
Theory Comput Syst (2016) 59:416–439
DOI 10.1007/s00224-015-9645-1

Counting the Number of Perfect Matchings in K5-Free
Graphs

Simon Straub1 ·Thomas Thierauf2 ·
Fabian Wagner1

Published online: 15 July 2015
© Springer Science+Business Media New York 2015

Abstract Counting the number of perfect matchings in graphs is a computa-
tionally hard problem. However, in the case of planar graphs, and even for K3,3-free
graphs, the number of perfect matchings can be computed efficiently. The technique
to achieve this is to compute a Pfaffian orientation of a graph. In the case of K5-free
graphs, this technique will not work because some K5-free graphs do not have a Pfaf-
fian orientation. We circumvent this problem and show that the number of perfect
matchings in K5-free graphs can be computed in polynomial time. We also paral-
lelize the sequential algorithm and show that the problem is in TC2. We remark that
our results generalize to graphs without singly-crossing minor.

Keywords Perfect matching · Counting · Complexity

1 Introduction

Counting the number of perfect matchings in graphs is a computationally hard prob-
lem. Valiant [23] showed that it is complete for the class of NP-counting problems,
#P. Nonetheless for some classes of restricted graphs the problem can be solved
efficiently. Kasteleyn [14] showed that the number of perfect matchings in planar
graphs can be computed in polynomial time. The technique is to compute a Pfaffian

Research supported by DFG grant TH 472/4-1

� Thomas Thierauf
thomas.thierauf@uni-ulm.de

1 Ulm University, Ulm, Germany

2 Aalen University, Aalen, Germany

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s00224-015-9645-1-x&domain=pdf
mailto:thomas.thierauf@uni-ulm.de

Theory Comput Syst (2016) 59:416–439 417

orientation of the given graph. Such an orientation assures that each term in the Pfaf-
fian of the Tutte matrix of the graph has the same sign. Every term in the Pfaffian
corresponds to a perfect matching. Hence the Pfaffian yields the number of perfect
matchings. Since the Pfaffian can be computed in polynomial time [1, 4, 10], we get
an efficient counting algorithm.

Recall that K5 denotes the complete graph with five vertices and K3,3 is the com-
plete bipartite graph where each of the two independent sets has three vertices. Planar
graphs can be characterized as the graphs that contain neither the graph K3,3 nor
the graph K5 as a minor. Graphs with this property are called K3,3-free and K5-
free. Little [17] extended Kasteleyns result to K3,3-free graphs. He showed that also
K3,3-free graphs have a Pfaffian orientation which can be computed efficiently. This
yields again an efficient counting algorithm for the number of perfect matchings in
K3,3-free graphs.

Since then, it has been a challenging open problem to compute the number of
perfect matchings in K5-free graphs efficiently. In this paper, we solve this problem.
The Pfaffian orientation technique is not applicable here because some graphs, like
the K3,3, have no such orientation.

We solve this problem by decomposing a given graph G into its triconnected com-
ponents. It is known that the non-planar triconnected components of G are either
the Möbius ladder M8, or their decomposition into 4-connected components yields
only planar components. Such a decomposition can be computed in logspace [7, 22].
The number of perfect matchings in planar components can be computed efficiently
by Kasteleyns algorithm. The major task to be accomplished here is to calculate
the overall number of perfect matchings from them. The difficulty is, that the graph
is decomposed along separating pairs or triples which have a copy in every com-
ponent they split off. However, when counting perfect matchings, the nodes of the
separating pairs and triples should be matched only in one of the components. We
use gadgets to replace components such that every node is matched only in one
component.

Valiant [24] introduced the notion of holographic reductions between counting
problems. In classical reductions there is often a very direct one-to-one correspon-
dence between the solutions of the instances. For example, in the classical reduction
from the Boolean satisfiability problem to the clique problem, every satisfying
assignment of the formula corresponds to precisely one maximum clique in the con-
structed graph. In holographic reductions, there is no such obvious correspondence
between the solutions, merely their numbers are equal.

Valiant showed several such reductions to the problem of counting perfect match-
ings in planar graphs. Thereby he showed various counting problems to be in ¶.
Valiant maps a problem instance I of a counting problem to a planar graph G, called
a matchgrid, such that the number of solutions of I equals the number of weighted
perfect matchings in G. The matchgrid in turn consists of gadgets, calledmatchgates,
which are defined based on individual components of the instance I .

We use similar gadgets as Valiant in our algorithm. However, our algorithm uses
dynamic programming and can therefore be seen as a Turing reduction to planar per-
fect matching. Hence it seems that our algorithm does not fit into Valiant’s framework
of holographic reductions.

418 Theory Comput Syst (2016) 59:416–439

Vazirani [25] showed that the algorithms of Kasteleyn and Little can be paral-
lelized: the number of perfect matchings in K3,3-free graphs can be computed within
the circuit class NC2. In Section 5, we show that our algorithm can be parallelized as
well: the number of perfect matchings in K5-free graphs can be computed within the
circuit class TC2.

Constructing a perfect matching is another issue. It is known that perfect match-
ings can be constructed in polynomial time [8]. Despite the efficient parallel counting
algorithm for planar graphs it remains an intriguing open question if a planar perfect
matching can also be efficiently constructed in parallel.

When we consider graphs that are additionally bipartite one can do more: Kulka-
rni, Mahajan, and Varadarajan [15] showed that if a class of bipartite graphs is closed
under edge deletion and the number of perfect matchings can be computed in NC,
then a perfect matching can also be constructed in NC. The result applies to planar
and K3,3-free graphs, and now, by our result, also to K5-free graphs.

Albeit our discussion is dedicated to K5-free graphs, our technique works for a
larger class of graphs. Elberfeld, Jakoby, and Tantau [9] showed that the number of
perfect matchings of graphs with bounded treewidth can be computed in logspace.
Hence, in our decomposition of a graph into its 4-connected components, instead of
being planar these components could as well have bounded treewidth. Then we could
still compute the number of perfect matchings. Robertson and Seymour [20] consid-
ered the class of graphs that do not have a singly-crossing minor. This class contains
all K3,3-free and K5-free graphs. They showed that the 4-connected components of
such graphs are planar or have bounded treewidth. Hence our results for counting
and constructing perfect matchings in TC2 generalize to graphs without singly-
crossing minor. Independently of our work, Curticapean [5] obtained a polynomial-
time algorithm for counting perfect matchings in graphs without singly-crossing
minor.

After some preliminaries, the decomposition of a K5-free graph and its proper-
ties are explained. Subsequently it is shown how to obtain the number of perfect
matchings of the input graph based on this decomposition.

2 Definitions and Notations

We consider undirected graphsG = (V , E) in this paper. In case of a weighted graph,
there is a weight function w : E → R on the edegs of G. For U ⊆ V let G − U be
the induced subgraph of G on V − U .

Let T be a rooted tree. The subtree of T with root v is denoted by T (v) and |T (v)|
is the number of nodes in T (v).

