{k}\right\}$ such that $\forall j \leq k, \cap_{i \neq j} A_{i} \neq \emptyset$ and pick $p_{j} \in \cap_{i \neq j} A_{i}$ and define $\gamma(j)=p_{j}$
$\forall \mathcal{G} \subseteq \mathcal{F}, \cap \mathcal{G}$ has at most r connected components and $\tilde{\beta}_{1}\left(\cap \mathcal{G}, \mathbb{Z}_{2}\right) \leq r$
Goal: build $\gamma: C_{*}\left(\Delta_{7}^{(2)}\right) \rightarrow C_{*}\left(\mathbb{R}^{d}\right)$ with $\gamma(\sigma)$ supported in $\cap_{i \notin \Phi(\sigma)} A_{i}$ and $\sigma \cap \tau=\emptyset \Rightarrow \Phi(\sigma) \cap \Phi(\tau)=\emptyset$
Pigeonhole \rightsquigarrow any $(r+1)$-elements subset $J \subseteq[k]$ has a pair of points that forms a boundary in $\cap_{i \notin J} A_{i}$.
Color the $(r+1)$-uniform hypergraph on $[k]$ by the $\binom{r+1}{2}$ relative positions of these pairs.
Ramsey \rightsquigarrow any set of size $m=R_{*, *, \ell^{*}}$ contains an ℓ-elements subset in which the relative positions are identical for all $(r+1)$-elements subsets.

> Injection lemma. Let $\{a, b\} \in\binom{[3]}{2}$. There exists an injection from $\left\{i_{1}, i_{2}, \ldots, i_{5}\right\} \cup\left\{i_{1,2}, i_{1,3}, \ldots, i_{4,5}\right\}$ into any ordered set of size ≥ 15 such that any $\left\{i_{u}, i_{v}\right\}$ are in $\{a, b\}$ th position in $\left\{i_{u}, i_{v}, i_{u, v}\right\}$.

Choosing ℓ large enough, for any set M of size m we can extend γ over some K_{s} inside $\cap_{i \notin M} A_{i}$

Let $\mathcal{F}=\left\{A_{1}, A_{2}, \ldots A_{k}\right\}$ such that $\forall j \leq k, \cap_{i \neq j} A_{i} \neq \emptyset$ and pick $p_{j} \in \cap_{i \neq j} A_{i}$ and define $\gamma(j)=p_{j}$ $\forall \mathcal{G} \subseteq \mathcal{F}, \cap \mathcal{G}$ has at most r connected components and $\tilde{\beta}_{1}\left(\cap \mathcal{G}, \mathbb{Z}_{2}\right) \leq r$

Goal: build $\gamma: C_{*}\left(\Delta_{7}^{(2)}\right) \rightarrow C_{*}\left(\mathbb{R}^{d}\right)$ with $\gamma(\sigma)$ supported in $\cap_{i \notin \Phi(\sigma)} A_{i}$ and $\sigma \cap \tau=\emptyset \Rightarrow \Phi(\sigma) \cap \Phi(\tau)=\emptyset$
Pigeonhole \rightsquigarrow any $(r+1)$-elements subset $J \subseteq[k]$ has a pair of points that forms a boundary in $\cap_{i \notin J} A_{i}$.
Color the $(r+1)$-uniform hypergraph on $[k]$ by the $\binom{r+1}{2}$ relative positions of these pairs.
Ramsey \rightsquigarrow any set of size $m=R_{*, *, \ell^{*}}$ contains an ℓ-elements subset in which the relative positions are identical for all $(r+1)$-elements subsets.

Injection lemma. Let $\{a, b\} \in\binom{[3]}{2}$. There exists an injection from $\left\{i_{1}, i_{2}, \ldots, i_{5}\right\} \cup\left\{i_{1,2}, i_{1,3}, \ldots, i_{4,5}\right\}$ into any ordered set of size ≥ 15 such that any $\left\{i_{u}, i_{v}\right\}$ are in $\{a, b\}$ th position in $\left\{i_{u}, i_{v}, i_{u, v}\right\}$.

