On the Hamiltonicity and related properties of variants of the Delaunay triangulation

Maria Saumell
University of West Bohemia
2nd Elbe Sandstones Geometry Workshop

August 7th, 2014

This action is realized by the project NEXLIZ - CZ.1.07/2.3.00/30.0038, which is co-financed by the European Social Fund and the state budget of the Czech Republic.

The Delaunay graph

Empty circle property

The Delaunay graph

Empty circle property

Some good properties

- If not all points are collinear and no four points define an empty circle, then $\mathrm{DG}(S)$ is a triangulation (maximal plane graph).

The Delaunay graph

Empty circle property

Some good properties

- If not all points are collinear and no four points define an empty circle, then $\mathrm{DG}(S)$ is a triangulation (maximal plane graph).
- It maximizes the minimum angle.

The Delaunay graph

Empty circle property

Some good properties

- If not all points are collinear and no four points define an empty circle, then $\mathrm{DG}(S)$ is a triangulation (maximal plane graph).
- It maximizes the minimum angle.
- It is a supergraph of the nearest neighbor graph.

The Delaunay graph

Empty circle property

Some good properties

- If not all points are collinear and no four points define an empty circle, then $\mathrm{DG}(S)$ is a triangulation (maximal plane graph).
- It maximizes the minimum angle.
- It is a supergraph of the nearest neighbor graph.
- What about more involved properties?

The Delaunay graph

Empty circle property

Some good properties

- If not all points are collinear and no four points define an empty circle, then $\mathrm{DG}(S)$ is a triangulation (maximal plane graph).
- It maximizes the minimum angle.
- It is a supergraph of the nearest neighbor graph.
- What about more involved properties? For example, is $\mathrm{DG}(S)$ always Hamiltonian?

Hamiltonicity of DT

Dillencourt (IPL, 1987) answered this question negatively by providing an example of a set of points whose Delaunay graph is a non-Hamiltonian triangulation.

Outline

(1) Toughness of Delaunay graphs
(2) Hamiltonicity of higher order proximity graphs

Outline

(1) Toughness of Delaunay graphs
(2) Hamiltonicity of higher order proximity graphs

Does DT always satisfy a weaker condition?

Definition

For a graph G with vertex set S, and for a set $P \subseteq S$, let $c(S-P)$ be the number of components of the subgraph induced by $S \backslash P$.

Does DT always satisfy a weaker condition?

Definition

For a graph G with vertex set S, and for a set $P \subseteq S$, let $c(S-P)$ be the number of components of the subgraph induced by $S \backslash P$. We say that G is 1 -tough if, for any set P, it holds that $c(S-P) \leq|P|$.

Does DT always satisfy a weaker condition?

Definition

For a graph G with vertex set S, and for a set $P \subseteq S$, let $c(S-P)$ be the number of components of the subgraph induced by $S \backslash P$. We say that G is 1 -tough if, for any set P, it holds that $c(S-P) \leq|P|$.

Example
Not 1-tough:

Does DT always satisfy a weaker condition?

Definition

For a graph G with vertex set S, and for a set $P \subseteq S$, let $c(S-P)$ be the number of components of the subgraph induced by $S \backslash P$. We say that G is 1 -tough if, for any set P, it holds that $c(S-P) \leq|P|$.
Example
Not 1-tough:

Observations

- G is Hamiltonian $\Rightarrow G$ is 1-tough

Does DT always satisfy a weaker condition?

Definition

For a graph G with vertex set S, and for a set $P \subseteq S$, let $c(S-P)$ be the number of components of the subgraph induced by $S \backslash P$. We say that G is 1 -tough if, for any set P, it holds that $c(S-P) \leq|P|$.
Example
Not 1-tough:

Observations

- G is Hamiltonian $\Rightarrow G$ is 1-tough
- G is 1-tough \& $|S|$ is even $\Rightarrow G$ has a perfect matching

DT is always 1-tough

Theorem [Dillencourt (DCG, 1990)]
For any set S of points in the plane, $\operatorname{DT}(S)$ is 1-tough.

DT is always 1 -tough

Theorem [Dillencourt (DCG, 1990)]
For any set S of points in the plane, $\operatorname{DT}(S)$ is 1-tough.
Sketch of the proof

- Let $P \subseteq S$; we can assume that the subgraph of $\mathrm{DT}(S)$ induced by P is connected.

