Embeddability of collapsible complexes

Bruno Benedetti

joint work with Karim A. Adiprasito (KAA), Frank H. Lutz (FHL)
Rynartice, August 7, 2014

Table of contents

(1) Notation
(2) Extending the 'existence of leaves'
(3) Extending planarity
(4) Conclusion and consequences

Conventions

Conventions

- A (geometric) simplicial complex is a finite, nonempty collection of simplices in some \mathbb{R}^{k}, such that any two of them intersect at a common face (possibly the empty face).

Conventions

- A (geometric) simplicial complex is a finite, nonempty collection of simplices in some \mathbb{R}^{k}, such that any two of them intersect at a common face (possibly the empty face). The dimension of a complex is the maximal dimension of a face in it.

Conventions

- A (geometric) simplicial complex is a finite, nonempty collection of simplices in some \mathbb{R}^{k}, such that any two of them intersect at a common face (possibly the empty face). The dimension of a complex is the maximal dimension of a face in it. (Note: d, k exchanged wrt Uli's talk.)
- An abstract simplicial complex embeds [resp. PL embeds] in \mathbb{R}^{k} if it [resp. some subdivision of it] can be geometrically realized in \mathbb{R}^{k}. (Cf. Xavier's talk.)

Conventions

- A (geometric) simplicial complex is a finite, nonempty collection of simplices in some \mathbb{R}^{k}, such that any two of them intersect at a common face (possibly the empty face). The dimension of a complex is the maximal dimension of a face in it. (Note: d, k exchanged wrt Uli's talk.)
- An abstract simplicial complex embeds [resp. PL embeds] in \mathbb{R}^{k} if it [resp. some subdivision of it] can be geometrically realized in \mathbb{R}^{k}. (Cf. Xavier's talk.)
- A graph is a 1-dimensional complex. A tree is a connected graph without cycles.

Conventions

- A (geometric) simplicial complex is a finite, nonempty collection of simplices in some \mathbb{R}^{k}, such that any two of them intersect at a common face (possibly the empty face). The dimension of a complex is the maximal dimension of a face in it. (Note: d, k exchanged wrt Uli's talk.)
- An abstract simplicial complex embeds [resp. PL embeds] in \mathbb{R}^{k} if it [resp. some subdivision of it] can be geometrically realized in \mathbb{R}^{k}. (Cf. Xavier's talk.)
- A graph is a 1-dimensional complex. A tree is a connected graph without cycles.
- A leaf in a graph is a vertex belonging to only one edge.

Conventions

- A (geometric) simplicial complex is a finite, nonempty collection of simplices in some \mathbb{R}^{k}, such that any two of them intersect at a common face (possibly the empty face). The dimension of a complex is the maximal dimension of a face in it. (Note: d, k exchanged wrt Uli's talk.)
- An abstract simplicial complex embeds [resp. PL embeds] in \mathbb{R}^{k} if it [resp. some subdivision of it] can be geometrically realized in \mathbb{R}^{k}. (Cf. Xavier's talk.)
- A graph is a 1-dimensional complex. A tree is a connected graph without cycles.
- A leaf in a graph is a vertex belonging to only one edge. More generally, a free face in a simplicial complex is a face belonging to only one other face.

Two folklore properties of trees

Two folklore properties of trees

Green Fact.

Every tree has at least 2 leaves.

Two folklore properties of trees

Green Fact.

Every tree has at least 2 leaves.

Red Fact.

Every tree is planar (=can be drawn in \mathbb{R}^{2}).

Two folklore properties of trees

Green Fact.

Every tree has at least 2 leaves.

Red Fact.

Every tree is planar (=can be drawn in \mathbb{R}^{2}).

This talk is about...

Two folklore properties of trees

Green Fact.

Every tree has at least 2 leaves.

Red Fact.

Every tree is planar (=can be drawn in \mathbb{R}^{2}).

This talk is about... extending these properties to complexes of dimension >1.

Two folklore properties of trees

Green Fact.

Every tree has at least 2 leaves.

Red Fact.

Every tree is planar (=can be drawn in \mathbb{R}^{2}).

This talk is about... extending these properties to complexes of dimension >1.