Let G = (V , E) be a graph and S ⊆ V with |S| = k. We call S a k-separating set,
if G − S is not connected. For u, v ∈ V we say that S separates u from v in G, if
u ∈ S, v ∈ S, or u and v are in different components of G − S. For sets of vertices
V1, V2 ⊆ V we say that S separates V1 from V2 in G, if S separates every v1 ∈ V1
from every v2 ∈ V2.

A k-separating set is called articulation point (or cut vertex) for k = 1, separating
pair for k = 2, and separating triple for k = 3.

Theory Comput Syst (2016) 59:416–439 419

A graph G is k-connected if it contains no (k − 1)-separating set. Hence a 1-
connected graph is simply a connected graph. A 2-connected graph is also called
biconnected, a 3-connected graph is one type of triconnected graphs, other types will
be introduced later.

Let S be a k-separating set in a k-connected graph G. Let G′ be a connected
component in G − S. A split graph or a split component of S in G is the induced
subgraph of G on vertices V (G′)∪S, where we add virtual edges between all pairs of
vertices in S. Note that the vertices of a separating set S occur in several split graphs
of G.

Let H be a fixed graph. We say that a graph G is H -free if G has no minor iso-
morphic to H . In particular, we consider K3,3-free and K5-free graphs in this paper.
Graphs which are both, K3,3-free and K5-free, are precisely the planar graphs [16].

Let G = (V , E) be an undirected graph, |V | = n. A perfect matching in G is a set
M ⊆ E such that every vertex of G occurs in exactly one edge of M . A consequence
is that |M| = n/2.

The number of perfect matchings in G is denoted by #pm(G). We extend the
notion to weighted graphs. Let w be a weight function. The weighted number of
perfect matchings in G is defined as

#pm(G) =
∑

M

∏

(u,v)∈M

w(u, v) ,

where the sum is over all perfect matchings M in G. Weight function w(u, v) = 1
for all (u, v) ∈ E is equivalent to the unweighted case.

For the definition of complexity classes we refer the reader to any standard text
book, for example [26]. In short, circuit classes NCk , ACk , and TCk consist of
polynomial-size circuits of depth O(logk n), where n is the length of the input.
NC-circuits have fan-in two and-or-gates, whereas AC-circuits have unbounded fan-
in and-or-gates. TC-circuits have unbounded fan-in gates as AC, and additionally
threshold-gates. It is known that for all k ≥ 0

NCk ⊆ ACk ⊆ TCk ⊆ NCk+1 .

The circuit classes are interleaved by logspace complexity classes. The class L stands
for problems recognized by logspace bounded Turing machines, the class NL is its
nondeterministic counterpart. The function class #L counts the number of accepting
computations of a nondeterministic logspace bounded Turing machine. An exten-
sion of #L is GapL which is the difference of the number of accepting and rejecting
computations of a nondeterministic logspace bounded Turing machine. It is known
that

NC1 ⊆ L ⊆ NL ⊆ AC1

and

#L ⊆ GapL ⊆ TC1 ⊆ NC2 .

The interest for GapL stems from the fact that it characterizes the complexity of
computing the determinant and the Pfaffian of integer matrices. Also, the number
of perfect matchings in planar graphs can be computed in GapL [19]. Our parallel

420 Theory Comput Syst (2016) 59:416–439

algorithm to count the number of perfect matchings in K5-free graphs has up to log n

levels where perfect matchings are counted in planar components. This will result in
a TC2-circuit.

3 Decomposition of Graphs

Wagner [27] studied the decomposition of K5-free graphs into 2-, 3- and 4-connected
components. He showed that the components will be planar at some point, except for
one type of component which has constant size. The number of perfect matchings in
a planar graph can be computed in polynomial time [14], in fact in NC [25]. Our goal
is to use Wagners result to reduce the problem of computing the number of perfect
matchings in a K5-free graph to the one for planar graphs.

Let G = (V , E) be a graph. If G is not connected, then the number of per-
fect matchings in G is the product of the number of perfect matchings in the
connected components of G. Hence we may assume in the following that G is
connected.

But actually we may assume that G is biconnected. Otherwise there is an articu-
lation point a in G. Let G1, . . . , Gl be the connected components of G − a. For a
perfect matching to exist,Gmust have an even number of vertices. Therefore, exactly
one of G1, . . . , Gl must have an odd number of vertices, say G1, and the others must
have even size. Then the number of perfect matchings in G is the product of the
number of perfect matchings in G1 ∪ a,G2, . . . , Gl . We can continue to split these
components along the remaining articulation points until we end up with biconnected
components only. Hence it suffices to determine the number of perfect matchings in
biconnected graphs. We assume in the following that G is biconnected.

3.1 The Triconnected Components

There is an extensive literature on graph decomposition, see for example [2, 3, 12, 13,
18, 21]. We follow the exposition of [7, 22] which works for parallel computation, in
fact in logspace.

Definition 3.1 [7] Let G = (V , E) be a biconnected graph. A separating pair {a, b}
is called 3-connected if there are three vertex-disjoint paths between a and b in G.

The triconnected components of G are the split graphs we obtain from G by
splitting G successively along all 3-connected separating pairs, in any order. If a sep-
arating pair {a, b} is connected by an edge in G, then we also define a 3-bond for
{a, b} as a triconnected component, i.e., a multigraph with two vertices {a, b} and
three edges between them.

By the definition, 3-connected components, cycle components, and 3-bonds are
the triconnected components of a biconnected graph. The 3-bonds represent edges
of the graph between separating pairs because they are replaced by virtual edges
in the components. The cycle components are not 3-connected, but they are not
decomposed further anyway.

Theory Comput Syst (2016) 59:416–439 421

Definition 3.2 LetG = (V , E) be a biconnected graph. The triconnected component
tree T of G is the following graph. There is a node for each triconnected component
and for each 3-connected separating pair of G. There is an edge in T between the
node for triconnected component C and the node for a separating pair {a, b}, if a and
b belong to C.

Lemma 3.3 [7, 22] The triconnected component tree can be computed and traversed
in logspace.

We fix one component node in T as the root of T . Hence we can talk of a parent
and the children of a node. For a node N in T , we define

T (N) = the subtree of T with root N.

Next we define the subgraph G(T (N)) of G associated with T (N).

Definition 3.4 By G(T (N)) we denote the subgraph of G induced by the vertices
of G that occur in the nodes of T (N), with one exception: vertices a, b that are a
separating pair can occur in several nodes of T (N). When there is an edges (a, b)

in G and a, b occur in N , then we define G(T (N)) to contain the edge (a, b) only
for the component N which is closest to the root of T . In the other components N ′
where a, b occurs, we put no edge (a, b) in G(T (N ′)).

3.2 The 4-Connected Components

There are some subtleties in the decomposition of a 3-connected graph into 4-
connected components to work in logspace. We refer to the exposition in [22]. In a
nutshell, it is an inductive process that splits off components along separating triples.
However, the separating triples might overlap each other, and even worse, their split
components might overlap. In this case separating triples are called crossing in [22].
It is shown that one can select one of the crossing triples and throw away the other to
obtain a decomposition into 4-connected components.