Choosing ℓ large enough, for any set M of size m we can extend γ over some K_{s} inside $\cap_{i \notin M} A_{i}$

Filling Lemma. Let $f: C_{*}\left(K_{n}\right) \rightarrow C_{*}(X)$ be a chain map and let $s \in \mathbb{N}$. For n large enough there exists a PL-embedding $g: K_{s} \rightarrow K_{n}$ such that for any $u, v, w \in K_{s}, f \circ g_{\sharp}(\partial u v w)$ is a boundary.
\Rightarrow We can extend γ over one (2D) triangle inside $\cap_{i \notin M} A_{i}$

Let $\mathcal{F}=\left\{A_{1}, A_{2}, \ldots A_{k}\right\}$ such that $\forall j \leq k, \cap_{i \neq j} A_{i} \neq \emptyset$ and pick $p_{j} \in \cap_{i \neq j} A_{i}$ and define $\gamma(j)=p_{j}$

$$
\forall \mathcal{G} \subseteq \mathcal{F}, \cap \mathcal{G} \text { has at most } r \text { connected components and } \tilde{\beta}_{1}\left(\cap \mathcal{G}, \mathbb{Z}_{2}\right) \leq r
$$

Goal: build $\gamma: C_{*}\left(\Delta_{7}^{(2)}\right) \rightarrow C_{*}\left(\mathbb{R}^{d}\right)$ with $\gamma(\sigma)$ supported in $\cap_{i \notin \Phi(\sigma)} A_{i}$ and $\sigma \cap \tau=\emptyset \Rightarrow \Phi(\sigma) \cap \Phi(\tau)=\emptyset$
Pigeonhole \rightsquigarrow any $(r+1)$-elements subset $J \subseteq[k]$ has a pair of points that forms a boundary in $\cap_{i \notin J} A_{i}$.
Color the $(r+1)$-uniform hypergraph on $[k]$ by the $\binom{r+1}{2}$ relative positions of these pairs.
Ramsey \rightsquigarrow any set of size $m=R_{*, *, \ell^{*}}$ contains an ℓ-elements subset in which the relative positions are identical for all $(r+1)$-elements subsets.

Injection lemma. Let $\{a, b\} \in\binom{[3]}{2}$. There exists an injection from

$\left\{i_{1}, i_{2}, \ldots, i_{5}\right\} \cup\left\{i_{1,2}, i_{1,3}, \ldots, i_{4,5}\right\}$ into any ordered set of size ≥ 15
such that any $\left\{i_{u}, i_{v}\right\}$ are in $\{a, b\}$ th position in $\left\{i_{u}, i_{v}, i_{u, v}\right\}$.
Choosing ℓ large enough, for any set M of size m we can extend γ over some K_{s} inside $\cap_{i \notin M} A_{i}$

Filling Lemma. Let $f: C_{*}\left(K_{n}\right) \rightarrow C_{*}(X)$ be a chain map and let $s \in \mathbb{N}$.
For n large enough there exists a PL-embedding $g: K_{s} \rightarrow K_{n}$ such that for any $u, v, w \in K_{s}, f \circ g_{\sharp}(\partial u v w)$ is a boundary.
\Rightarrow We can extend γ over one (2D) triangle inside $\cap_{i \notin M} A_{i}$ Recurse...

To summarize...
4. Bounds on Helly numbers arise from non-embeddability

Via embedding "constrained" by the intersection structure Already hinted in the classical derivation of Helly from Radon
5. Ramsey's theorem helps finding non-embeddable structures

Uniform " r in ℓ " selection
6. Non-embeddability can be argued at the level of chain maps

Classical proofs carry from almost embedding to homological almost embeddings This makes finding boundaries much easier (mod 2)

$$
\begin{gathered}
\tilde{\beta}_{i}(\cap \mathcal{G}) \leq b \\
\text { for all } \mathcal{G} \subseteq \mathcal{F} \text { and } i \leq\lceil d / 2\rceil-1
\end{gathered} \Rightarrow \begin{gathered}
\operatorname{Helly}(\mathcal{F}) \text { is bounded } \\
\text { by some function of } d \text { and } b
\end{gathered}
$$

A consequence on the complexity of optimization problems

$$
\min _{\cap_{i} C_{i}} f
$$

where $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and $C_{1}, C_{2}, \ldots, C_{n}$ subsets of \mathbb{R}^{d}

A consequence on the complexity of optimization problems

$$
\begin{aligned}
& \min _{\cap_{i} C_{i}} f \\
& \text { where } f: \mathbb{R}^{d} \rightarrow \mathbb{R} \text { and } C_{1}, C_{2}, \ldots, C_{n} \text { subsets of } \mathbb{R}^{d}
\end{aligned}
$$

This problem has a GLP formulation if the local minima of f have distinct values.