References: arXiv:1404.4239, arXiv:1403.5217

Proof of green fact

Green Fact.

Every tree has at least 2 leaves.

Proof of green fact

Green Fact.

Every tree has at least 2 leaves.

- Proof there's at least 1: Start at any vertex, move to a neighbor, and if this has degree ≥ 2 apply Frost's method (1920):

Proof of green fact

Green Fact.

Every tree has at least 2 leaves.

- Proof there's at least 1: Start at any vertex, move to a neighbor, and if this has degree ≥ 2 apply Frost's method (1920):
«Two roads diverged in a wood, and I I took the one less traveled by. »

Proof of green fact

Green Fact.

Every tree has at least 2 leaves.

- Proof there's at least 1: Start at any vertex, move to a neighbor, and if this has degree ≥ 2 apply Frost's method (1920):
«Two roads diverged in a wood, and II took the one less traveled by. »
(This yields an infinite path.) \square

Proof of green fact

Green Fact.

Every tree has at least 2 leaves.

- Proof there's at least 1: Start at any vertex, move to a neighbor, and if this has degree ≥ 2 apply Frost's method (1920):
«Two roads diverged in a wood, and I I took the one less traveled by. »
(This yields an infinite path.) \square
- Proof that there's 2: By induction on no. of edges.

Proof of green fact

Green Fact.

Every tree has at least 2 leaves.

- Proof there's at least 1: Start at any vertex, move to a neighbor, and if this has degree ≥ 2 apply Frost's method (1920):
«Two roads diverged in a wood, and I I took the one less traveled by. »
(This yields an infinite path.) \square
- Proof that there's 2: By induction on no. of edges. Removing a leaf from a tree, yields a tree with one edge less!

Proof of green fact

Green Fact.

Every tree has at least 2 leaves.

- Proof there's at least 1: Start at any vertex, move to a neighbor, and if this has degree ≥ 2 apply Frost's method (1920):
«Two roads diverged in a wood, and I I took the one less traveled by. »
(This yields an infinite path.) \square
- Proof that there's 2: By induction on no. of edges. Removing a leaf from a tree, yields a tree with one edge less! (Reattaching the leaf may kill another leaf or not, so the total number of leaves is either unchanged or +1 .)

Four properties that, when applied to graphs, mean 'tree'

(1) Acyclic: A complex C with $\tilde{H}_{i}(C)=0$ for all i.

Four properties that, when applied to graphs, mean 'tree'

(1) Acyclic: A complex C with $\tilde{H}_{i}(C)=0$ for all i.
(2) Contractible: A complex with $\pi_{i}(C)=0$ for all i.

Four properties that, when applied to graphs, mean 'tree'

(1) Acyclic: A complex C with $\tilde{H}_{i}(C)=0$ for all i.
(2) Contractible: A complex with $\pi_{i}(C)=0$ for all i.
(3) Collapsible: A complex that can be reduced to a vertex by recursively deleting some free face.

Four properties that, when applied to graphs, mean 'tree'

(1) Acyclic: A complex C with $\tilde{H}_{i}(C)=0$ for all i.
(2) Contractible: A complex with $\pi_{i}(C)=0$ for all i.
(3) Collapsible: A complex that can be reduced to a vertex by recursively deleting some free face.
(9) Nonevasive: A complex of a single vertex, or a complex of dimension ≥ 1 that can be reduced to a vertex by recursively deleting some vertex whose link is nonevasive.

Four properties that, when applied to graphs, mean 'tree'

(1) Acyclic: A complex C with $\tilde{H}_{i}(C)=0$ for all i.
(2) Contractible: A complex with $\pi_{i}(C)=0$ for all i.
(3) Collapsible: A complex that can be reduced to a vertex by recursively deleting some free face.
(9) Nonevasive: A complex of a single vertex, or a complex of dimension ≥ 1 that can be reduced to a vertex by recursively deleting some vertex whose link is nonevasive.

Easy exercise to show $(4) \Rightarrow(3) \Rightarrow(2) \Rightarrow(1)$.

