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Background

Given a set of n points in the plane in general position,
how many

• triangulations
• non-crossing spanning trees
• non-crossing Hamiltonian cycles
• non-crossing matchings
• non-crossing perfect matchings ← THIS TALK
• . . .
• [your favorite straight-line geometric graph structure]

can it have?
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Previous Results on Perfect Matchings

convex position

smallest possible number of
perfect matchings: Θ∗(2n)

P

Q

double-chain

previous record: Θ∗(3n)

[Garćıa, Noy, Tejel 2000]

Upper bound: O∗(10.06n) [Sharir, Welzl 2006]

O∗,Θ∗ = up to a polynomial factor
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Simplified Analysis of the Double-Chain

P

Q

Any matching of P with k free points and any matching of Q
with k free points can be extended to a unique perfect
matching.
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Simplified Analysis of the Double-Chain

P

Q

Any matching of P with k free points and any matching of Q
with k free points can be extended to a unique perfect
matching.

M = #(matchings in P ); Mk matchings have k free nodes.

T = #(perfect matchings in P ∪Q) =
∑
k

(Mk)2
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Simplified Analysis

M = #(matchings in P );
Mk = Mpk matchings have k free nodes.

∑
k pk = 1.

T =
∑
k

(Mk)2 = M2
∑
k

p2k

1

n
≤

n∑
k=1

p2k ≤ 1

M = Motzkin numbers = Θ(3n/2n−3/2) =⇒ T = Θ∗(3n)

It suffices to count (not necessarily perfect) matchings of P !
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The Double-Zigzag Chain

P

Q
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The Double-Zigzag Chain

P

Q

Not every matching of P works.
The free vertices must be visible from below: down-free

?
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Counting Down-Free Matchings

an

cn

bn

an, bn, cn = # of down-free matchings
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Counting Down-Free Matchings

an

cn

bn

an, bn, cn = # of down-free matchings

an = cn +
∑
i

bicn−1−i + · · ·

bn = · · ·
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Analysis with Formal Power Series

A = A(x) =
∑

n anx
n, etc.

A = C((1− x) + x(1 + x)A + x(1 + x)2B)

B = C(1 + xA + x(1 + x)B)

C = 1 + xA + x2A2 + x(1 + x)C2
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Analysis with Formal Power Series

A = A(x) =
∑

n anx
n, etc.

A = C((1− x) + x(1 + x)A + x(1 + x)2B)

B = C(1 + xA + x(1 + x)B)

C = 1 + xA + x2A2 + x(1 + x)C2

C =

2(1 + x + x3)−
√

2(1 + x + x3)
(

1− 2x− 8x2 − 3x3 + (1 + x)
√

(1− x− 3x2)(1− 9x− 3x2)
)

4x(1 + x)(1 + x + x3)

A =
C(1− x + 2x2C + 2x3C)

1− 2xC − 2x2C

B =
C(1− 2x2C)

1− 2xC − 2x2C
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The Proof

smallest singularity: 1− 9x− 3x2 = 0

C =

2(1 + x + x3)−
√

2(1 + x + x3)
(

1− 2x− 8x2 − 3x3 + (1 + x)
√

(1− x− 3x2)(1− 9x− 3x2)
)

4x(1 + x)(1 + x + x3)

x0 =

√
93

6
− 3

2

1/
√
x0 =

√
6/(
√

93− 9) ≈ 3.0532

#(perfect matchings in P ∪Q) = Θ∗(3.0532n),

where n = |P ∪Q|.



Günter Rote, Freie Universität Berlin Many Plane Matchings 2nd Elbe-Sandstones Workshop on Geometry, August 4–8, 2014, Rynartice

Longer Arcs

r = 4

|P | = nr

1

2
3

n
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r = 4
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1

2
3

n
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Longer Arcs

r = 4

|P | = nr

1

2
3

n

Omit the corner points → easier recursion
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Dynamic Programming Recursion

stolon = edge to another arc

internal, down-free matching on remaining points

k stola:

(
r

k

)(
r − k

b(r − k)/2c

)
possibilities

down-free matching on r − k points
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Dynamic Programming Recursion

B stolaA stola

Xn−1
A Xn

B

k stola

C

Xn
B = # possibilities after n arcs with B crossing stola.

. . . try all choices of k and C: 0 ≤ k ≤ r, 0 ≤ C ≤ B

A = C + (k − (B − C))
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Example: r = 5



10 30 30 20 5 1 0 0 0 0 0 · · ·
30 40 50 35 21 5 1 0 0 0 0 · · ·
30 50 45 51 35 21 5 1 0 0 0 · · ·
20 35 51 45 51 35 21 5 1 0 0 · · ·
5 21 35 51 45 51 35 21 5 1 0 · · ·
1 5 21 35 51 45 51 35 21 5 1 · · ·
0 1 5 21 35 51 45 51 35 21 5 · · ·
0 0 1 5 21 35 51 45 51 35 21 · · ·
0 0 0 1 5 21 35 51 45 51 35 · · ·
0 0 0 0 1 5 21 35 51 45 51 · · ·
0 0 0 0 0 1 5 21 35 51 45 · · ·
...

...
...

...
...

...
...

...
...

...
...

. . .


row sum = 271 =⇒ vectors grow like 271n/poly(n)

matrix for transforming (Xn−1
0 , Xn−1

1 , Xn−1
2 , . . .) into

(Xn
0 , X

n
1 , X

n
2 , . . .)
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The Record: 3.084n

r exponent
1 3.0
2 3.0
3 3.03658897188
4 3.05407580998

5 3.06615325393 = 5
√

271
6 3.07353334449
7 3.07825838546
8 3.08116216736
9 3.08286438954

10 3.08373678000

11 3.08403284879 = 11
√

240054
12 3.08392263613
13 3.08352460563
14 3.08292219318
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With Corners (Numerical Results)

r = 5

|P | = nr + 1

1

2
3

n

r = 8: 3.0924

more complicated recursion:
8 cases |P | 8

√
quotient

...
...

7921 3.0924200
7929 3.0924206
7937 3.0924211
7945 3.0924217
7953 3.0924223
7961 3.0924229
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