Introduction to Extended Formulations

Hans Raj Tiwary Charles University, Prague

Polytopes

Polytope: Bounded intersection of finitely many halfspaces

$$P := \{ x \in \mathbb{R}^d \mid Ax \leqslant b \}$$

Polytopes

Polytope: Bounded intersection of finitely many halfspaces

Alternatively: Convex hull of finitely many points

$$P := \{x \in \mathbb{R}^d \mid Ax \leqslant b\} = \operatorname{conv}(V)$$

Polytopes & Extended Formulations

Extended formulation: A polytope Q is an extended formulation (**EF**) of P if P is a **projection** of Q.

Polytopes & Extended Formulations

Extended formulation: A polytope Q is an extended formulation (**EF**) of P if P is a **projection** of Q.

EF: Q and EF of $P \Leftrightarrow P$ is a projection of Q

EF: Q and EF of $P \Leftrightarrow P$ is a projection of Q size of an EF Q is defined as the number of inequalities representing Q

EF: Q and EF of $P \Leftrightarrow P$ is a projection of Q size of an EF Q is defined as the number of inequalities representing Q **Extension complexity** denoted $\mathbf{ex}(P)$ is the **minimum** number of inequalities representing any EF of P.

EF: Q and EF of $P \Leftrightarrow P$ is a projection of Q size of an EF Q is defined as the number of inequalities representing Q Extension complexity denoted ex(P) is the minimum number of inequalities representing any EF of P.

Example: $xc(P_n) = \Theta(\log n)$ where P_n is a regular n-gon.

Basic Questions

Basic Questions

What is the extension complexity of a given class of polytopes?

Basic Questions

What is the extension complexity of a given class of polytopes?

```
• xc(PM_n) = 2^{\Theta(n)} [Rothvoß 2013]
• xc(CUT_n) = 2^{\Theta(n)} [Fiorini, Massar, Pokutta, T., de Wolf 2012]
• xc(PERM_n) = \Theta(n \log n) [Goemans 2009]
```

Basic Questions

What is the extension complexity of a given class of polytopes?

```
• xc(PM_n) = 2^{\Theta(n)} [Rothvoß 2013]
• xc(CUT_n) = 2^{\Theta(n)} [Fiorini, Massar, Pokutta, T., de Wolf 2012]
• xc(PERM_n) = \Theta(n \log n) [Goemans 2009]
```

What is the class of polytopes with small extension complexity?

Basic Questions

What is the extension complexity of a given class of polytopes?

• $xc(PM_n) = 2^{\Theta(n)}$ [Rothvoß 2013] • $xc(CUT_n) = 2^{\Theta(n)}$ [Fiorini, Massar, Pokutta, T., de Wolf 2012] • $xc(PERM_n) = \Theta(n \log n)$ [Goemans 2009]

What is the class of polytopes with small extension complexity?

$$\forall n \in \mathbb{N}, L \subseteq \{0,1\}^* \ \exists P_1, P_2 \subseteq \mathbb{R}^{n+1} \ \underline{\text{s.t.}}$$

Basic Questions

What is the extension complexity of a given class of polytopes?

• $xc(PM_n) = 2^{\Theta(n)}$ [Rothvoß 2013] • $xc(CUT_n) = 2^{\Theta(n)}$ [Fiorini, Massar, Pokutta, T., de Wolf 2012] • $xc(PERM_n) = \Theta(n \log n)$ [Goemans 2009]

What is the class of polytopes with small extension complexity?

$$\forall n \in \mathbb{N}, L \subseteq \{0,1\}^* \quad \exists P_1, P_2 \subseteq \mathbb{R}^{n+1} \text{ s.t.}$$

$$\exists P : (P_1 \subseteq P \subseteq P_2 \land \mathsf{xc}(P) = \mathsf{poly}(n)) \Longleftrightarrow L \in \mathbf{P/poly}$$
[Avis, Bremner, T., Watanabe 2014]

Slack Matrices

Slack Matrices

$$P = \{x \mid A_1 x \leqslant b_1, \dots, A_m x \leqslant b_m\}$$

Slack Matrices

$$P = \{x \mid A_1 x \leqslant b_1, \dots, A_m x \leqslant b_m\}$$

$$P = \mathsf{conv}\{v_1, \dots, v_n\}$$

Slack Matrices

$$P = \{x \mid A_1 x \leqslant b_1, \dots, A_m x \leqslant b_m\}$$

$$P = \mathsf{conv}\{v_1, \dots, v_n\}$$

Definition

Slack matrix $S \in \mathbb{R}_{+}^{m \times n}$ of P: $S_{ii} := b_i - A_i v_i$

$$S_{ij} := b_i - A_i v_j$$

Nonnegative Factorizations

Definition

A rank-r nonnegative factorization of $S \in \mathbb{R}^{m \times n}$ is

$$S = TU$$
 where $T \in \mathbb{R}^{m \times r}_+$ and $U \in \mathbb{R}^{r \times n}_+$

Nonnegative Factorizations

Definition

A rank-r nonnegative factorization of $S \in \mathbb{R}^{m \times n}$ is

$$S = TU$$
 where $T \in \mathbb{R}^{m \times r}_+$ and $U \in \mathbb{R}^{r \times n}_+$

$$S = T \cdot U \uparrow r$$

Nonnegative Factorizations

Definition

A rank-r nonnegative factorization of $S \in \mathbb{R}^{m \times n}$ is

$$S = TU$$
 where $T \in \mathbb{R}^{m \times r}_+$ and $U \in \mathbb{R}^{r \times n}_+$

$$S = \begin{bmatrix} T & U & \downarrow T \\ & & & \downarrow T \end{bmatrix}$$

Definition

Nonnegative rank of $S \in \mathbb{R}^{m \times n}$:

 $rank_{+}(S) := min\{r \mid \exists rank-r nonnegative factorization of S\}$

(Capuccino) Exercise!

