Introduction to Extended Formulations

Hans Raj Tiwary
Charles University, Prague

Polytopes

Polytope: Bounded intersection of finitely many halfspaces

$$
P:=\left\{x \in \mathbb{R}^{d} \mid A x \leqslant b\right\}
$$

Polytopes

Polytope: Bounded intersection of finitely many halfspaces Alternatively: Convex hull of finitely many points

$$
P:=\left\{x \in \mathbb{R}^{d} \mid A x \leqslant b\right\}=\operatorname{conv}(V)
$$

Polytopes \& Extended Formulations

Extended formulation: A polytope Q is an extended formulation (EF) of P if P is a projection of Q.

Polytopes \& Extended Formulations

Extended formulation: A polytope Q is an extended formulation (EF) of P if P is a projection of Q.

Extended formulations

EF: Q and EF of $P \Leftrightarrow P$ is a projection of Q

Extended formulations

EF: Q and EF of $P \Leftrightarrow P$ is a projection of Q
size of an EF Q is defined as the number of inequalities representing Q

Extended formulations

EF: Q and EF of $P \Leftrightarrow P$ is a projection of Q
size of an EF Q is defined as the number of inequalities representing Q
Extension complexity denoted $\mathbf{e x}(P)$ is the minimum number of inequalities representing any EF of P.

Extended formulations

EF: Q and EF of $P \Leftrightarrow P$ is a projection of Q
size of an EF Q is defined as the number of inequalities representing Q
Extension complexity denoted $\mathbf{e x}(P)$ is the minimum number of inequalities representing any EF of P.

Example: $x c\left(P_{n}\right)=\Theta(\log n)$ where P_{n} is a regular n-gon.

Extension Complexity

Basic Questions

Extension Complexity

Basic Questions

What is the extension complexity of a given class of polytopes?

Extension Complexity

Basic Questions

What is the extension complexity of a given class of polytopes?

- $\mathrm{xc}\left(P M_{n}\right)=2^{\Theta(n)}$
- $x c\left(C U T_{n}\right)=2^{\Theta(n)}$
[Fiorini, Massar, Pokutta, T., de Wolf 2012]
- $\mathrm{xc}\left(P E R M_{n}\right)=\Theta(n \log n)$
[Goemans 2009]

Extension Complexity

Basic Questions

What is the extension complexity of a given class of polytopes?

- $x c\left(P M_{n}\right)=2^{\Theta(n)}$
- $\mathrm{xc}\left(C U T_{n}\right)=2^{\Theta(n)} \quad$ [Fiorini, Massar, Pokutta, T., de Wolf 2012]
- xc $\left(P E R M_{n}\right)=\Theta(n \log n)$
[Goemans 2009]

What is the class of polytopes with small extension complexity?

Extension Complexity

Basic Questions

What is the extension complexity of a given class of polytopes?

- $x c\left(P M_{n}\right)=2^{\Theta(n)}$
[Rothvoß 2013]
- $x c\left(C U T_{n}\right)=2^{\Theta(n)} \quad$ [Fiorini, Massar, Pokutta, T., de Wolf 2012]
- $\times \mathrm{cc}\left(\right.$ PERM $\left._{n}\right)=\Theta(n \log n)$
[Goemans 2009]

What is the class of polytopes with small extension complexity?

$$
\forall n \in \mathbb{N}, L \subseteq\{0,1\}^{*} \quad \exists P_{1}, P_{2} \subseteq \mathbb{R}^{n+1} \text { s.t. }
$$

Extension Complexity

Basic Questions

What is the extension complexity of a given class of polytopes?

- $\mathrm{xc}\left(P M_{n}\right)=2^{\Theta(n)}$
- $\operatorname{xc}\left(C U T_{n}\right)=2^{\Theta(n)} \quad$ [Fiorini, Massar, Pokutta, T., de Wolf 2012]
- $x c\left(P E R M_{n}\right)=\Theta(n \log n)$
[Goemans 2009]

What is the class of polytopes with small extension complexity?
$\forall n \in \mathbb{N}, L \subseteq\{0,1\}^{*} \quad \exists P_{1}, P_{2} \subseteq \mathbb{R}^{n+1}$ s.t.
$\exists P:\left(P_{1} \subseteq P \subseteq P_{2} \wedge \mathrm{xc}(P)=\operatorname{poly}(n)\right) \Longleftrightarrow L \in \mathbf{P} /$ poly
[Avis, Bremner, T., Watanabe 2014]

Extension Complexity

Slack Matrices

Extension Complexity

Slack Matrices

$$
P=\left\{x \mid A_{1} x \leqslant b_{1}, \ldots, A_{m} x \leqslant\right.
$$

Extension Complexity

Slack Matrices

$$
P=\left\{x \mid A_{1} x \leqslant b_{1}, \ldots, A_{m} x \leqslant\right.
$$

$$
P=\operatorname{conv}\left\{v_{1}, \ldots, v_{n}\right\}
$$

Extension Complexity

Slack Matrices

$$
P=\left\{x \mid A_{1} x \leqslant b_{1}, \ldots, A_{m} x \leqslant\right.
$$

$$
P=\operatorname{conv}\left\{v_{1}, \ldots, v_{n}\right\}
$$

Definition
Slack matrix $S \in \mathbb{R}_{+}^{m \times n}$ of $P: \quad S_{i j}:=b_{i}-A_{i} v_{j}$