The components we get are

• separating triples where the vertices are connected by virtual edges,
• 4-connected components that contain the separating triples where they are split

off. Again there are virtual edges between the vertices of the separating triples,
• 3-bonds for every pair a, b of vertices that are part of a separating triple and there

is an edge (a, b) ∈ E.

Let C be a 3-connected component of G. The 4-connected component tree TC

of C has a node for every component as described above that occurs in the decom-
position process of C. There is an edge between a 4-connected component node D

and a separating triple node τ in TC if τ belongs to D. If there is a 3-bond for two
vertices a, b which are in τ , then we also have an edge between the 3-bond and
τ in TC .

422 Theory Comput Syst (2016) 59:416–439

Lemma 3.5 [22] The 4-connected component tree can be computed and traversed in
logspace.

Fix one component node as the root of TC . Let D be a component node and τ be
a separating triple. Similar as for the triconnected component tree, we define TC(D)

and TC(τ) as the subtrees of TC rooted at D and τ , respectively. Similar to Definition
3.4, we define G(TC(D)) and G(TC(τ)) as the subgraphs of G associated with the
subtrees TC(D) and TC(τ), respectively.

3.3 Properties of K5-Free Graphs

The crucial theorem about K5-free graphs is due to Wagner [27].

Theorem 3.6 [27] A 3-connected non-planar component of a K5-free biconnected
graph is either the Möbius ladder M8 or its 4-connected components are all planar.

The Möbius ladder M8 is shown in Fig. 1. It is a 3-connected graph on 8 vertices
which is non-planar because it contains a K3,3.

The Möbius ladder M8 has 5 perfect matchings. However, we will also have
weights on the edges. In this case, we have to count the weighted perfect matchings
of M8. Since M8 has constant size this is computationally a simple task.

Theorem 3.6 describes the route we follow: we decompose the given biconnected
graphG into 3-connected components. When we are lucky, a 3-connected component
C is already planar or M8. In this case we directly compute the number of perfect
matchings in C. Otherwise, we decompose C further into 4-connected components.
These components are all planar now and we can again compute the number of per-
fect matchings there. What makes things a bit tricky is, that we have to consider all
possibilities of assigning the separating pairs and triples to the components they are
part of. This will be the major challenge for the complexity bound on computing the
number of perfect matchings.

4 Counting Perfect Matchings in K5-Free Graphs

In this section we prove the following theorem.

Theorem 4.1 The number of perfect matchings in a K5-free graph can be computed
in polynomial time.

Fig. 1 The Möbius ladder M8

Theory Comput Syst (2016) 59:416–439 423

Let G = (V , E) be a biconnected K5-free graph. We will decompose G into tri-
connected components, and, if necessary, into 4-connected components. Thereby we
end up with components that are either planar, or the Möbius ladder M8. The number
of perfect matchings of these components can be computed in polynomial time. Note
that the Möbius ladder M8 has constant size. The critical part of our algorithm is to
put these numbers together to obtain the number of perfect matchings of G.

Consider the triconnected component tree T of G. We will compute the number
of perfect matchings of the components in a bottom-up fashion according to T by
dynamic programming. If a component C is non-planar and not equal to M8, then we
decompose C and consider its 4-connected component tree TC . Then we compute the
number of perfect matchings of C by dynamic programming according to TC . Note
that the separating pairs and triples occur in several components. However, when
we consider perfect matchings in G, we should match the vertices of these pairs
or triples only in one of the components, respectively. Hence we have to consider
all possibilities to put the vertices of the separating pairs and triples into the split
components.

Our algorithm will successively replace components by gadgets. The gadgets will
have weighted edges. Hence we will compute the weighted number of perfect match-
ings. In the given graph G, edges have no weights. Equivalently we can say that all
edges have weight one. In the decomposition of G into tri- and 4-connected com-
ponents we introduce virtual edges between the vertices of the separating pairs and
triples. The virtual edges that do not have an associated 3-bond are defined to have
weight zero. These are the edges which are not present in G. With weight zero they
do not contribute to the number of perfect matchings.

We start by considering the algorithm for the triconnected component tree T of
G. Then we look at 4-connected component trees.

4.1 The Triconnected Component Tree

Let T be the triconnected component tree of G. One component node of T is labeled
as the root of T . We describe an algorithm that computes the number of perfect
matchings by dynamic programming. We start with the leaf nodes of T . These are
component nodes. Then we inductively work our way up to the root of T .

Let C be a leaf in T and π = {a, b} be the parent separating pair of C in T . We
compute the number of perfect matchings in C for every possibility of keeping a or
b in C or not. If edge (a, b) is present in G, we should put it only into one of the split
components of {a, b} in order to get the correct number of perfect matchings. We will
put edge (a, b) into its parent component, by giving it weight one there. Therefore,
we define the weight of edge (a, b) to be zero in C.

• If C has odd size, we compute pa(C) = #pm(C − a) and pb(C) = #pm(C − b).
• If C has even size, we compute p∅(C) = #pm(C) and pab(C) = #pm(C − π).

This works directly only when C is a planar component or C = M8. Otherwise C is
non-planar and we decompose C into 4-connected components. We show in the next
subsection how to compute the number of perfect matchings in this case.

424 Theory Comput Syst (2016) 59:416–439

In the inductive step, let π = {a, b} be a separating pair node in T . Let C0 be
the parent of {a, b} in T , and C1, C2, . . . , C� be the children of π . Vertices a, b

are contained in all these components. We should match a and b only in one of the
components, respectively.

Define ni to be the number of vertices of the subgraph G(T (Ci)) of G. At most
two of n1, . . . , n� can be odd, otherwise there is no perfect matching in G.

There are three cases:

• n1, . . . , n� are all even. Then a and b have both to be matched within one compo-
nent Ci , for some i ∈ {1, . . . , �}, or within C0. Hence there are �+1 possibilities
to assign a, b.

• One of n1, . . . , n� is odd, say ni . Then either a has to be matched within Ci and
b within C0, or vice versa. Hence there are two ways to assign a, b.

• In case where two of n1, . . . , n� are odd, we assign one of a, b to each of the two
odd components. There are again two ways to assign a, b.

Any assignment of a and b other than the ones described above will result in zero
perfect matchings.

We keep track of the assignments of a and b by a vector β = (β1, β2, . . . , β�) and
β0, where βi ⊆ π are the vertices that should not be matched in Ci . Such a vector
β is called legal w.r.t. β0, if it corresponds to an assignment of a and b as explained
above. That is, let βi = π − βi . Then β is legal w.r.t. β0 if the βi’s are pairwise
disjoint and

⋃
i≥0 βi = π . Moreover, the assignment defined by the vector should

respect the odd-even cases explained above. There are at most � legal vectors β for a
fixed β0.

Recall that T (Ci) is the subtree of T rooted at node Ci and G(T (Ci)) is the graph
associated with T (Ci). Inductively assume that we have already computed

pβ(Ci) = #pm(G(T (Ci)) − β),

for every β ⊆ π and i = 1, 2, . . . , �. For a legal vector β = (β1, β2, . . . , β�) w.r.t.
β0, define

pβ(π) =
�∏

i=1

pβi
(Ci)

pβ0(π) =
∑

β legal w.r.t. β0

pβ(π)

Then we have
pβ0(π) = #pm(G(T (π)) − β0).