A consequence on the complexity of optimization problems

$$
\begin{aligned}
& \min _{\cap_{i} C_{i}} f \\
& \text { where } f: \mathbb{R}^{d} \rightarrow \mathbb{R} \text { and } C_{1}, C_{2}, \ldots, C_{n} \text { subsets of } \mathbb{R}^{d}
\end{aligned}
$$

This problem has a GLP formulation if the local minima of f have distinct values.

If the maximum Helly number of the sets $\left\{C_{1}, C_{2}, \ldots, C_{n}, f^{-1}((-\infty, t))\right\}$ is some constant h (indpt of n) then there exists $i_{1}, i_{2}, \ldots, i_{h}$ such that

$$
\min _{\cap_{i} C_{i}} f=\min _{\cap_{j=1}^{h} C_{i_{j}}} f
$$

and they can be computed "efficiently".

A consequence on the complexity of optimization problems

$$
\begin{aligned}
& \min _{\cap_{i} C_{i}} f \\
& \text { where } f: \mathbb{R}^{d} \rightarrow \mathbb{R} \text { and } C_{1}, C_{2}, \ldots, C_{n} \text { subsets of } \mathbb{R}^{d}
\end{aligned}
$$

This problem has a GLP formulation if the local minima of f have distinct values.

If the maximum Helly number of the sets $\left\{C_{1}, C_{2}, \ldots, C_{n}, f^{-1}((-\infty, t))\right\}$ is some constant h (indpt of n) then there exists $i_{1}, i_{2}, \ldots, i_{h}$ such that

$$
\min _{\cap_{i} C_{i}} f=\min _{\cap_{j=1}^{h} C_{i_{j}}} f
$$

and they can be computed "efficiently".

For this number not to be bounded requires "unbounded topological complexity" in the level sets of the C_{i}.

Perspectives

\mathcal{F} is a (r, \mathcal{G})-family if every intersection of members of \mathcal{F} is a disjoint union of at most r members of \mathcal{G}.

\mathcal{F} is a (r, \mathcal{G})-family if every intersection of members of \mathcal{F} is a disjoint union of at most r members of \mathcal{G}.

\mathcal{F} is a (r, \mathcal{G})-family if every intersection of members of \mathcal{F} is a disjoint union of at most r members of \mathcal{G}.

Helly numbers of sets of line transversals to
disjoint unit disks in $\mathbb{R}^{2}: \leq 5$ [Danzer 1957]
disjoint translates of a convex figure in $\mathbb{R}^{2}: \leq 5$ [Tverberg 1989]
disjoint translates of a convex polyhedron in \mathbb{R}^{3} : unbounded [Holmsen-Matoušek 2004]
disjoint unit balls in $\mathbb{R}^{d}: \leq 4 d-1$ [Cheong-Holmsen-G-Petitjean 2006]

Could we also obtain

Hadwiger's transversal theorem. Let $C_{1}, C_{2}, \ldots C_{n}$ be disjoint convex sets in the plane. If any three have an oriented line transversal in increasing order then they all have a line transversal.
from topological arguments?

Let X and Y be simplicial complexes.
Let $\pi: X \rightarrow Y$ be a surjective, dimension preserving, $\leq r$-to-one simplicial map.

Theorem. [Kalai-Meshulam 2008] $L(Y)+1 \leq r(L(X)+1)$.
Theorem. [Eckhoff-Nishke 2009] $H(Y) \leq r H(X)$.
Theorem. [Amenta 1996] $\Delta(Y)+1 \leq r(\Delta(X)+1)$.

Is there some common generalization?

A simplicial hole is an induced subcomplex isomorphic to the boundary of a simplex. Define $H(K)$ as the maximum dimension of a simplicial hole of K.
$\Delta(K) \simeq$ the collapsibility of K.

Thank you for your attention

