On the Hamiltonicity and related properties of variants of the Delaunay triangulation

Maria Saumell

University of West Bohemia

2nd Elbe Sandstones Geometry Workshop

August 7th, 2014

This action is realized by the project NEXLIZ – CZ.1.07/2.3.00/30.0038, which is co-financed by the European Social Fund and the state budget of the Czech Republic.

Empty circle property

Empty circle property

Some good properties

• If not all points are collinear and no four points define an empty circle, then DG(S) is a triangulation (maximal plane graph).

Empty circle property

- If not all points are collinear and no four points define an empty circle, then DG(S) is a triangulation (maximal plane graph).
- It maximizes the minimum angle.

Empty circle property

- If not all points are collinear and no four points define an empty circle, then DG(S) is a triangulation (maximal plane graph).
- It maximizes the minimum angle.
- It is a supergraph of the nearest neighbor graph.

Empty circle property

- If not all points are collinear and no four points define an empty circle, then DG(S) is a triangulation (maximal plane graph).
- It maximizes the minimum angle.
- It is a supergraph of the nearest neighbor graph.
- What about more involved properties?

Empty circle property

- If not all points are collinear and no four points define an empty circle, then DG(S) is a triangulation (maximal plane graph).
- It maximizes the minimum angle.
- It is a supergraph of the nearest neighbor graph.
- What about more involved properties? For example, is DG(S) always Hamiltonian?

Hamiltonicity of DT

Dillencourt (IPL, 1987) answered this question negatively by providing an example of a set of points whose Delaunay graph is a non-Hamiltonian triangulation.

1 Toughness of Delaunay graphs

2 Hamiltonicity of higher order proximity graphs

1 Toughness of Delaunay graphs

2 Hamiltonicity of higher order proximity graphs

Does DT always satisfy a weaker condition?

Definition

For a graph G with vertex set S, and for a set $P \subseteq S$, let c(S - P) be the number of components of the subgraph induced by $S \setminus P$.

Definition

For a graph G with vertex set S, and for a set $P \subseteq S$, let c(S - P) be the number of components of the subgraph induced by $S \setminus P$. We say that G is 1-tough if, for any set P, it holds that $c(S - P) \leq |P|$.

Does DT always satisfy a weaker condition?

Definition

For a graph G with vertex set S, and for a set $P \subseteq S$, let c(S - P) be the number of components of the subgraph induced by $S \setminus P$. We say that G is 1-tough if, for any set P, it holds that $c(S - P) \leq |P|$.

Example

Not 1-tough:

Does DT always satisfy a weaker condition?

Definition

For a graph G with vertex set S, and for a set $P \subseteq S$, let c(S - P) be the number of components of the subgraph induced by $S \setminus P$. We say that G is 1-tough if, for any set P, it holds that $c(S - P) \leq |P|$.

Example

Not 1-tough:

Observations

• G is Hamiltonian $\Rightarrow G$ is 1-tough

Definition

For a graph G with vertex set S, and for a set $P \subseteq S$, let c(S - P) be the number of components of the subgraph induced by $S \setminus P$. We say that G is 1-tough if, for any set P, it holds that $c(S - P) \leq |P|$.

Example

Not 1-tough:

Observations

- G is Hamiltonian \Rightarrow G is 1-tough
- G is 1-tough & |S| is even \Rightarrow G has a perfect matching

Theorem [Dillencourt (DCG, 1990)]

For any set S of points in the plane, DT(S) is 1-tough.

Theorem [Dillencourt (DCG, 1990)]

For any set S of points in the plane, DT(S) is 1-tough.

Sketch of the proof

 Let P ⊆ S; we can assume that the subgraph of DT(S) induced by P is connected.

Theorem [Dillencourt (DCG, 1990)]

For any set S of points in the plane, DT(S) is 1-tough.

Sketch of the proof

- Let P ⊆ S; we can assume that the subgraph of DT(S) induced by P is connected.
- In DT(S) \ P, there are two types of components:

Theorem [Dillencourt (DCG, 1990)]

For any set S of points in the plane, DT(S) is 1-tough.

Sketch of the proof

- Let P ⊆ S; we can assume that the subgraph of DT(S) induced by P is connected.
- In DT(S) \ P, there are two types of components:

• A key property used is:

Empty square property

Empty square property

Observation

• In this case, the convex hull edges do not necessarily belong to the graph.

Empty square property

Observation

- In this case, the convex hull edges do not necessarily belong to the graph.
- We can easily find examples where the graph is not Hamiltonian.

Theorem [Ábrego et al (DCG, 2009)]

The L_{∞} Delaunay graph of any point set S has a Hamiltonian path.

Theorem [Ábrego *et al* (DCG, 2009)] The L_{∞} Delaunay graph of any point set *S* has a Hamiltonian path. Sketch of the proof

1 Consider the initial graph.

Theorem [Ábrego *et al* (DCG, 2009)] The L_{∞} Delaunay graph of any point set *S* has a Hamiltonian path. Sketch of the proof

- 1 Consider the initial graph.
- 2 Add four vertices and recompute the graph.