Show that adding redundant inequalities and points to the description of a polytope **does not** change the nonnegative rank of its Slack Matrix.

(Hint: Just add redundant points first.)

The Twofold Way

The following are equivalent [Yannakakis'88/91]:

1. A linear system Ex + Fy = g, $y \ge 0$ with $y \in \mathbb{R}^r$ s.t.

$$P = \{ x \in \mathbb{R}^d \mid \exists y \in \mathbb{R}^r : Ex + Fy = g, \ y \geqslant \mathbf{0} \}$$

The Twofold Way

The following are equivalent [Yannakakis'88/91]:

1. A linear system Ex + Fy = g, $y \ge 0$ with $y \in \mathbb{R}^r$ s.t.

$$P = \{ x \in \mathbb{R}^d \mid \exists y \in \mathbb{R}^r : Ex + Fy = g, \ y \geqslant \mathbf{0} \}$$

2. A rank-r nonnegative factorization S = TU of slack matrix S

Free-join of polytopes

► *i*-polytope *P*, *j*-polytope *Q*

- ► *i*-polytope *P*, *j*-polytope *Q*
- ► Embed in skew affine spaces

- ► *i*-polytope *P*, *j*-polytope *Q*
- Embed in skew affine spaces
- ► Take convex hull

- ► *i*-polytope *P*, *j*-polytope *Q*
- Embed in skew affine spaces
- ► Take convex hull

$$P_1 = \text{conv}(V_1) = \{A_1 x \le 1\}$$

 $P_2 = \text{conv}(V_2) = \{A_2 x \le 1\}$

$$P_1 = \text{conv}(V_1) = \{A_1 x \le 1\}$$

 $P_2 = \text{conv}(V_2) = \{A_2 x \le 1\}$

$$P_1*P_2=\mathsf{conv}\big(\{V_1,\bm{0},-1\}\cup\{\bm{0},V_2,1\}\big)=\{2A_1x+z\leqslant 1,2A_2y-z\leqslant 1\}$$

$$P_1 = conv(V_1) = \{A_1x \le 1\}$$

$$P_2 = conv(V_2) = \{A_2x \le 1\}$$

$$P_1*P_2=\mathsf{conv}\big(\{V_1,\bm{0},-1\}\cup\{\bm{0},V_2,1\}\big)=\{2A_1x+z\leqslant 1,2A_2y-z\leqslant 1\}$$

$$S(P_1 * P_2) = \begin{pmatrix} 2S(P_1) & \mathbf{0} \\ \mathbf{0} & 2S(P_2) \end{pmatrix}$$

$$P_1 = \operatorname{conv}(V_1) = \{A_1 x \le 1\}$$

 $P_2 = \operatorname{conv}(V_2) = \{A_2 x \le 1\}$

$$P_1*P_2=\mathsf{conv}(\{V_1,\boldsymbol{0},-1\}\cup\{\boldsymbol{0},V_2,1\})=\{2A_1x+z\leqslant 1,2A_2y-z\leqslant 1\}$$

$$S(P_1 * P_2) = \begin{pmatrix} 2S(P_1) & \mathbf{0} \\ \mathbf{0} & 2S(P_2) \end{pmatrix}$$

$$\Longrightarrow \mathsf{xc}(P_1 * P_2) \leqslant \mathsf{xc}(P_1) + \mathsf{xc}(P_2)$$

Free-join of polytopes

Theorem: $xc(P_1 * P_2) = xc(P_1) + xc(P_2)$

Free-join of polytopes

Theorem: $xc(P_1 * P_2) = xc(P_1) + xc(P_2)$

Free-join of polytopes

Theorem:
$$xc(P_1 * P_2) = xc(P_1) + xc(P_2)$$

Free-join of polytopes

Theorem:
$$xc(P_1 * P_2) = xc(P_1) + xc(P_2)$$

Free-join of polytopes

Theorem:
$$xc(P_1 * P_2) = xc(P_1) + xc(P_2)$$

Free-join of polytopes

Theorem:
$$xc(P_1 * P_2) = xc(P_1) + xc(P_2)$$

Free-join of polytopes

Theorem:
$$xc(P_1 * P_2) = xc(P_1) + xc(P_2)$$

Free-join of polytopes

Theorem:
$$xc(P_1 * P_2) = xc(P_1) + xc(P_2)$$

Free-join of polytopes

Theorem:
$$xc(P_1 * P_2) = xc(P_1) + xc(P_2)$$

Free-join of polytopes

Theorem:
$$xc(P_1 * P_2) = xc(P_1) + xc(P_2)$$

Free-join of polytopes

Theorem:
$$xc(P_1 * P_2) = xc(P_1) + xc(P_2)$$

$$\implies \operatorname{xc}(P_1 * P_2) \geqslant \operatorname{xc}(P_1) + \operatorname{xc}(P_2)$$

Open Problem

Product of polytopes:

(Posed by François Glineur at Dagstuhl 2013)

Is it true that
$$xc(P_1 \times P_2) = xc(P_1) + xc(P_2)$$
?

Thank You!