DT is always 1-tough

Theorem [Dillencourt (DCG, 1990)]
For any set S of points in the plane, $\mathrm{DT}(S)$ is 1-tough.
Sketch of the proof

- Let $P \subseteq S$; we can assume that the subgraph of DT (S) induced by P is connected.
- $\ln \mathrm{DT}(S) \backslash P$, there are two types of components:

DT is always 1-tough

Theorem [Dillencourt (DCG, 1990)]
For any set S of points in the plane, $\mathrm{DT}(S)$ is 1-tough.
Sketch of the proof

- Let $P \subseteq S$; we can assume that the subgraph of $\operatorname{DT}(S)$ induced by P is connected.
- In $\mathrm{DT}(S) \backslash P$, there are two types of components:
- A key property used is:

$\alpha+\beta<\pi$

The L_{∞} Delaunay graph

Empty square property

The L_{∞} Delaunay graph

Empty square property

Observation

- In this case, the convex hull edges do not necessarily belong to the graph.

The L_{∞} Delaunay graph

Empty square property

Observation

- In this case, the convex hull edges do not necessarily belong to the graph.
- We can easily find examples where the graph is not Hamiltonian.

The L_{∞} Delaunay graph

Theorem [Ábrego et al (DCG, 2009)]
The L_{∞} Delaunay graph of any point set S has a Hamiltonian path.

The L_{∞} Delaunay graph

Theorem [Ábrego et al (DCG, 2009)]
The L_{∞} Delaunay graph of any point set S has a Hamiltonian path. Sketch of the proof
(1) Consider the initial graph.

The L_{∞} Delaunay graph

Theorem [Ábrego et al (DCG, 2009)]
The L_{∞} Delaunay graph of any point set S has a Hamiltonian path.
Sketch of the proof

(1) Consider the initial graph.
(2) Add four vertices and recompute the graph.

The L_{∞} Delaunay graph

Theorem [Ábrego et al (DCG, 2009)]
The L_{∞} Delaunay graph of any point set S has a Hamiltonian path.
Sketch of the proof

(1) Consider the initial graph.
(2) Add four vertices and recompute the graph.
(3) Add one extra vertex.

The L_{∞} Delaunay graph

Theorem [Ábrego et al (DCG, 2009)]
The L_{∞} Delaunay graph of any point set S has a Hamiltonian path.
Sketch of the proof

(1) Consider the initial graph.
(2) Add four vertices and recompute the graph.
(3) Add one extra vertex.

The resulting graph is planar and 4-connected.

The L_{∞} Delaunay graph

Theorem [Ábrego et al (DCG, 2009)]
The L_{∞} Delaunay graph of any point set S has a Hamiltonian path.
Sketch of the proof

(1) Consider the initial graph.
(2) Add four vertices and recompute the graph.
(3) Add one extra vertex.

The resulting graph is planar and 4-connected.

Observation
Alternative proof for 1 -toughness [Bose \& S., 2010].

Questions

Questions

- The Delaunay graph with respect to the L_{2} metric is 1-tough, and with respect to the L_{∞} (and L_{1}) metric is "almost" 1 -tough. Is it true that, for any $p \geq 1$, the Delaunay graph with respect to the L_{p} metric is 1 -tough (or "almost")?

Questions

Questions

- The Delaunay graph with respect to the L_{2} metric is 1-tough, and with respect to the $L_{\infty}\left(\right.$ and $\left.L_{1}\right)$ metric is "almost" 1 -tough. Is it true that, for any $p \geq 1$, the Delaunay graph with respect to the L_{p} metric is 1 -tough (or "almost")?
- For which values of m is the Delaunay graph with a regular m-gon as empty region 1-tough? It is 1-tough (or "almost") for $m=4$ and $m=\infty$, and it is not for $m=3$ [Bonichon, Gavoille, Hanusse \& Ilcinkas (WG, 2010)].

Outline

(1) Toughness of Delaunay graphs

(2) Hamiltonicity of higher order proximity graphs

Higher order proximity graphs

Description

Higher order proximity graphs generalize some of the most common plane proximity graphs. The definitions are relaxed so that the graphs contain more edges.

Higher order proximity graphs

Description

Higher order proximity graphs generalize some of the most common plane proximity graphs. The definitions are relaxed so that the graphs contain more edges.

Examples

Hamiltonicity of $k-\mathrm{DG}(S)$

Question
What is the minimum value of k such that k - $\mathrm{DG}(S)$ is
Hamiltonian for every S?