Four properties that, when applied to graphs, mean 'tree'

(1) Acyclic: A complex C with $\tilde{H}_{i}(C)=0$ for all i.
(2) Contractible: A complex with $\pi_{i}(C)=0$ for all i.
(3) Collapsible: A complex that can be reduced to a vertex by recursively deleting some free face.
(9) Nonevasive: A complex of a single vertex, or a complex of dimension ≥ 1 that can be reduced to a vertex by recursively deleting some vertex whose link is nonevasive.

Easy exercise to show $(4) \Rightarrow(3) \Rightarrow(2) \Rightarrow(1)$.
For 1-complexes they're all \Leftrightarrow :

Four properties that, when applied to graphs, mean 'tree'

(1) Acyclic: A complex C with $\tilde{H}_{i}(C)=0$ for all i.
(2) Contractible: A complex with $\pi_{i}(C)=0$ for all i.
(3) Collapsible: A complex that can be reduced to a vertex by recursively deleting some free face.
(9) Nonevasive: A complex of a single vertex, or a complex of dimension ≥ 1 that can be reduced to a vertex by recursively deleting some vertex whose link is nonevasive.

Easy exercise to show $(4) \Rightarrow(3) \Rightarrow(2) \Rightarrow(1)$.
For 1-complexes they're all \Leftrightarrow : In acyclic connected 1-complexes (aka trees) you can recursively delete one leaf. So (1) \Rightarrow (4).

Four properties that, when applied to graphs, mean 'tree'

(1) Acyclic: A complex C with $\tilde{H}_{i}(C)=0$ for all i.
(2) Contractible: A complex with $\pi_{i}(C)=0$ for all i.
(3) Collapsible: A complex that can be reduced to a vertex by recursively deleting some free face.
(9) Nonevasive: A complex of a single vertex, or a complex of dimension ≥ 1 that can be reduced to a vertex by recursively deleting some vertex whose link is nonevasive.

Easy exercise to show $(4) \Rightarrow(3) \Rightarrow(2) \Rightarrow(1)$.
For 1-complexes they're all \Leftrightarrow : In acyclic connected 1-complexes (aka trees) you can recursively delete one leaf. So (1) \Rightarrow (4).
For 2-complexes, however, all implications are strict.

Attempted generalization.

Every $\left\{\begin{array}{c}\text { acyclic? } \\ \text { contractible? } \\ \text { collapsible? } \\ \text { nonevasive? }\end{array}\right.$ complex has at least 2 free faces.

Attempted generalization.

Every $\left\{\begin{array}{c}\text { acyclic? } \\ \text { contractible? } \\ \text { collapsible? } \\ \text { nonevasive? }\end{array}\right.$ complex has at least 2 free faces.

- The Dunce Hat (Zeeman, 1960) is an acyclic, contractible 2-complex that has no free edge.

Attempted generalization.

Every $\left\{\begin{array}{c}\text { acyclic? } \\ \text { contractible? } \\ \text { collapsible? } \\ \text { nonevasive? }\end{array}\right.$ complex has at least 2 free faces.

- The Dunce Hat (Zeeman, 1960) is an acyclic, contractible 2-complex that has no free edge. (In particular it is not collapsible.)
- This can be extended to all dimensions. So for contractible and for acyclic d-complexes, the trivial bound 'there are at least 0 free faces' is best possible.

Attempted generalization.

Every $\left\{\begin{array}{c}\text { acyclic } \times \\ \text { contractible } \times \\ \text { collapsible? } \\ \text { nonevasive? }\end{array}\right.$ complex has at least 2 free faces.

Attempted generalization.

Every $\left\{\begin{array}{c}\text { acyclic } \times \\ \text { contractible } \times \\ \text { collapsible? } \\ \text { nonevasive? }\end{array}\right.$ complex has at least 2 free faces.

- Collapsible d-complexes have obviously at least 1 free face. (The sequence of free face removals must start somewhere.)

Attempted generalization.

Every $\left\{\begin{array}{c}\text { acyclic } \times \\ \text { contractible } \times \\ \text { collapsible? } \\ \text { nonevasive? }\end{array}\right.$ complex has at least 2 free faces.

- Collapsible d-complexes have obviously at least 1 free face. (The sequence of free face removals must start somewhere.)
- Can we get 'at least 2 ' using induction, like for trees?