There are only two possibilities for β0. We compute pβ0(π) for both of these values.
The other case in the inductive step is to consider a component node C in T . Let

π0 = {a0, b0} be the parent separating pair of C in T , and π1 = {a1, b1}, . . . , π� =
{a�, b�} be the children of C. As already explained in the leaf-case above, edge
(ai, bi) gets weight one if it is an edge in G, for i = 1, 2, . . . , �. Edge (a0, b0) gets
weight zero.

Theory Comput Syst (2016) 59:416–439 425

Inductively assume that we have already computed

pβ(πi) = #pm(G(T (πi)) − β),

for every β ⊆ πi and i = 1, 2, . . . , �. Our goal is to compute

pβ(C) = #pm(G(T (C)) − β),

for every β ⊆ π0. To do so, we replace the subgraphs G(T (πi)) of G(T (C)) by
appropriate weighted gadgets, for i = 1, 2, . . . , �. That is, we take component C and
add the gadgets at the separating pairs πi .

• If G(T (πi)) has an odd number of vertices, we add one new vertex vi to C and

– an egde (vi, ai) of weight pbi
(πi) and

– an egde (vi, bi) of weight pai
(πi).

• If G(T (πi)) has an even number of vertices, we add two new vertices ui, vi to
C and

– an egde (ui, ai) of weight p∅(πi),
– an egde (vi, bi) of weight 1, and
– an egde (ui, vi) of weight paibi

(πi).

Figure 2 shows the gadgets. These gadgets were also used in [24]. Figure 3 shows
an example of the construction.

Let C ′ be the resulting component. The construction is such that the number of
weighted perfect matchings of C′ is the same as the number of perfect matchings
of G(T (C)). If C is planar, then also C′ is planar and we can directly compute
#pm(G(T (C))−β), for every β ⊆ π0. The same holds if C = M8 because then also
C′ has constant size.

The third case is that C is non-planar and not equal to M8. This case we han-
dle slightly different. Namely we do not place the gadgets right now in C. Instead,
we first decompose C into 4-connected components. The reason is that C′ is not
3-connected because of the gadgets. For every separating pair πi we choose one
4-connected component where πi occurs and put the gadget there.

The algorithm runs until C is the root of T . In this case C has no parent separating
pair. Then #pm(G(T (C))) is our result, the number of perfect matchings in G.

4.2 The 4-Connected Component Tree

Let C 	= M8 be a non-planar 3-connected component with weighted edges. Let π0 be
the parent separating pair of C in the triconnected component tree of G, and β ⊆ π0.

Fig. 2 The gadget for
separating pair π = {a, b} in
case G(T (π)) has a an odd
number and b an even number
of vertices. The gadgets replace
G(T (π)) in G

426 Theory Comput Syst (2016) 59:416–439

Fig. 3 a A biconnected graph G. b The triconnected component tree T of G. Component C is the root
of T . In the components, the virtual edges are indicated with dashed lines together with their weights. c
The component C′ constructed from C. The subgraphs that correspond to the subtrees below C in T are
replaced by weighted gadgets in C′

Recall that β contains the vertices that should not be matched within C, i.e., we want
to compute the weighted number of perfect matchings in C − β. In the exposition
below, we omit β for better readability. Just keep in mind that β has to be subtracted
from every component we consider below.

Let TC be the 4-connected component tree of C. Recall that we postponed the
placement of the gadgets from the child separating pairs π1, π2, . . . , π� of C in the
triconnected component tree T . Our first step now is to choose one component node
in TC for each πi where πi occurs and place the gadget there. For simplicity, we still
call the component C in the following.

Let N be a node in TC . We want to define G(TC(N)), the graph associ-
ated with the subtree TC(N) of TC similar to the definition of G(T (C)) for the
triconnected component tree T . However, there is one difference: the gadgets
inherited from T that are placed in some component node of TC(N) have to be
added in G(TC(N)) too. For better readability we do not introduce a new name
for G(TC(N)).

The algorithm to compute the number of perfect matchings in C is similar to the
one for the triconnected component tree. One 4-connected component node is labeled
as the root of TC . We start at the leafs of TC and inductively proceed to the root of TC .

Let D be a leaf in TC and τ = {a, b, c} be the parent separating triple of D in TC .
The edges between vertices a, b, c which are present in G should be put only into one
of the split components of τ in order to get the correct number of perfect matchings.
We will put these edges into the parent component of τ , by giving them weight one
there. Therefore, we define the weight of the three virtual edges within τ to be zero
in D.

Theory Comput Syst (2016) 59:416–439 427

We compute the number of perfect matchings in D for every possibility of keeping
a, b or c in D or not. That is, we compute pγ (D) = #pm(D −γ), for all γ ⊆ τ . If D

has odd size, it suffices to take γ odd, and if D has even size, we can restrict γ to be
even. Recall that the 4-connected components are all planar. Hence we can directly
compute the number of perfect matchings.

In the inductive step, let τ = {a, b, c} be a separating triple node in TC . Let D0
be the parent of τ in TC , and D1, D2, . . . , D� be the children of τ . We consider the
possible casef s where to match a, b and c.

Recall that β are the vertices of the parent separating pair π0 of C that should not
be matched within C. We start by considering the cases when β and τ overlap.

• If |τ ∩ β| = 2, say τ − β = {a}, then we have the same situation as if a

were an articulation point: for a perfect matching to exist there is exactly one
way to assign a to a component. Hence either p∅(τ) = #pm(G(TC(τ)) − β) or
pa(τ) = #pm(G(TC(τ)) − a − β) is possibly non-zero and this number can be
computed efficiently.

• If |τ ∩ β| = 1, say τ − β = {a, b}, then we have the same situation as if {a, b}
were a separating pair: we assign these vertices to D0, . . . , D� as explained in
Section 4.1.

Hence, the interesting case is when τ ∩ β = ∅. We show how to handle this case in
the rest of the section. Again, we omit to subtract β from every component for better
readability.

Define ni to be the number of vertices of the subgraph G(TC(Di) − τ) of G. At
most three of n1, . . . , n� can be odd, otherwise there is no perfect matching in G.

There are four cases:

• n1, . . . , n� are all even. Then either two vertices out of τ are matched within
one of D1, . . . , D� and the remaining vertex within D0, or all vertices of τ are
matched within D0. These are 3� + 1 possibilities to assign a, b, c.

• One of n1, . . . , n� is odd, say ni . Then either a, b, c are all matched within Di ,
or just one of a, b, c is matched within Di and the other two in Dj , for some
j 	= i, or in D0. Hence there are again 3� + 1 possibilities to assign a, b, c.

• Two of n1, . . . , n� are odd, say ni and nj . Then one vertex of a, b, c is matched
within Di , one within Dj , and the remaining one in D0. There are 6 ways to
assign a, b, c.

• In case where three of n1, . . . , n� are odd, we assign one of a, b, c to each of the
corresponding components. There are again 6 ways to assign a, b, c.