Hamiltonicity of k-DG(S)

Question

What is the minimum value of k such that k - $\mathrm{DG}(S)$ is
Hamiltonian for every S?
Known results

- 20-RNG(S) (and thus 20-GG(S) and 20-DG(S)) is always Hamiltonian [Chang, Tang \& Lee (J. Graph Theory, 1991)]

Hamiltonicity of k-DG(S)

Question

What is the minimum value of k such that $k-D G(S)$ is
Hamiltonian for every S?
Known results

- 20-RNG(S) (and thus 20-GG(S) and 20-DG(S)) is always Hamiltonian [Chang, Tang \& Lee (J. Graph Theory, 1991)]
- 15-GG(S) (and thus 15-DG(S)) is always Hamiltonian [Abellanas, Bose, García, Hurtado, Nicolás \& Ramos (IJCGA, 2009)]

Hamiltonicity of k-DG(S)

Question

What is the minimum value of k such that k - $\mathrm{DG}(S)$ is
Hamiltonian for every S?
Known results

- 20-RNG(S) (and thus 20-GG(S) and 20-DG(S)) is always Hamiltonian [Chang, Tang \& Lee (J. Graph Theory, 1991)]
- 15-GG(S) (and thus 15-DG(S)) is always Hamiltonian [Abellanas, Bose, García, Hurtado, Nicolás \& Ramos (IJCGA, 2009)]
- 10-GG(S) (and thus 10-DG(S)) is always Hamiltonian [Kaiser, S. \& Van Cleemput (2014)]

Let H be the set of all Hamiltonian cycles on S, and let $h \in H$.

Let H be the set of all Hamiltonian cycles on S, and let $h \in H$.

By possibly renaming the edges,

$$
\operatorname{length}\left(e_{1}\right) \geq \operatorname{length}\left(e_{2}\right) \geq \cdots \geq \text { length }\left(e_{n}\right) .
$$

Let H be the set of all Hamiltonian cycles on S, and let $h \in H$.

By possibly renaming the edges,

$$
\operatorname{length}\left(e_{1}\right) \geq \operatorname{length}\left(e_{2}\right) \geq \cdots \geq \text { length }\left(e_{n}\right) .
$$

We define $d s(h)$ as $d s(h)=\left(\right.$ length $\left(e_{1}\right)$, length $\left(e_{2}\right), \ldots$, length $\left.\left(e_{n}\right)\right)$.

Proof

Let H be the set of all Hamiltonian cycles on S, and let $h \in H$.

By possibly renaming the edges,

$$
\operatorname{length}\left(e_{1}\right) \geq \operatorname{length}\left(e_{2}\right) \geq \cdots \geq \text { length }\left(e_{n}\right) .
$$

We define $d s(h)$ as $d s(h)=\left(\right.$ length $\left(e_{1}\right)$, length $\left(e_{2}\right), \ldots$, length $\left.\left(e_{n}\right)\right)$.
Then, for $h_{1}, h_{2} \in H$, we say that $h_{1}>h_{2}$ if and only if $d s\left(h_{1}\right)>d s\left(h_{2}\right)$ in the lexicographical order.

Proof

Let H be the set of all Hamiltonian cycles on S, and let $h \in H$.

By possibly renaming the edges,

$$
\operatorname{length}\left(e_{1}\right) \geq \operatorname{length}\left(e_{2}\right) \geq \cdots \geq \text { length }\left(e_{n}\right) .
$$

We define $d s(h)$ as $d s(h)=\left(\right.$ length $\left(e_{1}\right)$, length $\left(e_{2}\right), \ldots$, length $\left.\left(e_{n}\right)\right)$.
Then, for $h_{1}, h_{2} \in H$, we say that $h_{1}>h_{2}$ if and only if $d s\left(h_{1}\right)>d s\left(h_{2}\right)$ in the lexicographical order.

Let m be a minimal element of H.

Proof

Let H be the set of all Hamiltonian cycles on S, and let $h \in H$.

By possibly renaming the edges,

$$
\operatorname{length}\left(e_{1}\right) \geq \operatorname{length}\left(e_{2}\right) \geq \cdots \geq \text { length }\left(e_{n}\right) .
$$

We define $d s(h)$ as $d s(h)=\left(\right.$ length $\left(e_{1}\right)$, length $\left(e_{2}\right), \ldots$, length $\left.\left(e_{n}\right)\right)$.
Then, for $h_{1}, h_{2} \in H$, we say that $h_{1}>h_{2}$ if and only if $d s\left(h_{1}\right)>d s\left(h_{2}\right)$ in the lexicographical order.

Let m be a minimal element of H. We will show that all edges of m belong to $10-\mathrm{GG}(\mathrm{S})$.

Let $e=x y$ be an edge of m.

Proof

Let $e=x y$ be an edge of m. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ be the set of points in S different from x, y that are contained in C-DISC (x, y) :

Proof

Let $e=x y$ be an edge of m. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ be the set of points in S different from x, y that are contained in $\operatorname{C-DISC}(x, y)$:

We want to prove that $k \leq 10$.

