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 How many DD (Distinct Distances) are 
determined by pairs of points? 

4 2 



Extremal Problem 

 Erdős. What is the minimum number of 
DD that can be determined by a set of 𝑛 
points in the plane? 

 



A Word from Erdős 

 For the celebrations of his 80’th birthday, 
Erdős compiled a survey of his favorite 
contributions to mathematics, in which 
he wrote  

“My most striking contribution to 
geometry is, no doubt, my problem on 
the number of distinct distances.” 



Simple Upper Bounds 

 Evenly spaced on a line: 𝑛 − 1 DD. 

 

 Regular 𝑛-gon: 
𝑛

2
 DD. 



An Improved Upper Bound 

 Erdős ’46: A 𝑛 × 𝑛 integer lattice 

determines 𝑂
𝑛

log 𝑛
 DD. 

 Landau–Ramanujan: There are 

𝑂
𝑛

log 𝑛
 integers of size at most 𝑛 

that can be expressed          
as the sum of two             
squares. 

𝑥1 − 𝑥2
2 + 𝑦1 − 𝑦2

2 



Bound Authors + Year 

𝛀 𝑛1/2  Erdős `46  

𝛀 𝑛2/3  Moser `52  

𝛀 𝑛5/7  Chung `84  

𝛀 𝑛4/5/ log 𝑛   Chung, Szemerèdi, and 

Trotter `92  

𝛀 𝑛4/5  Szèkely `97  

𝛀 𝑛6/7  Solymosi and Tóth `01  

𝛀 𝑛0.8634  Tardos `01  

𝛀 𝑛0.8641  Katz and Tardos `04 

𝛀 𝑛/ log 𝑛  Guth and Katz `10 



Open Variant: Distinct distances in ℝ3 

 Upper bound: 𝑂 𝑛2/3 . 

◦ Obtained from 𝑛1/3 × 𝑛1/3 × 𝑛1/3 grid. 
 

 Lower bound: Ω∗ 𝑛3/5 . 

◦ Obtained by combining the results in 
Solymosi and Vu `08 and in Guth and Katz 
`10. 



Variant #2: Optimal Configurations 

 Problem. Characterize the sets of 𝑛 points 

that determine 𝑂 𝑛/ log 𝑛  DD.  
 

 Some known examples: 



Conjectures by Erdős 

 Conjecture. A configuration that 

determines 𝑂 𝑛/ log 𝑛  DD must have 

lattice structure. 

◦ Every such set can be covered by a relatively 

small number of lines. 

◦ For every such set there exists a line that 
contains Ω 𝑛  points of the set. 

◦ A line that contains Ω 𝑛𝜀  points of the set? 

◦ Szemerédi (1975?). There exists a line that 

contains Ω log 𝑛  points of the set. 



Rectangular Lattices 

 For every integer 𝑟 > 1, consider the lattice 
 

𝐿𝑟 = 𝑖, 𝑗 𝑟  𝑖, 𝑗 ∈ ℕ    1 ≤ 𝑖, 𝑗 ≤ 𝑛 . 
 

 The number of DD spanned by any 𝐿𝑟 is 

𝑂 𝑛/ log 𝑛 . 

 Relies on a generalization of the                    
Landau-Ramanujan result,                           
originally from Bernays’ 1912                            
Ph.D. dissertation, under the                           
supervision of Landau. 

 



What is Known 

 𝑃 – a set of 𝑛 points spanning 

𝑂 𝑛/ log 𝑛  DD. 

◦ Szemerédi (1975?). There exists a line that 

contains Ω log 𝑛  points of 𝑃 (can be 

improved to Ω log 𝑛  using modern tools). 

◦ Pach and de Zeeuw `14 and S’, Zahl, and de 
Zeeuw `14:  

 No line contains Ω 𝑛7/8  points of 𝑃. 

 No circle contains Ω 𝑛5/6  Points of 𝑃. 

 No other irreducible constant-degree polynomial 

curve contains Ω 𝑛3/4  points of 𝑃. 



New Properties 

 Theorem (Lund, S’, de Zeeuw). Given a 

set 𝑃 of 𝑛 points spanning 𝑂 𝑛/ log 𝑛  

DD. For any 𝑘 = 𝑂 𝑛1/2 , at least one of 

the following holds: 

◦ The exists a line or a circle containing Ω(𝑘) 
points of 𝑃. 

◦ There exist Ω
𝑛8/5−𝜀

𝑘4/3
log1/12 𝑛  lines that 

contain Ω log 𝑛  points of 𝑃. 

 



Many Collinear Triples 

 Sylvester. A set of 𝑛 points on a cubic 

curve that form a group yield about 
𝑛2
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collinear triples. 