Any assignment of a, b and c other than the ones described above will result in zero
perfect matchings.

We administrate the assignments of a, b and c again by a vector γ =
(γ1, γ2, . . . , γ�) and γ0, where γi ⊆ τ are the vertices not matched in Di . Similar as
for the β-vector in the triconnected component tree, we define γ to be legal w.r.t. γ0
if it represents an assignment of a, b, c to the Di’s as explained above.

Inductively we have already computed

pγ (Di) = #pm(G(TC(Di)) − γ),

428 Theory Comput Syst (2016) 59:416–439

for every γ ⊆ τ and i = 1, 2, . . . , �. For a legal vector γ = (γ1, γ2, . . . , γ�) w.r.t.
γ0, define

pγ (τ) =
�∏

i=1

pγi
(Di)

pγ0(τ) =
∑

γ legal w.r.t. γ0

pγ (τ)

Then we have
pγ0(τ) = #pm(G(TC(τ)) − γ0).

There are at most 4 possibilities for γ0. We compute pγ0(τ) for all of these values.
The second case in the inductive step is to consider a component node D in

TC . Let τ0 = {a0, b0, c0} be the parent separating triple of D in TC , and τ1 =
{a1, b1, c1}, . . . , τ� = {a�, b�, c�} be the children of D. As already explained in the
leaf-case above, the edges within τ0 get weight zero, and the edges between the
vertices in τi which are present in G get weight one in D, for i = 1, 2, . . . , �. If
τi ∩ τ0 	= ∅ for some i ≥ 1, there might be an edge e within both, τ0 and τi . Then e

gets weight zero in D.
Recall again that β are the vertices of the parent separating pair π0 ofC that should

not be matched within C. First we consider the cases when β overlaps some τi .

• When |τi ∩ β| = 2 for some 0 ≤ i ≤ �, say τi − β = {ai}, we have two cases:
– If G(TC(τi)) − β has even size we add a new vertex xai

to D and an
edge (ai, xai

) with weight p∅(τi) = #pm(G(TC(τi)) − β).
– If G(TC(τi)) − β has odd size we add new vertices xai

, x′
ai

to D and
edges (ai, xai

) with weight one and (xai
, x′

ai
) with weight pai

(τi) =
#pm(G(TC(τi)) − ai − β).

• When |τi ∩β| = 1 for some 0 ≤ i ≤ �, say τi −β = {ai, bi}, we add the gadgets
of Fig. 2 to ai and bi according to the rules discussed in Section 4.1.

Hence, it remains the case when τi ∩β = ∅ for all i. Again, in the following we omit
to subtract β from every component for better readability.

Inductively assume that we have already computed

pγ (τi) = #pm(G(TC(τi)) − γ),

for every γ ⊆ τi and i = 1, 2, . . . , �. Our goal is to compute

pγ (D) = #pm(G(TC(D)) − γ),

for every γ ⊆ τ0. We replace the subgraphs G(TC(τi)) of G(TC(D)) again by appro-
priate weighted gadgets, for i = 1, 2, . . . , �. That is, we add the gadgets at the
separating triples τi of D. The gadgets incorporate all possibilities to match some
vertices within G(TC(τ)) and some vertices in the rest of G. We distinguish the cases
whether G(TC(τi)) has an odd or even number of vertices. The gadgets are shown in
Fig. 4. They are similar to those given in [24].

Let D′ be the resulting component. The construction guarantees that the num-
ber of weighted perfect matchings of D′ is equal to the weighted number of perfect

Theory Comput Syst (2016) 59:416–439 429

Fig. 4 The gadget for separating triple τ = {a, b, c} in case G(TC(τ)) has a an even number and c an
odd number of vertices. The gadgets replace G(TC(τ)) in G. In (a), an odd number of a, b, c should be
matched within the gadget, in (c) an even number. In (a), when p∅ = 0, we use the gadget shown in (b)
instead. Similarly, when pa = 0 in (c) we use the gadget from (d). For example in (a), if a, b, c should all
be matched within the gadget, we use the edges (a, u), (b, v), (c, w). These edges contribute weight p∅ to
a perfect matching. If only b should be matched within the gadget, we use edges (b, v) and (u,w). These
two edges contribute weight pac to a perfect matching. Then a and c have to be matched in the rest of the
graph. Similarly, when a should be matched within the gadget, we use edges (a, u) and (v,w). These two
edges contribute weight p∅ · pbc

p∅ = pbc to a perfect matching

matchings of G(TC(D)): let τ = {a, b, c} be a child of D and γ ⊆ τ . For every
perfect matching of G that matches γ = τ − γ with edges of G(TC(τ)), there is
precisely one possibility to match γ within the gadget. By construction, the weight
contribution to every perfect matching of D′ which matches γ outside of the gad-
get and γ within the gadget is pγ (τ). Therefore we get the same number of perfect
matchings.

Observe also that D′ is planar. This is because D is planar and the gadgets are
planar. Moreover, in any planar embedding of D, a separating triangle τ is one of
the faces. Hence we can put the gadget inside this triangle and maintain planarity.
It follows that we can compute #pm(D′) in polynomial time. Figure 5 shows an
example of the construction. This completes the proof of Theorem 4.1.

5 Counting Perfect Matchings in K5-Free Graphs in Parallel

We parallelize the algorithm from Section 4. We explain a circuit construction and
argue that it has polylogarithmic depth. Our plan is to transform the sequential algo-
rithm of Section 4 into a circuit. The decomposition of the given graph into 3- or
4-connected components is in logspace, and hence can be parallelized. However,
since the resulting component trees may have depth O(n), we cannot simply evaluate
the tree bottom-up as in the sequential case.

To get around this problem we identify paths in the component trees that lead to a
large depth.

Definition 5.1 Let T be a tree and u, v be two nodes such that u is a child of v in T .
Then u is called a large child of v if |T (u)| > |T (v)|/2. A large-child path in T is
a path v0, v1, . . . , vk of maximal length in T such that vi is a large child of vi−1, for
i = 1, . . . , k.

430 Theory Comput Syst (2016) 59:416–439

Fig. 5 aA triconnected component tree T with C as a triconnected component node and π as a separating
pair node. We want to compute the weighted number of perfect matchings in C. b Component C 	= M8
is not planar and hence, is decomposed into a 4-connected component tree TC . The more interesting case
is, when π ⊆ τ , then there are several occurrences of π as virtual edges {a, b} in 4-connected component
nodes. Only one of these virtual edges gets weight 1. c In D, the parent component of τ , the gadget
corresponding to T (π) is embedded additionally. The gadget (without weights) corresponding to TC(τ)

is plugged inside the triangle of vertices a, b, c. Both gadgets preserve planarity

We show how to handle large-child paths in parallel. This will suffice to obtain a
small depth circuit.

Theorem 5.2 Counting perfect matchings in K5-free graphs is in TC2.

