

An Improved Lower Bound on the Maximum Number of Noncrossing Perfect Matchings: $\Omega(3.053^n)/\text{poly}(n)$ Andrei Asinowski, Günter Rote

Freie Universität Berlin

General position: no three points on a line

Background

Given a set of n points in the plane in general position, how many

- triangulations
- non-crossing spanning trees
- non-crossing Hamiltonian cycles
- non-crossing matchings
- non-crossing perfect matchings THIS TALK
- . . .
- [your favorite straight-line geometric graph structure] can it have?

Previous Results on Perfect Matchings

[García, Noy, Tejel 2000]

[Sharir, Welzl 2006]

Upper bound: $O^*(10.06^n)$

 $O^*, \Theta^* = up$ to a polynomial factor

Any matching of P with k free points and any matching of Q with k free points can be extended to a unique perfect matching.

Simplified Analysis of the Double-Chain Freie Universität

Any matching of P with k free points and any matching of Q with k free points can be extended to a unique perfect matching.

Simplified Analysis of the Double-Chain Freie Universität

Any matching of P with k free points and any matching of Q with k free points can be extended to a unique perfect matching.

M = #(matchings in P); M_k matchings have k free nodes. T = #(perfect matchings in $P \cup Q$) = $\sum (M_k)^2$

k

Simplified Analysis

M = #(matchings in P); $M_k = Mp_k$ matchings have k free nodes. $\sum_k p_k = 1.$

$$T = \sum_{k} (M_k)^2 = M^2 \sum_{k} p_k^2$$
$$\frac{1}{\sqrt{\sum_{k} p_k^2}} = M^2 \sum_{k} p_k^2$$

 $\overline{n} \ge \sum_{k=1} p_k \ge 1$

$$M = \mathsf{Motzkin} \ \mathsf{numbers} = \Theta(3^{n/2}n^{-3/2}) \implies T = \Theta^*(3^n)$$

It suffices to count (not necessarily perfect) matchings of P!

Freie Universität

🛿 Berlin

The Double-Zigzag Chain

The Double-Zigzag Chain

Not every matching of P works.

The free vertices must be visible from below: *down-free*

Counting Down-Free Matchings

 $a_n, b_n, c_n = \#$ of down-free matchings

Counting Down-Free Matchings

 $a_n, b_n, c_n = \#$ of down-free matchings

$$a_n = c_n + \sum_i b_i c_{n-1-i} + \cdots$$
$$b_n = \cdots$$

Analysis with Formal Power Series

$$A = A(x) = \sum_{n} a_n x^n$$
, etc.

$$A = C((1 - x) + x(1 + x)A + x(1 + x)^{2}B)$$

$$B = C(1 + xA + x(1 + x)B)$$

$$C = 1 + xA + x^{2}A^{2} + x(1 + x)C^{2}$$

Analysis with Formal Power Series

$$A = A(x) = \sum_{n} a_n x^n$$
, etc.

$$A = C((1 - x) + x(1 + x)A + x(1 + x)^{2}B)$$

$$B = C(1 + xA + x(1 + x)B)$$

$$C = 1 + xA + x^{2}A^{2} + x(1 + x)C^{2}$$

$$C = \frac{2(1+x+x^3) - \sqrt{2(1+x+x^3)\left(1-2x-8x^2-3x^3+(1+x)\sqrt{(1-x-3x^2)(1-9x-3x^2)}\right)}}{4x(1+x)(1+x+x^3)}$$
$$A = \frac{C(1-x+2x^2C+2x^3C)}{1-2xC-2x^2C}$$
$$B = \frac{C(1-2x^2C)}{1-2xC-2x^2C}$$

The Proof

$$C = \frac{2(1+x+x^3) - \sqrt{2(1+x+x^3)\left(1-2x-8x^2-3x^3+(1+x)\sqrt{(1-x-3x^2)(1-9x-3x^2)}\right)}}{4x(1+x)(1+x+x^3)}$$

smallest singularity: $1 - 9x - 3x^2 = 0$

$$x_0 = \frac{\sqrt{93}}{6} - \frac{3}{2}$$

$$1/\sqrt{x_0} = \sqrt{6/(\sqrt{93} - 9)} \approx 3.0532$$

#(perfect matchings in $P \cup Q$) = $\Theta^*(3.0532^n)$,

where $n = |P \cup Q|$.

Longer Arcs

Longer Arcs

Longer Arcs

Omit the corner points \rightarrow easier recursion

Dynamic Programming Recursion

Freie Universität

Berlin

Dynamic Programming Recursion

 $X_B^n = \#$ possibilities after n arcs with B crossing stola. ... try all choices of k and C: $0 \le k \le r$, $0 \le C \le B$ A = C + (k - (B - C))

Example: r = 5

matrix for transforming $(X_0^{n-1}, X_1^{n-1}, X_2^{n-1}, ...)$ into $(X_0^n, X_1^n, X_2^n, ...)$

/10	30	30	20	5	1	0	0	0	0	0)
30	40	50	35	21	5	1	0	0	0	0	•••
30	50	45	51	35	21	5	1	0	0	0	• • •
20	35	51	45	51	35	21	5	1	0	0	• • •
5	21	35	51	45	51	35	21	5	1	0	• • •
1	5	21	35	51	45	51	35	21	5	1	• • •
0	1	5	21	35	51	45	51	35	21	5	• • •
0	0	1	5	21	35	51	45	51	35	21	•••
0	0	0	1	5	21	35	51	45	51	35	• • •
0	0	0	0	1	5	21	35	51	45	51	• • •
0	0	0	0	0	1	5	21	35	51	45	• • •
	:	:	÷	÷	÷	÷	÷	÷	÷	÷	•)

row sum = 271 \implies vectors grow like $271^n / \text{poly}(n)$

The Record: 3.084^n

r	exponent
1	3.0
2	3.0
3	3.03658897188
4	3.05407580998
5	$3.06615325393 = \sqrt[5]{271}$
6	3.07353334449
7	3.07825838546
8	3.08116216736
9	3.08286438954
10	3.08373678000
11	$3.08403284879 = \sqrt[11]{240054}$
12	3.08392263613
13	3.08352460563
14	3.08292219318

With Corners (Numerical Results)

more complicated recursion: 8 cases

r = 8: 3.0924

P	∛quotient
:	
7921	3.0924200
7929	3.0924206
7937	3.0924211
7945	3.0924217
7953	3.0924223
7961	3.0924229

Freie Universität

🖗 Berlin