Theorem [Ábrego *et al* (DCG, 2009)] The L_{∞} Delaunay graph of any point set S has a Hamiltonian path. Sketch of the proof

- 1 Consider the initial graph.
- 2 Add four vertices and recompute the graph.
- 3 Add one extra vertex.

Theorem [Ábrego *et al* (DCG, 2009)] The L_{∞} Delaunay graph of any point set S has a Hamiltonian path. Sketch of the proof

- 1 Consider the initial graph.
- 2 Add four vertices and recompute the graph.
- 3 Add one extra vertex.

The resulting graph is planar and 4-connected.

Theorem [Ábrego *et al* (DCG, 2009)] The L_{∞} Delaunay graph of any point set S has a Hamiltonian path. Sketch of the proof

- 1 Consider the initial graph.
- 2 Add four vertices and recompute the graph.
- 3 Add one extra vertex.

The resulting graph is planar and 4-connected.

Observation Alternative proof for 1-toughness [Bose & S., 2010].

Questions

The Delaunay graph with respect to the L₂ metric is 1-tough, and with respect to the L_∞ (and L₁) metric is "almost"
 1-tough. Is it true that, for any p ≥ 1, the Delaunay graph with respect to the L_p metric is 1-tough (or "almost")?

Questions

- The Delaunay graph with respect to the L₂ metric is 1-tough, and with respect to the L_∞ (and L₁) metric is "almost"
 1-tough. Is it true that, for any p ≥ 1, the Delaunay graph with respect to the L_p metric is 1-tough (or "almost")?
- For which values of *m* is the Delaunay graph with a regular *m*-gon as empty region 1-tough? It is 1-tough (or "almost") for *m* = 4 and *m* = ∞, and it is not for *m* = 3 [Bonichon, Gavoille, Hanusse & Ilcinkas (WG, 2010)].

1 Toughness of Delaunay graphs

2 Hamiltonicity of higher order proximity graphs

Description

Higher order proximity graphs generalize some of the most common plane proximity graphs. The definitions are relaxed so that the graphs contain more edges.

Description

Higher order proximity graphs generalize some of the most common plane proximity graphs. The definitions are relaxed so that the graphs contain more edges.

Examples

Hamiltonicity of k-DG(S)

Question

What is the minimum value of k such that k-DG(S) is Hamiltonian for every S?

Question

What is the minimum value of k such that k-DG(S) is Hamiltonian for every S?

Known results

 20-RNG(S) (and thus 20-GG(S) and 20-DG(S)) is always Hamiltonian [Chang, Tang & Lee (J. Graph Theory, 1991)]

Question

What is the minimum value of k such that k-DG(S) is Hamiltonian for every S?

Known results

- 20-RNG(S) (and thus 20-GG(S) and 20-DG(S)) is always Hamiltonian [Chang, Tang & Lee (J. Graph Theory, 1991)]
- 15-GG(S) (and thus 15-DG(S)) is always Hamiltonian [Abellanas, Bose, García, Hurtado, Nicolás & Ramos (IJCGA, 2009)]

Question

What is the minimum value of k such that k-DG(S) is Hamiltonian for every S?

Known results

- 20-RNG(S) (and thus 20-GG(S) and 20-DG(S)) is always Hamiltonian [Chang, Tang & Lee (J. Graph Theory, 1991)]
- 15-GG(S) (and thus 15-DG(S)) is always Hamiltonian [Abellanas, Bose, García, Hurtado, Nicolás & Ramos (IJCGA, 2009)]
- 10-GG(S) (and thus 10-DG(S)) is always Hamiltonian [Kaiser, S. & Van Cleemput (2014)]

Let *H* be the set of all Hamiltonian cycles on *S*, and let $h \in H$.

By possibly renaming the edges,

```
\operatorname{length}(e_1) \geq \operatorname{length}(e_2) \geq \cdots \geq \operatorname{length}(e_n).
```


By possibly renaming the edges,

$$\operatorname{length}(e_1) \ge \operatorname{length}(e_2) \ge \cdots \ge \operatorname{length}(e_n).$$

We define ds(h) as $ds(h) = (\text{length}(e_1), \text{length}(e_2), \dots, \text{length}(e_n))$.

By possibly renaming the edges,

$$\operatorname{length}(e_1) \geq \operatorname{length}(e_2) \geq \cdots \geq \operatorname{length}(e_n).$$

We define ds(h) as $ds(h) = (\text{length}(e_1), \text{length}(e_2), \dots, \text{length}(e_n))$.

Then, for $h_1, h_2 \in H$, we say that $h_1 > h_2$ if and only if $ds(h_1) > ds(h_2)$ in the lexicographical order.

By possibly renaming the edges,

$$\operatorname{length}(e_1) \geq \operatorname{length}(e_2) \geq \cdots \geq \operatorname{length}(e_n).$$

We define ds(h) as $ds(h) = (\text{length}(e_1), \text{length}(e_2), \dots, \text{length}(e_n))$.