Recall that the number of perfect matchings in planar graphs can be com-
puted in TC1. Hence, for every component node C which is planar or M8 and
has parent π0, we have a TC1-circuit which computes #pm(G(T (C)) − β) for
every β ⊆ π0. We combine these circuits according to the edge relation in the
component trees. I.e., we connect the output of a subcircuit for a node to the
input of the subcircuit corresponding to its parent node. To obtain a circuit with
polylogarithmic depth we deviate from the circuit construction at large children in the
tree.

We will compute the number of perfect matchings in the components on a large-
child path in parallel. We do this for all possible input values of a subcircuit. Recall
that a subcircuit gets edge weights as input which can be large. Therefore we use the
Chinese remainder representation to represent large numbers, i.e., all computations
are done modulo p for enough small prime numbers p.

5.1 The Computation Graph

Recall that we have tri- and 4-connected component trees in the decomposition pro-
cess of a K5-free connected graph. We define a new tree, the computation graphK of
a K5-free biconnected graph G which combines the tri- and 4-connected component
trees into one tree. Informally we start with the triconnected component tree T of G

and replace every non-planar component node C 	= M8 of the triconnected compo-
nent tree T by the 4-connected component tree TC . More precisely, K is defined as
follows.

Theory Comput Syst (2016) 59:416–439 431

Definition 5.3 The computation graph K of a K5-free biconnected graph G has the
same nodes as the triconnected component tree T of G, but instead of the node for a
non-planar component C 	= M8, it has all the nodes of the 4-connected component
tree TC .

The edges between nodes within T or within a TC are the same as in these trees,
respectively. For a non-planar component C 	= M8 in T let π0 be the parent of C

in T and π1, . . . , π� be its children. Let D be the root of TC . Then we define an
edge between π0 and D. Furthermore for every child πi, i ∈ {1, . . . , �} there is a
unique node in TC connected to it. This unique node is the node where the gadget of
G(T (πi)) of the algorithm of Section 4 is plugged in.

Note that when we plug in a tree TC in T for some non-planar nodes C 	= M8
in T , then the children of C and its parent are connected to exactly one node in
TC . Therefore K is again a tree. We can assume that K is a rooted tree. Recall
that the tri- and 4-connected component trees of G can be computed in logspace
[22], and hence, this also holds for K. The following lemma summarizes the
observations.

Lemma 5.4 The computation graph K of a biconnected graph G is a tree. It can be
computed in logspace.

Let C be a component in T with parent separating pair π . We want to compute
#pm(G(T (C)) − β), for any β ⊆ π . If C 	= M8 is non-planar and D is a component
in TC with parent separating triple τ , then we also want to compute #pm(G(TC(D))−
γ − β), for any γ ⊆ τ . Hence component D does not only depend on its parent
separating set node τ , but additionally on a separating pair π . We define a set VK
which covers all possibilities of β and γ .

Let R0 be the root in K and let S be any separating pair or triple node in K. Let
P be a simple path from R0 to S. Let Ŝ be the separating pair node with shortest
distance to S on P . I.e. Ŝ = S in case S is a separating pair node. We define VK(S) =
P(S) ∪ P(Ŝ), where P denotes the power set. Let μ = |VK(S)| ≤ 22 + 23.

For a nodeN inK, the subtree ofKwith rootN is denoted byK(N). The subgraph
G(K(N)) of G associated with K(N) is defined similar as in Definition 3.4 for the
triconnected component tree.

Because all component nodes in K are planar components or M8, the number of
perfect matchings in these components can be computed in TC1.

Lemma 5.5 Let S be a separating set node and S1, . . . , S� be all the descendant
separating set nodes at distance two in K. The following function f is in TC1: on
input of

• #pm(G(K(Si)) − κi) for i = 1, . . . , � and κi ∈ VK(Si),
• the number of vertices in G(K(Si)) for i = 1, . . . , �,
• κ ⊆ VK(S),

the output of f is #pm(G(K(S)) − κ).

432 Theory Comput Syst (2016) 59:416–439

Proof Let N be a component node in the level between S and the Si’s in K. In
dependence of the number of vertices of Si and the number of vertices in G(K(Si))

we determine the correct gadget in Figs. 2 and 4 and add it to the vertices of Si . The
weights of the gadgets come from the input values #pm(G(K(Si)) − κi). Then the
vertices of κ are removed in N to obtain a component node N ′. Clearly, N ′ is still
planar. Hence, the number of weighted perfect matchings in N ′ can be computed in
TC1 [19].

This has to be done in all the component nodes between S and the Si’s. Then we
have a sum and product of many numbers modulo some small prime number. Recall
that modulo division as well as addition and multiplication of n numbers with n bits
is in TC0 [26].

The lemma handles the case of component nodes and it remains to stick the results
together at the nodes of separating pairs and triples in K. Therefore we reduce K by
removing all the component nodes.

Definition 5.6 Let K be the computation graph of G. The reduced computation
graph K̂ of K is defined by the following process: for every component node N in
K with parent S and children S1, . . . , S�, remove N from K and instead draw edges
between S and S1, . . . , S�.

Similar as K, the reduced computation graph K̂ is a tree and can be computed in
logspace. We argue that K̂ has at most n nodes: Observe that a vertex of G which
is part of a separating set will occur in several nodes of K. However, when we go
down in K from one component node N via a separating set node to the next com-
ponent node N ′, then N ′ will contain at least one vertex v of G which is not in
N . Moreover, all nodes in K that contain v are below N ′. It follows that K has
at most n component nodes. Between two component nodes in K, there is a sepa-
rating set node. Therefore K has at most n separating set nodes, and these are all
the nodes of K̂.

The tree K̂ may have depth up to n. To evaluate K̂ efficiently in parallel, we
have to do some depth reduction. The reason for the large depth are the large chil-
dren: let T be a tree with root r . If v is a non-large child of r , then we have
|T (v)| ≤ |T (r)|/2. Hence, any simple path in T from r to a leaf along non-large
children has length at most log n. However, paths that contain large children could
be long. Recall that a large-child path is a path of maximal length such that every
node on the path, except the first node, is a large child of its parent. Note that
there can be several disjoint subpaths on a path from the root to a leaf that are
large-child paths. The next lemma states that there are only few large-child paths on
any path in T .

Lemma 5.7 Let p be a path from the root to a leaf node in a tree T . Then we have

(i) the number of large-child paths on p is at most log n,
(ii) the number of nodes on p that are not large children is at most log n.

Theory Comput Syst (2016) 59:416–439 433

Proof Consider two consecutive large-child paths p1, p2 on p. Say, the first path p1
goes from s1 to t1, and p2 goes from s2 to t2. Because we defined large-child paths
to be of maximal length, t1 has no large child. Hence we have

|T (s2)| ≤ |T (t1)|/2 < |T (s1)|/2 .

Now the claim follows.

5.2 Circuit Construction

The computation tree K can be computed in logspace from the input graph G. Since
L ⊆ TC1, we may think of K, respectively K̂, being the output of a TC1-circuit, in
some appropriate coding. The output contains information about

• the vertices of G that are in one component node or separating set node in K,
• the number of vertices ins G(K(N)), for every node N ,
• the edges that are between the nodes of K and K̂,
• the type of a node, i.e. whether it is the root or a leaf, or a large child,
• all the large-child paths in K̂.