Attempted generalization.

Every $\left\{\begin{array}{c}\text { acyclic } \times \\ \text { contractible } \times \\ \text { collapsible? } \\ \text { nonevasive? }\end{array}\right.$ complex has at least 2 free faces.

- Collapsible d-complexes have obviously at least 1 free face. (The sequence of free face removals must start somewhere.)
- Can we get 'at least 2 ' using induction, like for trees? NO!

Attempted generalization.

Every $\left\{\begin{array}{c}\text { acyclic } \times \\ \text { contractible } \times \\ \text { collapsible? } \\ \text { nonevasive? }\end{array}\right.$ complex has at least 2 free faces.

- Collapsible d-complexes have obviously at least 1 free face. (The sequence of free face removals must start somewhere.)
- Can we get 'at least 2 ' using induction, like for trees? NO!

Proposition ([KAA-BB-FHL] for $d \geq 3$, [Björner] for $d=2$)

For every $d \geq 2$, one can construct a collapsible simplicial d-complex with $2^{d}+d+1$ vertices that has only 1 free face.

Extension of 'every tree has 2 leaves'.

Extension of 'every tree has 2 leaves'.

Theorem [KAA-BB-FHL]

Every nonevasive complex has at least 2 free faces, and in each dimension, the bound is sharp.

Extension of 'every tree has 2 leaves'.

Theorem [KAA-BB-FHL]

Every nonevasive complex has at least 2 free faces, and in each dimension, the bound is sharp.

Proof: By induction on the dimension d,

Extension of 'every tree has 2 leaves'.

Theorem [KAA-BB-FHL]

Every nonevasive complex has at least 2 free faces, and in each dimension, the bound is sharp.

Proof: By induction on the dimension d,

- (basis) the statement is true for $d=1$ (trees have 2 leaves);

Extension of 'every tree has 2 leaves'.

Theorem [KAA-BB-FHL]

Every nonevasive complex has at least 2 free faces, and in each dimension, the bound is sharp.

Proof: By induction on the dimension d,

- (basis) the statement is true for $d=1$ (trees have 2 leaves);
- (step) if F and G are two free faces in $\operatorname{link}(v, C)$, which has dimension $d-1$, then $v * F$ and $v * G$ are free faces in C.
The nontrivial part is showing sharpness (i.e. constructing a nonevasive d-complex with exactly 2 free faces for each d).

Next, the planarity issue. Recall every tree can be drawn in \mathbb{R}^{2}. (Can be proven by induction, drawing each new leaf short enough.)

Next, the planarity issue. Recall every tree can be drawn in \mathbb{R}^{2}. (Can be proven by induction, drawing each new leaf short enough.)

Attempted generalization.

Every $\left\{\begin{array}{c}\text { acyclic? } \\ \text { contractible? } \\ \text { collapsible? } \\ \text { nonevasive? }\end{array} \quad d\right.$-complex embeds in $\left\{\begin{array}{c}\mathbb{R}^{2 d} ? \\ \ldots ?\end{array}\right.$

Next, the planarity issue. Recall every tree can be drawn in \mathbb{R}^{2}. (Can be proven by induction, drawing each new leaf short enough.)

Attempted generalization.

Every $\left\{\begin{array}{c}\text { acyclic? } \\ \text { contractible? } \\ \text { collapsible? } \\ \text { nonevasive? }\end{array} \quad d\right.$-complex embeds in $\left\{\begin{array}{c}\mathbb{R}^{2 d} ? \\ \ldots ?\end{array}\right.$

Next, the planarity issue. Recall every tree can be drawn in \mathbb{R}^{2}. (Can be proven by induction, drawing each new leaf short enough.)

Attempted generalization.

Every $\left\{\begin{array}{c}\text { acyclic? } \\ \text { contractible? } \\ \text { collapsible? } \\ \text { nonevasive? }\end{array}\right.$ d-complex embeds in $\left\{\begin{array}{c}\mathbb{R}^{2 d} ? \\ \ldots ?\end{array}\right.$
The first thing to guess is the dimension $f(d)$ of the space where we want to embed C.