Extension Complexity

Nonnegative Factorizations

Definition

A rank- r nonnegative factorization of $S \in \mathbb{R}^{m \times n}$ is

$$
S=T U \quad \text { where } \quad T \in \mathbb{R}_{+}^{m \times r} \quad \text { and } \quad U \in \mathbb{R}_{+}^{r \times n}
$$

Extension Complexity

Nonnegative Factorizations

Definition

A rank- r nonnegative factorization of $S \in \mathbb{R}^{m \times n}$ is

$$
S=T U \quad \text { where } \quad T \in \mathbb{R}_{+}^{m \times r} \quad \text { and } \quad U \in \mathbb{R}_{+}^{r \times n}
$$

Extension Complexity

Nonnegative Factorizations

Definition

A rank- r nonnegative factorization of $S \in \mathbb{R}^{m \times n}$ is

$$
S=T U \quad \text { where } \quad T \in \mathbb{R}_{+}^{m \times r} \quad \text { and } \quad U \in \mathbb{R}_{+}^{r \times n}
$$

Definition

Nonnegative rank of $S \in \mathbb{R}^{m \times n}$:
rank $_{+}(S):=\min \{r \mid \exists$ rank- r nonnegative factorization of $S\}$

Extension Complexity

(Capuccino) Exercise!

Show that adding redundant inequalities and points to the description of a polytope does not change the nonnegative rank of its Slack Matrix.
(Hint: Just add redundant points first.)

Extension Complexity

The Twofold Way

The following are equivalent [Yannakakis'88/91]:

1. A linear system $E x+F y=g, y \geqslant 0$ with $y \in \mathbb{R}^{r}$ s.t.

$$
P=\left\{x \in \mathbb{R}^{d} \mid \exists y \in \mathbb{R}^{r}: E x+F y=g, y \geqslant \mathbf{0}\right\}
$$

Extension Complexity

The Twofold Way

The following are equivalent [Yannakakis'88/91]:

1. A linear system $E x+F y=g, y \geqslant 0$ with $y \in \mathbb{R}^{r}$ s.t.

$$
P=\left\{x \in \mathbb{R}^{d} \mid \exists y \in \mathbb{R}^{r}: E x+F y=g, y \geqslant \mathbf{0}\right\}
$$

2. A rank- r nonnegative factorization $S=T U$ of slack matrix S

Extension Complexity: Example

Free-join of polytopes

- i-polytope P, j-polytope Q

Extension Complexity: Example

Free-join of polytopes

- i-polytope P, j-polytope Q
- Embed in skew affine spaces

Extension Complexity: Example

Free-join of polytopes

- i-polytope P, j-polytope Q
- Embed in skew affine spaces
- Take convex hull

Extension Complexity: Example

Free-join of polytopes

- i-polytope P, j-polytope Q
- Embed in skew affine spaces
- Take convex hull

Extension Complexity: Example

Free-join of polytopes

$$
\begin{aligned}
& P_{1}=\operatorname{conv}\left(V_{1}\right)=\left\{A_{1} x \leqslant 1\right\} \\
& P_{2}=\operatorname{conv}\left(V_{2}\right)=\left\{A_{2} x \leqslant 1\right\}
\end{aligned}
$$

Extension Complexity: Example

Free-join of polytopes

$$
\begin{aligned}
& P_{1}=\operatorname{conv}\left(V_{1}\right)=\left\{A_{1} x \leqslant 1\right\} \\
& P_{2}=\operatorname{conv}\left(V_{2}\right)=\left\{A_{2} x \leqslant 1\right\}
\end{aligned}
$$

$$
P_{1} * P_{2}=\operatorname{conv}\left(\left\{V_{1}, \mathbf{0},-1\right\} \cup\left\{\mathbf{0}, V_{2}, 1\right\}\right)=\left\{2 A_{1} x+z \leqslant 1,2 A_{2} y-z \leqslant 1\right\}
$$

Extension Complexity: Example

Free-join of polytopes

$$
\begin{aligned}
& P_{1}=\operatorname{conv}\left(V_{1}\right)=\left\{A_{1} x \leqslant 1\right\} \\
& P_{2}=\operatorname{conv}\left(V_{2}\right)=\left\{A_{2} x \leqslant 1\right\}
\end{aligned}
$$

$$
P_{1} * P_{2}=\operatorname{conv}\left(\left\{V_{1}, \mathbf{0},-1\right\} \cup\left\{\mathbf{0}, V_{2}, 1\right\}\right)=\left\{2 A_{1} x+z \leqslant 1,2 A_{2} y-z \leqslant 1\right\}
$$

$$
S\left(P_{1} * P_{2}\right)=\left(\begin{array}{ll}
2 S\left(P_{1}\right) & 0 \\
0 & 2 S\left(P_{2}\right)
\end{array}\right)
$$