Our goal is to evaluate K̂, as we did in the sequential algorithm in Section 5.
However, K̂ depends on the input graph G and our circuit has to work for all graphs
with the same number n of vertices. We construct the circuit in levels, where there is a
subcircuit for every node of K̂ in each level. Every subcircuit in one level is connected
to every subcircuit of the next level. These connections represent the potential edge
connections in K̂. The actual edges in a given K̂ are then activated by the results of
the TC1-circuit that computes K̂.

Consider a node S in K̂ and let S1, . . . , S� be its children in K̂. We want to compute
#pm(G(K(S)) − κS), for κS ∈ VK(S). If S has no large child then there is a TC1-
circuit as described in Lemma 5.5, where the input values are obtained from lower
circuit levels.

Because the depth of K̂ can be as large as n, we cannot afford such a level of
subcircuits at any depth of K̂. That is, we have to deviate from the sequential bottom-
up evaluation of K̂ and do some kind of depth-reduction. What causes the large depth
are the large-child paths. We will parallelize the computation along the large-child
paths with the balanced binary tree method, see [11]. By Lemma 5.7, the number of
large-child paths is bounded by n.

Consider a large-child path S = S̃0, S̃1, . . . , S̃t in K̂. For each S̃i we place many
TC1-circuits in parallel as shown in Fig. 6, namely one circuit for each possible value
of

• #pm(G(K(S̃i+1)) − κS̃i+1
) modulo p,

• κS̃i+1
∈ VK(S̃i+1), and

• prime p.

434 Theory Comput Syst (2016) 59:416–439

Fig. 6 a We place many TC1-circuits for each S̃i in parallel, namely one for each possible weighting
scheme for the gadget of K̂(S̃i+1). The circuits for the non-large children S1, . . . , S� are indicated by
C(κ

(r)
Sj

), for κ
(r)
Sj

∈ VK(Sj) and j ∈ {1, . . . , �}. They are connected to all the TC1-circuits for S̃i . b For all

nodes S̃0, S̃1, . . . , S̃t−1 along a large-child path, there are μpμ many circuits in parallel, since for a node
S̃i , there are μ different sets κS̃i

∈ VK(S̃i) and pμ many different possibilities for the values of K̂(S̃i+1)

Assume for the moment, that for each S̃i of the large-child path, the subtrees at
the non-large children of S̃i have already been evaluated. We use a flag to indicate
when the assumption is fulfilled. We compose the functions computed by the circuits
for each S̃i in a binary tree like fashion. In the bottom layer, the composition of the
circuits for S̃2i−1 and S̃2i means: for each circuit C for S̃2i we put an AC0-circuit to
select the circuit for S̃2i−1 which uses the output of C as input. Such a circuit exists,
since we have a circuit for S̃2i−1 for every possible output of C. Clearly, we combine
only circuits for the same prime p.

We continue to combine the resulting circuits in higher levels similarly. After log t

levels, we have composed the circuits of the whole large-child path. Then the correct
values #pm(G(K(S)) − κS) for all κS ∈ VK(S) are computed at the output gates of
the constructed circuit. The whole composition circuit is in AC1. A schematic view
is shown in Fig. 7.

We bound the depth of the resulting circuit. By Lemma 5.7 there are at most log n

nodes which are non-large children on every path. Therefore log n levels suffice to
evaluate K̂. Each level consists of TC1-circuits to compute the number of perfect
matchings in some planar component, followed by AC1-circuits to evaluate large-
child paths. Therefore we obtain circuits in TC2, for every prime p.

Every prime p has at most O(log n) many bits. For b ∈ Z
∗
p its inverse

element b−1 can be computed in TC0. Hence fractions like a/b that occur

Theory Comput Syst (2016) 59:416–439 435

Fig. 7 A schematic view of the balanced binary tree method is shown for a large-child path S̃0, . . . , S̃7.
Except for the rightmost one, every box in the bottom row represents μpμ many circuits, one for every
possible result of K̂(S̃i) and every possible κ

as weights in the gadgets in the 4-connected components can be replaced by
ab−1 ∈ Zp.

It remains to combine the results of the different primes from the Chinese
remainder representation. This finishes the proof of Theorem 5.2.

Kulkarni, Mahajan, and Varadarajan [15] showed that for a any class of bipartite
graphs which is

• closed under edge deletion and
• the number of perfect matchings can be computed in NC,

a perfect matching can be constructed in NC. More precisely, the construction is a
NC2-computation relative to counting perfect matchings in one level of the NC2-
circuit. Since K5-free graph are closed under edge-deletion, we get the following
corollary of Theorem 5.2.

Corollary 5.8 Constructing a perfect matching in a bipartiteK5-free graph is in TC2.

5.3 Excluding a Singly-Crossing Graph

Robertson and Seymour [20] define the notion of a singly-crossing graph.

Definition 5.9 The crossing number of a graph G is the minimum number c such
that G has an embedding in the plane with c edge crossings. A graph H is singly-
crossing if H is isomorphic to a minor of a graph G with crossing number at most
one.

436 Theory Comput Syst (2016) 59:416–439

For example, K5 and K3,3 have crossing number one and are therefore singly-
crossing. But a singly-crossing graph can have a crossing number larger than one.
Figure 8 shows an example.

Robertson and Seymour showed a decomposition for H -free graphs, for any
singly-crossing graph H , which is similar to that for K5-free and K3,3-free graphs.
The only difference is that the 4-connected components in the last step of the
decomposition may be either planar or of bounded treewidth.

Theorem 5.10 [20] For every singly-crossing graph H there is a constant wH such
that every H -free 4-connected graph is planar or has treewidth at most wH .

Demaine et al. [6] showed that for any singly-crossing graphH , the decomposition
of an H -free graph G into planar components and components of bounded treewidth
can be computed in polynomial time. A technical part in the paper of Demaine et al.
is to show that the components they compute in their decomposition are all minors
of G, and therefore Theorem 5.10 is applicable to these components. However, their
decomposition is slightly different from the one presented in Section 3. A technical
assumption made by Demaine et al. is that we should not split a component along
a separating triple τ if it generates just two split components and one of them has
only one vertex besides τ . We can easily adapt this in our decomposition algorithm
in Section 3: instead of putting our gadget for the single vertex that would be split
off by τ , we simply leave the vertex inside triangle τ . This maintains planarity and
the number of perfect matchings. With this modification, the proof in [6, Lemma 5]
shows that the components we compute are all minors of G. Furthermore, these
components are either planar or have bounded treewidth [6, Theorem 2].

Moreover, Elberfeld, Jakoby, and Tantau [9] showed that the number of perfect
matchings of graphs with bounded treewidth can be computed in logspace. This
remains true for weighted graphs with polynomial bounded weights, because an edge
of weight w can be replaced by a gadget of w unweighted many parallel edges as
shown in Fig. 9.

Putting things together, we conclude that our parallel counting algorithm extends
to the case of graphs with an excluded singly-crossing minor.

