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The Delaunay graph

Empty circle property

Some good properties

• If not all points are collinear and no four points define an
empty circle, then DG(S) is a triangulation (maximal plane
graph).

• It maximizes the minimum angle.

• It is a supergraph of the nearest neighbor graph.

• What about more involved properties? For example, is DG(S)
always Hamiltonian?
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Hamiltonicity of DT

Dillencourt (IPL, 1987) answered this question negatively by
providing an example of a set of points whose Delaunay graph is a
non-Hamiltonian triangulation.
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Does DT always satisfy a weaker condition?

Definition
For a graph G with vertex set S , and for a set P ⊆ S , let c(S − P) be
the number of components of the subgraph induced by S \ P.

We say
that G is 1-tough if, for any set P, it holds that c(S − P) ≤ |P|.
Example
Not 1-tough:

Observations

• G is Hamiltonian ⇒ G is 1-tough

• G is 1-tough & |S | is even ⇒ G has a perfect matching
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DT is always 1-tough

Theorem [Dillencourt (DCG, 1990)]
For any set S of points in the plane, DT(S) is 1-tough.

Sketch of the proof

• Let P ⊆ S ; we can assume that the subgraph of DT(S) induced by
P is connected.

• In DT(S) \ P, there are two
types of components:

• A key property used is:

α

β

α + β < π
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The L∞ Delaunay graph

Empty square property

Observation

• In this case, the convex hull edges do not necessarily belong
to the graph.

• We can easily find examples where the graph is not
Hamiltonian.
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The L∞ Delaunay graph

Theorem [Ábrego et al (DCG, 2009)]
The L∞ Delaunay graph of any point set S has a Hamiltonian path.

Sketch of the proof

1 Consider the initial graph.

2 Add four vertices and
recompute the graph.

3 Add one extra vertex.

The resulting graph is planar and
4-connected.

Observation
Alternative proof for 1-toughness [Bose & S., 2010].
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Questions

• The Delaunay graph with respect to the L2 metric is 1-tough,
and with respect to the L∞ (and L1) metric is “almost”
1-tough. Is it true that, for any p ≥ 1, the Delaunay graph
with respect to the Lp metric is 1-tough (or “almost”)?

• For which values of m is the Delaunay graph with a regular
m-gon as empty region 1-tough? It is 1-tough (or “almost”)
for m = 4 and m =∞, and it is not for m = 3 [Bonichon,
Gavoille, Hanusse & Ilcinkas (WG, 2010)].
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Higher order proximity graphs

Description
Higher order proximity graphs generalize some of the most common plane
proximity graphs. The definitions are relaxed so that the graphs contain
more edges.

Examples

≤ k ≤ k
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k-nearest k-relative neigh- k-Gabriel k-Delaunay
neighbor graph borhood graph graph graph

(k-NNG(P)) (k-RNG(P)) (k-GG(P)) (k-DG(P))
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Hamiltonicity of k-DG(S)

Question
What is the minimum value of k such that k-DG(S) is
Hamiltonian for every S?

Known results

• 20-RNG(S) (and thus 20-GG(S) and 20-DG(S)) is always
Hamiltonian [Chang, Tang & Lee (J. Graph Theory, 1991)]

• 15-GG(S) (and thus 15-DG(S)) is always Hamiltonian
[Abellanas, Bose, Garćıa, Hurtado, Nicolás & Ramos (IJCGA,
2009)]

• 10-GG(S) (and thus 10-DG(S)) is always Hamiltonian [Kaiser,
S. & Van Cleemput (2014)]
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Proof

Let H be the set of all Hamiltonian cycles on S , and let h ∈ H.

ei

By possibly renaming the edges,

length(e1) ≥ length(e2) ≥ · · · ≥ length(en).

We define ds(h) as ds(h) = (length(e1), length(e2), . . . , length(en)).

Then, for h1, h2 ∈ H, we say that h1 > h2 if and only if ds(h1) > ds(h2)
in the lexicographical order.

Let m be a minimal element of H. We will show that all edges of m
belong to 10-GG(S).
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Proof

Let e = xy be an edge of m.

Let U = {u1, u2, . . . , uk} be the set of
points in S different from x , y that are contained in C-DISC(x , y):

yx

s1

s2

sk

u2

u1uk

We want to prove that k ≤ 10. First, we observe:

1 d(si , x) ≥ max {d(si , ui ), d(x , y)} (for 1 ≤ i ≤ k);

2 d(si , sj) ≥ max {d(si , ui ), d(sj , uj), d(x , y)} (for
1 ≤ i < j ≤ k).
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We have: d(ui , y) < d(x , y) ≤ max {d(si , ui ), d(x , y)}.
If d(si , x) < max {d(si , ui ), d(x , y)}, then

max {d(si , x), d(ui , y)} < max {d(si , ui ), d(x , y)} .

Thus we would obtain that m′ < m, a contradiction.
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Proof

We now suppose that x = (−1, 0) and y = (1, 0).

We define unit disks Di as follows:

sj

1 For si such that ‖si‖ ≤ 3 . . .

2 For sj such that ‖sj‖ > 3 . . .

3 We add D0.

Lemma
All the disks Di are pairwise internally disjoint.
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Proof

Lemma
All the disks Di are pairwise internally disjoint:

x y

si

Di

D0

d(si , x) ≥ max {d(si , ui ), d(x , y)}
≥ d(x , y) = 2

So we obtain a packing of k + 1 unit disks in a disk of radius 4. By
a result of Fodor, in order to pack twelve unit disks we need radius
> 4.029. Therefore, k ≤ 10.
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Hamiltonian:
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Lower bounds

Observation
There exist point sets S such that 1-GG(S) is not Hamiltonian:

Conjecture [Abellanas, Bose, Garćıa, Hurtado, Nicolás &
Ramos (IJCGA, 2009)]

1-DG(S) is always Hamiltonian.
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Thank you!
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