Next, the planarity issue. Recall every tree can be drawn in \mathbb{R}^{2}. (Can be proven by induction, drawing each new leaf short enough.)

Attempted generalization.

Every $\left\{\begin{array}{c}\text { acyclic? } \\ \text { contractible? } \\ \text { collapsible? } \\ \text { nonevasive? }\end{array}\right.$ d-complex embeds in $\left\{\begin{array}{c}\mathbb{R}^{2 d} ? \\ \ldots ?\end{array}\right.$
The first thing to guess is the dimension $f(d)$ of the space where we want to embed C. This is easy: will show that

Next, the planarity issue. Recall every tree can be drawn in \mathbb{R}^{2}. (Can be proven by induction, drawing each new leaf short enough.)

Attempted generalization.

Every $\left\{\begin{array}{c}\text { acyclic? } \\ \text { contractible? } \\ \text { collapsible? } \\ \text { nonevasive? }\end{array}\right.$ d-complex embeds in $\left\{\begin{array}{c}\mathbb{R}^{2 d} ? \\ \ldots ?\end{array}\right.$
The first thing to guess is the dimension $f(d)$ of the space where we want to embed C. This is easy: will show that

- choosing $f(d)=2 d-1$ or lower, we get a false statement,

Next, the planarity issue. Recall every tree can be drawn in \mathbb{R}^{2}. (Can be proven by induction, drawing each new leaf short enough.)

Attempted generalization.

Every $\left\{\begin{array}{c}\text { acyclic? } \\ \text { contractible? } \\ \text { collapsible? } \\ \text { nonevasive? }\end{array} \quad d\right.$-complex embeds in $\left\{\begin{array}{c}\mathbb{R}^{2 d} ? \\ \ldots ?\end{array}\right.$
The first thing to guess is the dimension $f(d)$ of the space where we want to embed C. This is easy: will show that

- choosing $f(d)=2 d-1$ or lower, we get a false statement,
- choosing $f(d)=2 d+1$ or higher, we get a statement trivially true for all d-complexes,

Next, the planarity issue. Recall every tree can be drawn in \mathbb{R}^{2}. (Can be proven by induction, drawing each new leaf short enough.)

Attempted generalization.

Every $\left\{\begin{array}{c}\text { acyclic? } \\ \text { contractible? } \\ \text { collapsible? } \\ \text { nonevasive? }\end{array} \quad d\right.$-complex embeds in $\left\{\begin{array}{c}\mathbb{R}^{2 d} ? \\ \ldots ?\end{array}\right.$
The first thing to guess is the dimension $f(d)$ of the space where we want to embed C. This is easy: will show that

- choosing $f(d)=2 d-1$ or lower, we get a false statement,
- choosing $f(d)=2 d+1$ or higher, we get a statement trivially true for all d-complexes,
- so the only reasonable guess is $f(d)=2 d$.

Why is embeddability in $R^{2 d-1}$ impossible?

- Cones are always collapsible.
- Cones are always collapsible. (Also: the barycentric subdivision of any collapsible complex, is nonevasive.)
- Some graphs, like the 1 -skeleton of the 4 -simplex, are not planar, and this property is maintained under subdivisions.
- Cones are always collapsible. (Also: the barycentric subdivision of any collapsible complex, is nonevasive.)
- Some graphs, like the 1 -skeleton of the 4 -simplex, are not planar, and this property is maintained under subdivisions. It follows that the cone over a non-planar graph is a collapsible 2-complex that does not embed in \mathbb{R}^{3}.
- Cones are always collapsible. (Also: the barycentric subdivision of any collapsible complex, is nonevasive.)
- Some graphs, like the 1 -skeleton of the 4 -simplex, are not planar, and this property is maintained under subdivisions. It follows that the cone over a non-planar graph is a collapsible 2-complex that does not embed in \mathbb{R}^{3}.

Theorem ([Van Kampen 1930], [Flores 1933])

Any subdivision of the $(d-1)$-skeleton of the $(2 d)$-simplex does not embed in $\mathbb{R}^{2 d-2}$.

Why is embeddability in $R^{2 d-1}$ impossible?