 No line contains four                            
points of the set. 



Lines with 𝑘 points 

 Solymosi and Stojaković `13. For any 
integer 𝑘 > 3, there exists a set 𝑃 of 𝑛 

points in ℝ2 with Ω 𝑛2−𝑐/ 𝑙𝑜𝑔𝑛  lines 

that contain 𝑘 points of 𝑃 and no line that 
contains 𝑘 + 1 points of 𝑃. 

 What happens when 𝑘 depends on 𝑛? 



Our Hope 

 Conjecture. Let 𝑃 be a set of 𝑛 points in 

ℝ2. If there exist Ω 𝑛8/5−𝜀  lines that 

contain Ω log 𝑛  points of 𝑃, then there 

exists a constant-degree (cubic?) curve 

that contains 𝑛𝛽 points of 𝑃. 

 



Bisector Energy 

 𝑃 – a set of 𝑛 points in ℝ2.  

 For any 𝑎, 𝑏 ∈ 𝑃, we denote by 𝑩𝑎𝑏 the 
perpendicular bisector of 𝑎 and 𝑏. 

 The bisector energy of 𝑃 is the cardinality 
of the set 
𝑩 𝑃 = 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑃4 |  𝑩𝑎𝑏 = 𝑩𝑐𝑑 . 



Trivial Energy Bounds 

𝑩 𝑃 = 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑃4 |  𝑩𝑎𝑏 = 𝑩𝑐𝑑 . 
 

 What is a trivial upper bound on |𝑩 𝑃 | ? 

◦ For any choice of 𝑎, 𝑏, 𝑐, there is at most one 
valid choice for 𝑑. 

◦ Thus, 𝑩(𝑃) = 𝑂 𝑛3 . 



Trivial Energy Bounds 

𝑩(𝑃) = 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑃4 |  𝑩𝑎𝑏 = 𝑩𝑐𝑑 . 
 

 What is a trivial lower bound on |𝑩(𝑃)| ? 

◦ 𝑩 𝑃 = Ω 𝑛3 . 

 

 



Bisector Energy Bound 

 Theorem (Lund, S’, de Zeeuw). Let 𝑃 be a 
set of 𝑛 points in ℝ2, such that every line 
or circle contains 𝑂 𝑚  points of 𝑃. Then 

 

𝑩 𝑃 = 𝑂 𝑚2/5𝑛12/5+𝜀 +𝑚𝑛2 . 
 

 Conjecture. The correct bound is 
𝑩 𝑃 = 𝑂∗ 𝑚𝑛2 . 

◦ Our bound matches this when 

𝑚 = Ω 𝑛2/3+𝜀 . 

◦ Matching lower bound for any 𝑚. 



Bisector Energy: Lower Bound 

 Every line or circle contains 𝑂(𝑚) points 
of 𝑃. 

 We wish to prove 𝑩 𝑃 = Ω∗ 𝑚𝑛2 . 

 When 𝑚 = Ω 𝑛1/2 , we can take an 

𝑚 × 𝑛/𝑚  integer lattice.  



Bisector Energy: Lower Bound (2) 

 Every line or circle contains 𝑂 𝑚  points 
of 𝑃. 

 We wish to prove  

  𝑩 𝑃 = Ω 𝑚𝑛2 . 

 For any 𝑚: 

◦ 𝑚/2 ellipses, evenly spaced above                     
each other. 

◦ Every ellipse contains 2𝑛/𝑚 points,                  
with reflection symmetry around                    
its horizontal axis. 



Distinct Bisectors 

 𝐷𝐵 𝑃  – the number of distinct bisectors 
spanned by pairs of points of 𝑃. 

 Corollary. Let 𝑃 be a set of 𝑛 points in ℝ2, 
such that every line or circle contains 
𝑂 𝑚  points of 𝑃. Then 

𝐷𝐵 𝑃 = Ω min
𝑛8/5−𝜀

𝑚2/5
,
𝑛2

𝑚
. 



Distinct Bisectors: Proof Sketch 

 For a line ℓ, we set 
𝐸ℓ 𝑃 = 𝑎, 𝑏 ∈ 𝑃

2 | 𝑩𝑎𝑏 = ℓ . 
 

 By the Cauchy-Schwartz inequality 

𝑩 𝑃 = 
𝐸ℓ 𝑃
2

ℓ

≥
 𝐸ℓ 𝑃ℓ

2

𝐷𝐵 𝑃

= Ω
𝑛4

𝐷𝐵 𝑃
. 

 

◦ The bound is obtained by                               
combining this with the upper                     
bound for 𝑩 𝑃 . 



From Few Distinct Distances to 
Bisector Energy 
 𝑃 – a set of 𝑛 points, such that pairs of 

points span 𝑂 𝑛/ log 𝑛  DD. 
 