Extension Complexity: Example

Free-join of polytopes

$$
\begin{aligned}
& P_{1}=\operatorname{conv}\left(V_{1}\right)=\left\{A_{1} x \leqslant 1\right\} \\
& P_{2}=\operatorname{conv}\left(V_{2}\right)=\left\{A_{2} x \leqslant 1\right\}
\end{aligned}
$$

$$
P_{1} * P_{2}=\operatorname{conv}\left(\left\{V_{1}, \mathbf{0},-1\right\} \cup\left\{\mathbf{0}, V_{2}, 1\right\}\right)=\left\{2 A_{1} x+z \leqslant 1,2 A_{2} y-z \leqslant 1\right\}
$$

$$
\begin{aligned}
& S\left(P_{1} * P_{2}\right)=\left(\begin{array}{ll}
2 S\left(P_{1}\right) & \mathbf{0} \\
\mathbf{0} & 2 S\left(P_{2}\right)
\end{array}\right) \\
& \quad \Longrightarrow x c\left(P_{1} * P_{2}\right) \leqslant x c\left(P_{1}\right)+x c\left(P_{2}\right)
\end{aligned}
$$

Extension Complexity: Example

Free-join of polytopes
Theorem: $\mathrm{xc}\left(P_{1} * P_{2}\right)=\mathrm{xc}\left(P_{1}\right)+\mathrm{xc}\left(P_{2}\right)$

Extension Complexity: Example

Free-join of polytopes
Theorem: $\mathrm{xc}\left(P_{1} * P_{2}\right)=\mathrm{xc}\left(P_{1}\right)+\mathrm{xc}\left(P_{2}\right)$
Proof:

Extension Complexity: Example

Free-join of polytopes
Theorem: $\mathrm{xc}\left(P_{1} * P_{2}\right)=\mathrm{xc}\left(P_{1}\right)+\mathrm{xc}\left(P_{2}\right)$
Proof:

Extension Complexity: Example

Free-join of polytopes
Theorem: $\mathrm{xc}\left(P_{1} * P_{2}\right)=\mathrm{xc}\left(P_{1}\right)+\mathrm{xc}\left(P_{2}\right)$
Proof:

Extension Complexity: Example

Free-join of polytopes
Theorem: $\mathrm{xc}\left(P_{1} * P_{2}\right)=\mathrm{xc}\left(P_{1}\right)+\mathrm{xc}\left(P_{2}\right)$
Proof:

Extension Complexity: Example

Free-join of polytopes
Theorem: $\mathrm{xc}\left(P_{1} * P_{2}\right)=\mathrm{xc}\left(P_{1}\right)+\mathrm{xc}\left(P_{2}\right)$

Proof:

Extension Complexity: Example

Free-join of polytopes
Theorem: $\mathrm{xc}\left(P_{1} * P_{2}\right)=\mathrm{xc}\left(P_{1}\right)+\mathrm{xc}\left(P_{2}\right)$

Proof:

Extension Complexity: Example

Free-join of polytopes
Theorem: $\mathrm{xc}\left(P_{1} * P_{2}\right)=\mathrm{xc}\left(P_{1}\right)+\mathrm{xc}\left(P_{2}\right)$

Proof:

Extension Complexity: Example

Free-join of polytopes
Theorem: $\mathrm{xc}\left(P_{1} * P_{2}\right)=\mathrm{xc}\left(P_{1}\right)+\mathrm{xc}\left(P_{2}\right)$
Proof:

Extension Complexity: Example

Free-join of polytopes
Theorem: $\mathrm{xc}\left(P_{1} * P_{2}\right)=\mathrm{xc}\left(P_{1}\right)+\mathrm{xc}\left(P_{2}\right)$
Proof:

Extension Complexity: Example

Free-join of polytopes
Theorem: $\mathrm{xc}\left(P_{1} * P_{2}\right)=\mathrm{xc}\left(P_{1}\right)+\mathrm{xc}\left(P_{2}\right)$
Proof:

$\Longrightarrow \mathrm{xc}\left(P_{1} * P_{2}\right) \geqslant \mathrm{xc}\left(P_{1}\right)+\mathrm{xc}\left(P_{2}\right)$

Open Problem

Product of polytopes:
(Posed by François Glineur at Dagstuhl 2013)

Open Problem

Product of polytopes:
(Posed by François Glineur at Dagstuhl 2013)

Is it true that $\mathrm{xc}\left(P_{1} \times P_{2}\right)=\mathrm{xc}\left(P_{1}\right)+\mathrm{xc}\left(P_{2}\right)$?

Thank You!