- Cones are always collapsible. (Also: the barycentric subdivision of any collapsible complex, is nonevasive.)
- Some graphs, like the 1 -skeleton of the 4 -simplex, are not planar, and this property is maintained under subdivisions. It follows that the cone over a non-planar graph is a collapsible 2-complex that does not embed in \mathbb{R}^{3}.

Theorem ([Van Kampen 1930], [Flores 1933])

Any subdivision of the $(d-1)$-skeleton of the $(2 d)$-simplex does not embed in $\mathbb{R}^{2 d-2}$.

- Coning over it, we get some collapsible d-complex that does not embed in $\mathbb{R}^{2 d-1}$ (not even after subdivision).

Why is embeddability in $R^{2 d-1}$ impossible?

- Cones are always collapsible. (Also: the barycentric subdivision of any collapsible complex, is nonevasive.)
- Some graphs, like the 1 -skeleton of the 4 -simplex, are not planar, and this property is maintained under subdivisions. It follows that the cone over a non-planar graph is a collapsible 2-complex that does not embed in \mathbb{R}^{3}.

Theorem ([Van Kampen 1930], [Flores 1933])

Any subdivision of the $(d-1)$-skeleton of the $(2 d)$-simplex does not embed in $\mathbb{R}^{2 d-2}$.

- Coning over it, we get some collapsible d-complex that does not embed in $\mathbb{R}^{2 d-1}$ (not even after subdivision).
So subdviding it barycentrically, we even get a nonevasive d-complex that does not embed in $\mathbb{R}^{2 d-1}$.

Why is embeddability in $R^{2 d+1}$ trivial?

Well known fact

Any graph (contractible or not!) embeds in \mathbb{R}^{3}, just by placing vertices in generic points.

- In fact, any four generic points of \mathbb{R}^{3}, span a tetrahedron and are not coplanar.

Well known fact

Any graph (contractible or not!) embeds in \mathbb{R}^{3}, just by placing vertices in generic points.

- In fact, any four generic points of \mathbb{R}^{3}, span a tetrahedron and are not coplanar. So if a, b, c, d are generic points of \mathbb{R}^{3}, the segments $[a b]$ and $[c d]$ are skew to one another and disjoint.

Well known fact

Any graph (contractible or not!) embeds in \mathbb{R}^{3}, just by placing vertices in generic points.

- In fact, any four generic points of \mathbb{R}^{3}, span a tetrahedron and are not coplanar. So if a, b, c, d are generic points of \mathbb{R}^{3}, the segments $[a b]$ and $[c d]$ are skew to one another and disjoint.
With the same proof:

Well known fact

Any d-complex (contractible or not!) embeds in $\mathbb{R}^{2 d+1}$, just by placing vertices in generic points.

- If $a_{0}, \ldots, a_{d}, b_{0}, \ldots, b_{d}$ are $2 d+2$ generic points of $\mathbb{R}^{2 d+1}$, the two d-dimensional simplices spanned by $\left[a_{0}, \ldots, a_{d}\right]$ and $\left[b_{0}, \ldots, b_{d}\right]$ are skew to one another and disjoint.

Attempted generalization．

Every $\left\{\begin{array}{c}\text { acyclic？} \\ \text { contractible？} \\ \text { collapsible？} \\ \text { nonevasive？}\end{array} \quad d\right.$－complex embeds in $\mathbb{R}^{2 d}$ ．

Attempted generalization.

Every $\left\{\begin{array}{c}\text { acyclic? } \\ \text { contractible? } \\ \text { collapsible? } \\ \text { nonevasive? }\end{array} \quad d\right.$-complex embeds in $\mathbb{R}^{2 d}$.

- This is open for contractible/acyclic 2-complexes (ongoing work with KAA). Probably false, since a much weaker conjecture, namely, that every contractible 2-complex PL embeds in \mathbb{R}^{4}, is a deep open problem, connected to the 4-dimensional smooth Poincaré conjecture.
- However...

Theorem［Adiprasito－BB］．

Every collapsible d－complex embeds in $\mathbb{R}^{2 d}$ ．

Theorem [Adiprasito-BB].