Fig. 8 Graph H has crossing number 2 and is singly-crossing, since it is isomorphic to the minor of G

obtained by contracting the edge between the gray vertices [6]. Graph H̃ is not singly-crossing

Theory Comput Syst (2016) 59:416–439 437

Fig. 9 A gadget to reduce the weighted perfect matching problem with polynomially bounded weights to
the unweighted perfect matching problem. The edge e = (u, v) with weight w shown in (a) is replaced by
the gadget shown in (b). For a perfect matching that does not use edge e, there is a unique corresponding
perfect matching with the gadget that uses the w middle edges of the gadget. For a perfect matching that
does use edge e there are w corresponding perfect matchings with the gadget

Corollary 5.11 For every singly-crossing graph H , the number of perfect matchings
in H -free graphs can be computed in TC2.

We remark that Curticapean [5] obtained the polynomial time version of Corollary
5.11 independently of our work.

6 Discussion

We presented efficient sequential and parallel algorithms to compute the number
of perfect matchings in K5-free graphs. Our result remains true for H -free graphs,
where H is a singly-crossing graph. This extends the work of Kasteleyn for planar
graphs and of Little and Vazirani for K3,3-free graphs.

After a talk about this result, Michael Saks asked for which minors the count-
ing problem for perfect matching remains #P-hard. Observe that the singly-crossing
graph H in Fig. 10 has a K5 and a K3,3 as a minor. Hence it is possible to count even
on graph classes which are neither K5- nor K3,3-free (but H -free). It is an interesting
open question for which minors counting remains #P-hard.

With respect to the construction problem for perfect matching, recall that we still
need the restriction to bipartite graphs to construct a perfect matching in parallel. We
pushed this now to bipartite H -free graphs, for any singly-crossing graph H . But it
remains a puzzling open question if a perfect matching can be constructed in parallel
in non-bipartite graphs, even in the planar case.

Valiant [24] gave a number of holographic reductions to planar perfect matchings.
By our result, perfect matchings can be efficiently counted in a much broader class

Fig. 10 The singly-crossing
graph H has K5 and K3,3 as a
minor

438 Theory Comput Syst (2016) 59:416–439

of graphs. Hence one can ask whether there are holographic algorithms for a wider
range of problems.

Acknowledgments We want to thank Radu Curticapean for pointing us to the literature about graphs
that have no singly-crossing minor which lead to Corollary 5.11. We are greatful to Rohit Gurjar for
indicating that our result on counting perfect matchings also yields the construction of a perfect matching
(Corollary 5.8).

References

1. Barahona, F.: Balancing signed toroidal graphs in polynomial time. Technical report, University of
Chile (1983)

2. Di Battista, G., Tamassia, R.: Incremental planarity testing. In: IEEE Symposium on Foundations of
Computer Science (FOCS), pp. 436–441 (1989)

3. Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components with SPQR-trees.
Algorithmica 15(4), 302–318 (1996)

4. Cayley, A.: Sur les déterminants gauches. J. Pure Appl. Math. 38, 93–96 (1847)
5. Curticapean, R.: Counting perfect matchings in graphs that exclude a single-crossing minor.

arXiv:1406.4056 (2014)
6. Demaine, E.D., Hajiaghayi, M., Nishimura, N., Ragde, P., Thilikos, D.M.: Approximation algorithms

for classes of graphs excluding single-crossing graphs as minors. J. Comput. Syst. Sci. 69(2), 166–
195 (2004)

7. Datta, S., Nimbhorkar, P., Thierauf, T., Wagner, F.: Isomorphism for K3,3-free and K5-free graphs is
in log-space. In: Proceedings of the 29th Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS), pp. 145–156 (2009)

8. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965)
9. Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems of Bodlaender and Courcelle.

In: 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 143–152 (2010)
10. Galbiati, G., Maffioli, F.: On the computation of pfaffians. Discrete Appl. Math. 51(3), 269–275

(1994)
11. Gibbons, A., Rytter, W.: Efficient Parallel Algorithms. Cambridge University Press, Cambridge

(1988)
12. Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)
13. Hopcroft, J.E., Tarjan, R.E.: A V logV algorithm for isomorphism of triconnected planar graphs. J.

Comput. Syst. Sci. 7(3), 323–331 (1973)
14. Kasteleyn, P.W.: Graph theory and crystal physics. In: Harary, F. (ed.) Graph Theory and Theoretical

Physics, pp. 43–110. Academic, New York (1967)
15. Kulkarni, R., Mahajan, M., Varadarajan, K.: Some perfect matchings and perfect half-integral

matchings in NC. Chic. J. Theor. Comput. Sci. 2008(4), 1–26 (2008)
16. Kuratowski, K.: Sur le probléme des courbes gauches en topologie. Fundam. Math. 15, 271–283

(1930)
17. Little, C.H.C.: An extension of Kasteleyn’s method of enumerating the 1-factors of planar graphs. In:

Holton, D.A. (ed.) Combinatorial Mathematics, volume 403 of Lecture Notes in Mathematics, pp. 63–
72. Springer, Berlin Heidelberg (1974)

18. Miller, G.L., Ramachandran, V.: A new graph triconnectivity algorithm and its parallelization.
Combinatorica 12, 53–76 (1992)

19. Mahajan, M., Subramanya, P.R., Vinay, V.: The combinatorial approach yields an NC algorithm for
computing Pfaffians. Discrete Appl. Math. 143(1–3), 1–16 (2004)

20. Robertson, N., Seymour, P.: Excluding a graph with one crossing. In: Graph Structure Theory, pp.
669–675. American Mathematical Society (1993)

21. Tutte, W.T.: Connectivity in Graphs. University of Toronto Press, Toronto (1966)
22. Thierauf, T., Wagner, F.: Reachability in K3,3-free graphs and K5-free graphs is in unambiguous

log-space. Chic. J. Theor. Comput. Sci., To appear (2014)
23. Valiant, L.: The complexity of computing the permanent. Theor. Comput. Sci. 8, 189–201 (1979)

http://arxiv.org/abs/1406.4056

Theory Comput Syst (2016) 59:416–439 439

24. Valiant, L.: Holographic algorithms. SIAM J. Comput. 37(5), 1565–1594 (2008)
25. Vazirani, V.: NC algorithms for computing the number of perfect matchings in K3,3-free graphs and

related problems. Inf. Comput. 80(2), 152–164 (1989)
26. Vollmer, H.: Introduction to Circuit Complexity. Springer, Berlin (1999)
27. Wagner, K.: Über eine Eigenschaft der ebenen Komplexe. Math. Ann. 114(1), 570–590 (1937)

	Counting the Number of Perfect Matchings in K5-Free Graphs
	Abstract
	Introduction
	Definitions and Notations
	Decomposition of Graphs
	The Triconnected Components
	The 4-Connected Components
	Properties of K5-Free Graphs

	Counting Perfect Matchings in K5-Free Graphs
	The Triconnected Component Tree
	The 4-Connected Component Tree

	Counting Perfect Matchings in K5-Free Graphs in Parallel
	The Computation Graph
	Circuit Construction
	Excluding a Singly-Crossing Graph

	Discussion
	Acknowledgments
	References