Then, for $h_1, h_2 \in H$, we say that $h_1 > h_2$ if and only if $ds(h_1) > ds(h_2)$ in the lexicographical order.

Let m be a minimal element of H.

By possibly renaming the edges,

$$\operatorname{length}(e_1) \geq \operatorname{length}(e_2) \geq \cdots \geq \operatorname{length}(e_n).$$

We define ds(h) as $ds(h) = (\text{length}(e_1), \text{length}(e_2), \dots, \text{length}(e_n))$.

Then, for $h_1, h_2 \in H$, we say that $h_1 > h_2$ if and only if $ds(h_1) > ds(h_2)$ in the lexicographical order.

Let *m* be a minimal element of *H*. We will show that all edges of *m* belong to 10-GG(S).

Let e = xy be an edge of m.

Let e = xy be an edge of m. Let $U = \{u_1, u_2, ..., u_k\}$ be the set of points in S different from x, y that are contained in C-DISC(x, y):

Let e = xy be an edge of m. Let $U = \{u_1, u_2, ..., u_k\}$ be the set of points in S different from x, y that are contained in C-DISC(x, y):

We want to prove that $k \leq 10$.

Let e = xy be an edge of m. Let $U = \{u_1, u_2, ..., u_k\}$ be the set of points in S different from x, y that are contained in C-DISC(x, y):

We want to prove that $k \leq 10$. First, we observe:

1
$$d(s_i, x) \ge \max \{ d(s_i, u_i), d(x, y) \}$$
 (for $1 \le i \le k$);
2 $d(s_i, s_j) \ge \max \{ d(s_i, u_i), d(s_j, u_j), d(x, y) \}$ (for $1 \le i < j \le k$).

$d(s_i, x) \geq \max \{d(s_i, u_i), d(x, y)\}:$

$d(s_i, x) \geq \max \{d(s_i, u_i), d(x, y)\}:$

We have: $d(u_i, y) < d(x, y) \le \max \{ d(s_i, u_i), d(x, y) \}.$

 $d(s_i, x) \geq \max \{d(s_i, u_i), d(x, y)\}:$

We have: $d(u_i, y) < d(x, y) \le \max \{ d(s_i, u_i), d(x, y) \}$. If $d(s_i, x) < \max \{ d(s_i, u_i), d(x, y) \}$, then

 $\max \{d(s_i, x), d(u_i, y)\} < \max \{d(s_i, u_i), d(x, y)\}.$

Thus we would obtain that m' < m, a contradiction.

We now suppose that x = (-1, 0) and y = (1, 0).

We now suppose that x = (-1, 0) and y = (1, 0). We define unit disks D_i as follows:

1 For s_i such that $||s_i|| \leq 3 \dots$

We now suppose that x = (-1, 0) and y = (1, 0). We define unit disks D_i as follows:

For s_i such that ||s_i|| ≤ 3...
 Por s_i such that ||s_i|| > 3...

We now suppose that x = (-1, 0) and y = (1, 0). We define unit disks D_i as follows:

- **1** For s_i such that $||s_i|| \leq 3 \dots$
- **2** For s_j such that $||s_j|| > 3 ...$
- **3** We add D_0 .

We now suppose that x = (-1, 0) and y = (1, 0). We define unit disks D_i as follows:

- **1** For s_i such that $||s_i|| \leq 3 \dots$
- **2** For s_j such that $||s_j|| > 3 ...$
- **3** We add D_0 .

Lemma

All the disks D_i are pairwise internally disjoint.

Lemma All the disks D_i are pairwise internally disjoint:

$$d(s_i, x) \geq \max \{d(s_i, u_i), d(x, y)\}$$

$$\geq d(x, y) = 2$$

Lemma All the disks D_i are pairwise internally disjoint:

$$d(s_i, x) \geq \max \{ d(s_i, u_i), d(x, y) \}$$

$$\geq d(x, y) = 2$$

So we obtain a packing of k + 1 unit disks in a disk of radius 4.

Lemma All the disks D_i are pairwise internally disjoint:

$$d(s_i, x) \geq \max \{ d(s_i, u_i), d(x, y) \}$$

$$\geq d(x, y) = 2$$

So we obtain a packing of k + 1 unit disks in a disk of radius 4. By a result of Fodor, in order to pack twelve unit disks we need radius > 4.029. Therefore, $k \le 10$.

Theorem

For any point set S, 10-GG(S) is Hamiltonian.

Theorem

For any point set S, 10-GG(S) is Hamiltonian.

Remark

With this method, the best that one can prove is that 6-GG(S) is Hamiltonian:

Observation

There exist point sets S such that 1-GG(S) is not Hamiltonian:

Observation

There exist point sets S such that 1-GG(S) is not Hamiltonian:

Conjecture [Abellanas, Bose, García, Hurtado, Nicolás & Ramos (IJCGA, 2009)]

1-DG(S) is always Hamiltonian.

Thank you!