Every collapsible d-complex embeds in $\mathbb{R}^{2 d}$.
Proof. First note that the obvious proof, by induction, does not work (if C minus a free face is embedded, reattaching the free face might cause self-intersections!, and it's not that you can shorten it).

Theorem [Adiprasito-BB].

Every collapsible d-complex embeds in $\mathbb{R}^{2 d}$.
Proof. First note that the obvious proof, by induction, does not work (if C minus a free face is embedded, reattaching the free face might cause self-intersections!, and it's not that you can shorten it). Right idea: Fix a collapsing sequence and view it backwards. (Sometimes called 'anti-collapsing sequence').

Theorem [Adiprasito-BB].

Every collapsible d-complex embeds in $\mathbb{R}^{2 d}$.
Proof. First note that the obvious proof, by induction, does not work (if C minus a free face is embedded, reattaching the free face might cause self-intersections!, and it's not that you can shorten it). Right idea: Fix a collapsing sequence and view it backwards. (Sometimes called 'anti-collapsing sequence'). If v is a vertex that appears anew in an anti-collapsing step, then we choose its coordinates so that, for all vertices w preceding v in the anti-collapsing sequence, we have

$$
v_{1}-w_{1} \gg\left|v_{i}-w_{i}\right|>0 \text { for all } i \neq 1
$$

Theorem [Adiprasito-BB].

Every collapsible d-complex embeds in $\mathbb{R}^{2 d}$.
Proof. First note that the obvious proof, by induction, does not work (if C minus a free face is embedded, reattaching the free face might cause self-intersections!, and it's not that you can shorten it). Right idea: Fix a collapsing sequence and view it backwards. (Sometimes called 'anti-collapsing sequence'). If v is a vertex that appears anew in an anti-collapsing step, then we choose its coordinates so that, for all vertices w preceding v in the anti-collapsing sequence, we have

$$
v_{1}-w_{1} \gg\left|v_{i}-w_{i}\right|>0 \quad \text { for all } i \neq 1
$$

With this 'cleverly generic' choice of coordinates, one can verify that all faces are embedded. \square

Summing up

Bruno Benedetti

Embeddability of collapsible complexes

Summing up

Green Fact. [KAA-BB-FHL]

Every non-evasive d-complex has at least 2 free faces, and for some complexes this bound is sharp.

Summing up

Green Fact. [KAA-BB-FHL]

Every non-evasive d-complex has at least 2 free faces, and for some complexes this bound is sharp.

Red Fact. [KAA-BB]

Every collapsible d-complex embeds in $\mathbb{R}^{2 d}$.

Summing up

Green Fact. [KAA-BB-FHL]

Every non-evasive d-complex has at least 2 free faces, and for some complexes this bound is sharp.

Red Fact. [KAA-BB]

Every collapsible d-complex embeds in $\mathbb{R}^{2 d}$.

From these two relatively easy results, one can get more interesting things. For example:

Consequence 1. Optimal Morse vectorS [KAA-BB-FHL]

While smooth manifolds have a (unique!) minimal Morse vector,

Consequence 1. Optimal Morse vectorS [KAA-BB-FHL]

While smooth manifolds have a (unique!) minimal Morse vector, simplicial complexes may have more than one minimal discrete Morse vector.

Consequence 1. Optimal Morse vectorS [KAA-BB-FHL]

While smooth manifolds have a (unique!) minimal Morse vector, simplicial complexes may have more than one minimal discrete Morse vector.

Proof idea:

Consequence 1. Optimal Morse vectorS [KAA-BB-FHL]

While smooth manifolds have a (unique!) minimal Morse vector, simplicial complexes may have more than one minimal discrete Morse vector.

Proof idea: Let C_{d+1} denotes the collapsible $(d+1)$-complex with only one free face, σ_{d} (of dim. d).

Consequence 1. Optimal Morse vectorS [KAA-BB-FHL]

While smooth manifolds have a (unique!) minimal Morse vector, simplicial complexes may have more than one minimal discrete Morse vector.

Proof idea: Let C_{d+1} denotes the collapsible $(d+1)$-complex with only one free face, σ_{d} (of dim. d). We glue C_{d+1} to C_{d} by identifying $\sigma_{d} \in C_{d+1}$ with the d-face of C_{d} containing σ_{d-1}.