𝑇 = 𝑎, 𝑏, 𝑐 ∈ 𝑃3 | 𝑎𝑏 = |𝑎𝑐| . 
 

◦ For any 𝑎 ∈ 𝑃, the points of 𝑃 ∖ 𝑝  are 

contained in 𝑂 𝑛/ log 𝑛  circles centered at 

𝑎. 

◦ 𝑃𝑎,𝑖 –  the set of points of 𝑃                             
on the 𝑖’th circle around 𝑎. 



Counting Triples 

𝑇 = 𝑎, 𝑏, 𝑐 ∈ 𝑃3 | 𝑎𝑏 = |𝑎𝑐| . 
 

 𝑃𝑎,𝑖 – the set of points of 𝑃 on the 𝑖’th circle 

around 𝑎. Notice that  𝑃𝑎,𝑖 = 𝑛 − 1𝑖 . 

 By the Cauchy-Schwarz inequality 
 

𝑇 =   𝑃𝑎,𝑖
2

𝑖𝑎∈𝑃

= 𝑛 ⋅ Ω
𝑛2

𝑛/ log 𝑛

= Ω 𝑛2 log 𝑛 . 



Counting Triples Again 

𝑇 = 𝑎, 𝑏, 𝑐 ∈ 𝑃3 | 𝑎𝑏 = |𝑎𝑐| . 
 

 A triple 𝑎, 𝑏, 𝑐 ∈ 𝑃3 is in 𝑇 iff 𝑩𝑏𝑐 is 
incident to 𝑎. 

 𝑇  is the number of incidences between 

𝑃 and a multiset of 
𝑛
2

 lines. 

 By our lower bound for 𝑇 ,                       
the number of incidences                             

is Ω 𝑛2 log 𝑛 . 

◦ How is this possible? 



Taking Multiplicities into Account 

 Every line of “multiplicity” at least 𝑘 
contributes Ω 𝑘  to the energy. 

 By the bound on the energy, the number 
of such lines is  

𝑂
𝑚2/5𝑛12/5+𝜀 +𝑚𝑛2

𝑘
 

 

 Since no line contains > 𝑚 points of 𝑃, 

lines of multiplicity ≥ 𝑘 = Θ 𝑚7/5𝑛2/5+𝜀  

cannot yield Ω 𝑛2 log 𝑛  incidences. 



Lines with a Low Multiplicity 

 There are Ω 𝑛2 log 𝑛  incidences 

between the point set 𝑃 and a multiset of 

lines with multiplicities 𝑂 𝑚7/5𝑛2/5+𝜀 . 

 Lines with 𝑜 log 𝑛  points also cannot 

yield Ω 𝑛2 log 𝑛  incidences. 

 A straightforward analysis shows that the 
number of remaining                              

lines is Ω 𝑚−7/5𝑛 8/5−𝜀 . 

 



Bounding the Bisector Energy 

𝑩 𝑃 = 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑃4 |  𝑩𝑎𝑏 = 𝑩𝑐𝑑 . 
 

 A quadruple 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑃4 is in 𝑩 𝑃  iff 
 

𝑎𝑥 − 𝑏𝑥 𝑐𝑦 − 𝑑𝑦 = 𝑐𝑥 − 𝑑𝑥 𝑎𝑦 − 𝑏𝑦 , 

   and 
  

𝑎𝑦 − 𝑏𝑦 𝑎𝑦 + 𝑏𝑦 − 𝑐𝑦 − 𝑑𝑦
= 𝑎𝑥 − 𝑏𝑥 𝑐𝑥 + 𝑑𝑥 − 𝑎𝑥 − 𝑏𝑥 . 

 

 



Incidences in ℝ4 

 We consider quadruples 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑃4.  

 For every pair 𝑏, 𝑑 , define a point in ℝ4. 

 For every pair 𝑎, 𝑐 , define a two-
dimensional surface in ℝ4, defined by 

 

𝑎𝑥 − 𝑧1 𝑐𝑦 − 𝑧4 = 𝑐𝑥 − 𝑧3 𝑎𝑦 − 𝑧2 , 

   and 
  

𝑎𝑦 − 𝑧2 𝑎𝑦 + 𝑧2 − 𝑐𝑦 − 𝑧4
= 𝑎𝑥 − 𝑧1 𝑐𝑥 + 𝑧3 − 𝑎𝑥 − 𝑧1 . 

 



Solving the Incidence Problem 

 Some high level details: 

◦ We show that the incidence graph contains 
no copy of 𝐾2,𝑚. 

◦ We show that the incidence graph can be 
partitioned to many connected components 
with no edges between them. 




