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Abstract In 1930s Paul Erdős conjectured that for any positive integerC in any
infinite ±1 sequence(xn) there exists a subsequencexd, x2d, x3d, . . . , xkd, for
some positive integersk andd, such that|

∑
k

i=1
xid |> C. The conjecture has

been referred to as one of the major open problems in combinatorial number the-
ory and discrepancy theory. For the particular case ofC = 1 a human proof of
the conjecture exists; forC = 2 a bespoke computer program had generated se-
quences of length1124 of discrepancy2, but the status of the conjecture remained
open even for such a small bound. We show that by encoding the problem into
Boolean satisfiability and applying the state of the art SAT solver, one can obtain
a discrepancy2 sequence of length1160 and aproof of the Erdős discrepancy
conjecture forC = 2, claiming that no discrepancy 2 sequence of length1161,
or more, exists. We also present our partial results for the case ofC = 3.

1 Introduction

Discrepancy theory is a branch of mathematics dealing with irregularities of distribu-
tions of points in some space in combinatorial, measure-theoretic and geometric set-
tings [5,9,19,4]. The paradigmatic combinatorial discrepancy theory setting can be de-
scribed in terms of a hypergraphH = (U, S), that is, a setU and a family of its subsets
S ⊆ 2U . Consider a colouringc : U → {+1,−1} of the elements ofU in blue(+1) and
red (−1) colours. Then one may ask whether there exists a colouring of the elements of
U such that in every element ofS colours are distributed uniformly or a discrepancy of
colours is always inevitable. Formally, the discrepancy (deviation from a uniform dis-
tribution) of a hypergraphH is defined asminc(maxs∈S |

∑

e∈s c(e)| ). Discrepancy
theory also has practical applications in computational complexity [9], complexity of
communication [1] and differential privacy [20].

One of the oldest problems of discrepancy theory is the discrepancy of hypergraphs
over the set of natural numbers with the subsets (hyperedges) forming arithmetical pro-
gressions over this set [18]. Roth’s theorem [22], one of themain results in the area,
states that for the hypergraph formed by the arithmetic progressions in{1, . . . , l}, that
isHl = (Ul, Sl), whereUl = {1, 2, . . . , l} and elements ofSl being of the form(ai+b)
for arbitrarya, b, the discrepancy grows at least as1

20 l
1/4.

Surprisingly, for the more restricted case ofhomogeneousarithmetic progressions
of the form(ai), the question of the discrepancy bounds is open for more thaneighty
years. In 1930s Paul Erdős conjectured [10] that the discrepancy is unbounded. This
conjecture became known as the Erdős discrepancy problem (EDP) and its proving or
disproving has been referred to as one of the major open problems in combinatorial
number theory and discrepancy theory [5,4,21].
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The problem can be naturally described in terms of sequencesof +1 and−1 (and
this is how Erdős himself introduced it). Then Erdős’s conjecture states that for anyC >

0 in any infinite±1 sequence(xn) there exists a subsequencexd, x2d, x3d, . . . , xkd, for
some positive integersk andd, such that|

∑k
i=1 xid |> C. The general definition of

discrepancy given above can be specialised as follows. The discrepancy of a finite±1

sequencēx = x1, . . . , xl of lengthl can be defined asmaxd=1,...,l(|
∑⌊ l

d
⌋

i=1 xid |). For
an infinite sequence(xn) its discrepancy is the supremum of discrepancies of all its
initial finite fragments.

For random±1 sequences of lengthl the discrepancy grows asl1/2+o(1) and the
explicit constructions of a sequence with slowly growing discrepancy at the rate of
log3 l have been demonstrated [14,8]. It is known [17] that discrepancy of any infinite
±1 sequence can not be bounded by 1, that is, Erdős’s conjecture holds for the particular
caseC = 1. For all other values ofC the status of the conjecture remained unknown.
Although widely believed not to be the case, there was still apossibility that an infinite
sequence of discrepancy 2 existed.

The EDP has attracted renewed interest in 2009-2010 as it became a topic of the
Polymath project [11], a widely publicised endeavour in collective math initiated by
T. Gowers [13]. As part of this activity (see discussion in [11]) an attempt has been
made to attack the problem using computers. A purposely written computer program
had successfully found±1 sequences of length 1124 having discrepancy 2; however, it
failed to produce a discrepancy2 sequence of a larger length and it has been claimed
that “given how long a finite sequence can be, it seems unlikely that we could answer
this question just by a clever search of all possibilities ona computer” [11].

In this paper we settle the status of the EDP forC = 2. We show that by encoding
the problem into Boolean satisfiability and applying the state of the art SAT solvers, one
can obtain a sequence of length1160 of discrepancy 2 and a proof of the Erdős discrep-
ancy conjecture forC = 2, claiming that no sequence of length1161 and discrepancy
2 exists. We also present our partial results for the case ofC = 3 and demonstrate the
existence of a sequence of length13 000 of discrepancy3.