Consequence 1. Optimal Morse vectorS [KAA-BB-FHL]

While smooth manifolds have a (unique!) minimal Morse vector, simplicial complexes may have more than one minimal discrete Morse vector.

Proof idea: Let C_{d+1} denotes the collapsible $(d+1)$-complex with only one free face, σ_{d} (of dim. d). We glue C_{d+1} to C_{d} by identifying $\sigma_{d} \in C_{d+1}$ with the d-face of C_{d} containing σ_{d-1}. The result admits as discrete Morse vectors

$$
(1,0, \ldots, 0,1,1) \quad \text { and } \quad(1,0, \ldots, 0,1,1)
$$

Consequence 1. Optimal Morse vectorS [KAA-BB-FHL]

While smooth manifolds have a (unique!) minimal Morse vector, simplicial complexes may have more than one minimal discrete Morse vector.

Proof idea: Let C_{d+1} denotes the collapsible $(d+1)$-complex with only one free face, σ_{d} (of dim. d). We glue C_{d+1} to C_{d} by identifying $\sigma_{d} \in C_{d+1}$ with the d-face of C_{d} containing σ_{d-1}. The result admits as discrete Morse vectors

$$
(1,0, \ldots, 0,1,1) \quad \text { and } \quad(1,0, \ldots, 0,1,1)
$$

However, it admits also a smaller vector, namely $(1,0, \ldots, 0,0,0)$. To prevent this, we do further boundary identifications and gluing tricks.

Consequence 1. Optimal Morse vectorS [KAA-BB-FHL]

While smooth manifolds have a (unique!) minimal Morse vector, simplicial complexes may have more than one minimal discrete Morse vector.

Proof idea: Let C_{d+1} denotes the collapsible $(d+1)$-complex with only one free face, σ_{d} (of dim. d). We glue C_{d+1} to C_{d} by identifying $\sigma_{d} \in C_{d+1}$ with the d-face of C_{d} containing σ_{d-1}. The result admits as discrete Morse vectors

$$
(1,0, \ldots, 0,1,1) \quad \text { and } \quad(1,0, \ldots, 0,1,1)
$$

However, it admits also a smaller vector, namely $(1,0, \ldots, 0,0,0)$. To prevent this, we do further boundary identifications and gluing tricks.
For $C_{2} \# C_{3}$, explicitly, we get a 3 -complex with f-vector $(106,596,1064,573)$ that has both $(1,0,1,1)$ and $(1,1,1,0)$ as minimal discrete Morse vectors.

Consequence 2. PL embeddings of CAT(0) 2-complexes [KAA-BB]

The barycentric subdivision of every d-dimensional CAT (0) cube complex, embeds in $\mathbb{R}^{2 d}$.

Consequence 2. PL embeddings of CAT(0) 2-complexes [KAA-BB]

The barycentric subdivision of every d-dimensional CAT(0) cube complex, embeds in $\mathbb{R}^{2 d}$.

Proof: straightforward from previously proven fact [Adiprasito-B, 2011] that every CAT(0) cube complex is collapsible.

Consequence 2. PL embeddings of CAT(0) 2-complexes [KAA-BB]

The barycentric subdivision of every d-dimensional CAT(0) cube complex, embeds in $\mathbb{R}^{2 d}$.

Proof: straightforward from previously proven fact [Adiprasito-B, 2011] that every CAT(0) cube complex is collapsible.

For Tverberg fans (or Helly fans, in case $r=2$):

Consequence 2. PL embeddings of CAT(0) 2-complexes [KAA-BB]

The barycentric subdivision of every d-dimensional CAT (0) cube complex, embeds in $\mathbb{R}^{2 d}$.

Proof: straightforward from previously proven fact [Adiprasito-B, 2011] that every CAT(0) cube complex is collapsible.

For Tverberg fans (or Helly fans, in case $r=2$):
Consequence 3. A 'weaker Tverberg', but in a complex [KAA-BB]
Let X be a d-dimensional simplicial complex, with a metric of curvature ≤ 0. Any set of $n \geq(r-1)(2 d+1)+1$ points in X can be partitioned into r subsets whose convex hulls intersect.