Proof

Let $e=x y$ be an edge of m. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ be the set of points in S different from x, y that are contained in $\operatorname{C-DISC}(x, y)$:

We want to prove that $k \leq 10$. First, we observe:
(1) $d\left(s_{i}, x\right) \geq \max \left\{d\left(s_{i}, u_{i}\right), d(x, y)\right\}$ (for $\left.1 \leq i \leq k\right)$;
(2) $d\left(s_{i}, s_{j}\right) \geq \max \left\{d\left(s_{i}, u_{i}\right), d\left(s_{j}, u_{j}\right), d(x, y)\right\}$ (for $1 \leq i<j \leq k)$.

$$
d\left(s_{i}, x\right) \geq \max \left\{d\left(s_{i}, u_{i}\right), d(x, y)\right\}:
$$

$d\left(s_{i}, x\right) \geq \max \left\{d\left(s_{i}, u_{i}\right), d(x, y)\right\}:$

We have: $d\left(u_{i}, y\right)<d(x, y) \leq \max \left\{d\left(s_{i}, u_{i}\right), d(x, y)\right\}$.
$d\left(s_{i}, x\right) \geq \max \left\{d\left(s_{i}, u_{i}\right), d(x, y)\right\}:$

We have: $d\left(u_{i}, y\right)<d(x, y) \leq \max \left\{d\left(s_{i}, u_{i}\right), d(x, y)\right\}$. If $d\left(s_{i}, x\right)<\max \left\{d\left(s_{i}, u_{i}\right), d(x, y)\right\}$, then

$$
\max \left\{d\left(s_{i}, x\right), d\left(u_{i}, y\right)\right\}<\max \left\{d\left(s_{i}, u_{i}\right), d(x, y)\right\} .
$$

Thus we would obtain that $m^{\prime}<m$, a contradiction.

We now suppose that $x=(-1,0)$ and $y=(1,0)$.

Proof

We now suppose that $x=(-1,0)$ and $y=(1,0)$.
We define unit disks D_{i} as follows:
(1) For s_{i} such that $\left\|s_{i}\right\| \leq 3 \ldots$

Proof

We now suppose that $x=(-1,0)$ and $y=(1,0)$.
We define unit disks D_{i} as follows:

(1) For s_{i} such that $\left\|s_{i}\right\| \leq 3 \ldots$
(2) For s_{j} such that $\left\|s_{j}\right\|>3 \ldots$

Proof

We now suppose that $x=(-1,0)$ and $y=(1,0)$.
We define unit disks D_{i} as follows:

(1) For s_{i} such that $\left\|s_{i}\right\| \leq 3 \ldots$
(2) For s_{j} such that $\left\|s_{j}\right\|>3 \ldots$
(3) We add D_{0}.

Proof

We now suppose that $x=(-1,0)$ and $y=(1,0)$.
We define unit disks D_{i} as follows:

(1) For s_{i} such that $\left\|s_{i}\right\| \leq 3 \ldots$
(2) For s_{j} such that $\left\|s_{j}\right\|>3 \ldots$
(3) We add D_{0}.

Lemma
All the disks D_{i} are pairwise internally disjoint.

Lemma

All the disks D_{i} are pairwise internally disjoint:

$$
\begin{aligned}
d\left(s_{i}, x\right) & \geq \max \left\{d\left(s_{i}, u_{i}\right), d(x, y)\right\} \\
& \geq d(x, y)=2
\end{aligned}
$$

Lemma

All the disks D_{i} are pairwise internally disjoint:

$$
\begin{aligned}
d\left(s_{i}, x\right) & \geq \max \left\{d\left(s_{i}, u_{i}\right), d(x, y)\right\} \\
& \geq d(x, y)=2
\end{aligned}
$$

So we obtain a packing of $k+1$ unit disks in a disk of radius 4 .

Lemma

All the disks D_{i} are pairwise internally disjoint:

$$
\begin{aligned}
d\left(s_{i}, x\right) & \geq \max \left\{d\left(s_{i}, u_{i}\right), d(x, y)\right\} \\
& \geq d(x, y)=2
\end{aligned}
$$

So we obtain a packing of $k+1$ unit disks in a disk of radius 4 . By a result of Fodor, in order to pack twelve unit disks we need radius >4.029. Therefore, $k \leq 10$.

Theorem
For any point set $S, 10-\mathrm{GG}(S)$ is Hamiltonian.

Theorem

For any point set $S, 10-\mathrm{GG}(S)$ is Hamiltonian.
Remark
With this method, the best that one can prove is that $6-\mathrm{GG}(S)$ is Hamiltonian:

Lower bounds

Observation
There exist point sets S such that $1-G G(S)$ is not Hamiltonian:

Lower bounds

Observation
There exist point sets S such that $1-G G(S)$ is not Hamiltonian:

Conjecture [Abellanas, Bose, García, Hurtado, Nicolás \& Ramos (IJCGA, 2009)]
1-DG (S) is always Hamiltonian.

Thank you!