2 SAT Encoding

Checking that a±1 sequence of lengthl has discrepancyC is quite straightforward and
so for the existence claims the specific encoding details areof limited interest and could
be left as an exercise to the reader. The negative results (that is, our claim that no infinite
discrepancy2 sequence exists), however, require us to give a short description of our
SAT encoding of the EDP. The encoding in full for all cases discussed in this paper and
the program generating the encoding of the EDP for arbitrarygiven values ofC andl
can be found in [16].

We employ the automata based approach similar to the encoding of temporal for-
mulae for bounded model checking [6]. In Figure 1 we give an automaton that accepts a
±1 word if, and only if, the word represents a±1 sequence whose discrepancy is larger
thanC. Notice that if a subsequencexd, x2d, . . . , xkd of x̄ = x1, . . . , xl contains less
thanC elements, this subsequence does not contribute to the discrepancy of̄x. It should
be clear then that if for everyd : 1 ≤ d ≤ ⌊ l

C+1⌋ the automatonAC does notaccept the
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Figure 1. AutomatonAC accepting a sequence of discrepancy exceedingC.

subsequencexd, x2d, . . . , xkd, wherek = ⌊ l
d⌋, then the discrepancy of the sequencex̄

does not exceedC.
The trace of the automatonAC on the subsequencexd, x2d, . . . , xkd can be en-

coded by a Boolean formula in the obvious way. To explain representation details, first
consider

φ(l,C,d) = s
(1,d)
0

⌊ l

d
⌋

∧

i=1

[

∧

−C≤j<C

(

s
(i,d)
j ∧ pid → s

(i+1,d)
j+1

)

∧

∧

−C<j≤C

(

s
(i,d)
j ∧ ¬pid → s

(i+1,d)
j−1

)

∧
(

s
(i,d)
C ∧ pid → B

)

∧
(

s
(i,d)
−C ∧ ¬pid → B

)

]

,

(1)

where the intended meaning is that propositions
(i,d)
j is true if, and only if, the auto-

matonAC is in the statesj having read first(i − 1) symbols of the input word, and
propositionpi is true if, and only if, thei-th symbol of the input word is+1.

Let

φ(l,C) = ¬B ∧

⌊ l

C+1
⌋

∧

d=1

φ(l,C,d) ∧ frame(l,C),

whereframe(l,C) is a Boolean formula encoding that the automaton state is correctly

defined, that is, exactly one proposition from each of the sets {s(i,d)j | −C ≤ j ≤ C},

for d = 1, . . . , ⌊ l
C+1⌋ and1 ≤ i ≤ ⌊ l

d⌋, is true in every model ofφ(l,C).
The following statement can be easily proved by an investigation of models ofφ(l,C)

and the traces ofAC . Notice that althoughφ(l,C) encodes the traces ofAC on all sub-
sequences of̄x they all share the same propositionB—as soon as the automaton accepts
any of these subsequences, the entire sequence should be rejected.

Proposition 1. The formulaφ(l,C) is satisfiable if, and only if, there exists a±1 se-
quencēx = x1, . . . , xl of lengthl of discrepancyC. Moreover, ifφ(l,C) is satisfiable,
the sequencēx = x1, . . . , xl of discrepancyC is uniquely identified by the assignment
of truth values to propositionsp1, . . . pl.



The encoding described above, albeit very natural, is quitewasteful: the size of
formula frame(l,C) is quadratic in the number of states. To reduce the size, in our im-
plementation we use a slightly different encoding of the traces ofAC . Namely, we
replace in (1) every occurrence ofs

(i,d)
j with a conjunction of propositions representing

the numerical value ofj in binary, where the most significant bit encodes the sign ofj

and the other bits encode an unsigned number0 . . . C in the usual way. We denote the
resulting formulaφb

(l,C,d).
For example, forC = 2 the values−C . . . C can be represented in binary by3 bits.

Thenφb
(l,C,d) contains, for example,

(¬b
(i,d)
2 ∧ ¬b

(i,d)
1 ∧ ¬b

(i,d)
0 ) ∧ pid → ¬b

(i+1,d)
2 ∧ ¬b

(i+1,d)
1 ∧ b

(i+1,d)
0

encoding the transition froms0 to s1 having read+1.
We also exclude by a formulaframe

b
(l,C) all combinations of bits that do not corres-

pond to any states ofAC . For example, forC = 2 we have

frame
b
(l,C) =

⌊ l

C+1
⌋

∧

d=1

⌊ l

d
⌋+1
∧

i=1

[

¬(b
(i,d)
2 ∧ ¬b

(i,d)
1 ∧ ¬b

(i,d)
0 )∧

¬(¬b
(i,d)
2 ∧ b

(i,d)
1 ∧ b

(i,d)
0 )∧

¬(b
(i,d)
2 ∧ b

(i,d)
1 ∧ b

(i,d)
0 )

]

.

The first conjunct disallows the binary value100 , a ‘negated zero’, the other two encode
thatAC , for C = 2, does not have neithers3 nor s−3. The following statement is a
direct consequence of Proposition 1.

Proposition 2. The formulaφb
(l,C) = ¬B ∧

⌊ l

C+1
⌋

∧

d=1

φb
(l,C,d) ∧ frame

b
(l,C) is satisfiable

if, and only if, there exists a±1 sequencēx = x1, . . . , xl of lengthl of discrepancy
C. Moreover, ifφ(l,C) is satisfiable, the sequencex̄ = x1, . . . , xl of discrepancyC is
uniquely identified by the assignment of truth values to propositionsp1, . . . pl.

3 Results

In our experiments we used theLingeling SAT solver [7] versionats, the winner of
the SAT-UNSATcategory of the SAT’13 competition [3] and theGlucose solver [2]
version3.0, the winner of thecertified UNSATcategory of the SAT’13 competition [3].
All experiments were conducted on PCs equipped with an IntelCore i5-2500K CPU
running at 3.30GHz and 16GB of RAM.

By iteratively increasing the length of the sequence, we establish precisely that the
maximal length of a±1 sequence of discrepancy2 is 1160. On our system it took
Plingeling, the parallel version of theLingeling solver, about800 seconds1 to find a
satisfying assignment. One of the sequences of length1160 of discrepancy2 can be
found in Appendix A for reader’s amusement.

1 The time taken by the solver varies significantly from experiment to experiment; in one rerun
it took the solver just166.8 seconds to find a satisfying assignment.



Proposition 3. There exists a sequence of length1160 of discrepancy2.

When we increased the length of the sequence to1161, Plingeling reported unsatisfiab-
ility. In order to corroborate this statement, we also usedGlucose. It took the solver
about21 500 seconds to compute a Delete Reverse Unit Propagation (DRUP)certificate
of unsatisfiability, which is a compact representation of the resolution refutation of the
given formula [12]. The correctness of the unsatisfiabilitycertificate has been independ-
ently verified with thedrup-trim tool [15]. The size of the certificate is about13 GB,
and the time needed to verify the certificate was comparable with the time needed to
generate it. Combined with Proposition 2, we obtain a computer proof of the following
statement.

Theorem 1. No sequence of length1161 has discrepancy2.

As there is no finite sequence of discrepancy2, there is no infinite such sequence. So
we conclude the following.

Corollary 1. The Erd̋os discrepancy conjecture holds true forC = 2.

In an attempt to better understand this result, we looked at the smaller unsatisfiable
subset ofφb

(l,C) identified by thedrup-trim tool. It turned out that the encoding of some
automata traces is not present in the subset. A further manual minimisation showed that,
although⌊ 1161

3 ⌋ is 387, to show unsatisfiability it suffices to consider subsequences of
x1, . . . , x1161 of the formxd, . . . , xkd for the values ofd ranging from1 to 358. It
remains to be seen whether or not this observation can be helpful for a human proof of
the conjecture

We also applied our methodology to identify sequences of discrepancy3, however,
we did not manage to prove the conjecture. Having spent 3 days, 7 hours and 30 minutes
(or286247.9 seconds total), on the encoding of the problem using 356 048 variables and
4 342 612 clausesPlingeling has successfully identified a sequence of length13 000
with discrepancy3. The encoding and the generated sequence can be found in [16].

Proposition 4. There exists a sequence of length13 000 of discrepancy3.

Unfortunately, our attempts to improve this result did not succeed:Plingeling did not
return any answer on the encodings of discrepancy3 problems for sequences of length
14 000 and16 000 even within1 550 000 and2 280 000 seconds, respectively; the com-
putations are still going on and the problem is still open.

4 Discussion

We have demonstrated that SAT-based methods can be used to tackle the longstanding
mathematical question on the discrepancy of±1 sequences. For EDP withC = 2
we have identified the exact boundary between satisfiabilityand unsatisfiability, that
is, we found the longest discrepancy2 sequence and proved that no larger sequence of
discrepancy2 exists. There is, however, a noticeable asymmetry between these findings.
The fact that a sequence of length 1160 has discrepancy2 can be easily checked either
by a straightforward computer program or even manually. Thenegative witness, that is,



the DRUP unsatisfiability certificate, is probably one of longest proofs of a non-trivial
mathematical result ever produced. Its gigantic size is comparable, for example, with
the size of the whole Wikipedia, so one may have doubts about to which degree this can
be accepted as a proof of a mathematical statement.

But this is the best we can get for the moment. Essentially, the unsatisfiability proof
corresponds to the verification that the search in a huge search space has been done
correctly and completed without finding a satisfying assignment. It is a challenging
problem to produce a compact proof more amenable for human comprehension.

Finally notice that apart from the obtained results the proposed methodology can be
used to further experimentally explore variants of the Erd˝os problem as well as more
general discrepancy theory problems.
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A One of the sequences of length1160 having discrepancy2

We give a graphical representation of one of the sequences oflength1160 obtained
from the satisfying assignment computed with thePlingeling solver. Here+ stands for
+1 and− for −1, respectively.
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