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Equilateral Triangles and the Fano Plane

Philippe Caldero and Jérôme Germoni

Abstract. We formulate a definition of equilateral triangles in the complex line that makes
sense over the field with seven elements. Adjacency of these abstract triangles gives rise to the
Heawood graph, which is a way to encode the Fano plane. Through some reformulation, this
gives a geometric construction of the Steiner systems S(2, 3, 7) and S(3, 4, 8). As a conse-
quence, we embed the Heawood graph in a torus, and we derive the exceptional isomorphism
PSL2(F7) � GL3(F2). The study of equilateral triangles over other finite fields shows that
seven is very specific.

1. EQUILATERAL TRIANGLES AND CROSS-RATIO. Three points b, c, and d
in C form an equilateral triangle if and only if the ratio (d − b)/(c − b) is − j or
− j2, where j is a primitive cubic root of unity. With a (projective) view to extend
the notion to other fields, this can be written as [∞, b, c, d] ∈ {− j,− j2}, where the
bracket denotes the cross-ratio of four distinct elements a, b, c, d ∈ P

1(C):

[a, b, c, d] = c − a

d − a
× d − b

c − b
.

We use the usual conventions about infinity: If α ∈ C
∗, then α/0 = ∞, and if

α, β, γ, δ ∈ C are such that αδ − βγ �= 0, then (α∞ + β)/(γ∞ + δ) = α/γ .

Figure 1. Equilateral triangle in the complex line

Definition. Let K be a field containing a primitive cubic root of unity j . Then, as
in C, there are two such roots that are the roots of X 2 + X + 1. An unordered triple
{b, c, d} (in short: bcd) of distinct points in K is said to be an equilateral triangle if
[∞, b, c, d] ∈ {− j,− j2}.

More generally, an equianharmonic quadrangle is a quadruple of distinct points
{a, b, c, d} in P

1(K) such as [a, b, c, d] ∈ {− j,− j2}.

Remark. Harmonic quadrangles are a projective substitute for the notion of middle
in affine geometry in the following sense. A quadruple {a, b, c, d} is harmonic, i.e.,
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[a, b, c, d] ∈ {−1, 2, 1/2}, if and only if, when one point is mapped to infinity by a
homography, one of the other three is mapped to the middle of the last two. Similarly,
a quadrangle is equianharmonic if an only if, when one point is mapped to infinity, the
other three are mapped to an equilateral triangle.

These two sets of values are remarkable in the following sense. By permuting
the four variables in the cross-ratio λ = [a, b, c, d], one obtains six different values,
namely λ, (λ− 1)/λ, 1/(1 − λ), 1/λ, 1 − λ, and λ/(λ− 1) unless the quadrangle is
equianharmonic (respectively, harmonic), in which case there are only two (respec-
tively, three) different values. In particular, in the definition, the order of points and the
choice of a cubic root j versus the other ( j2) are irrelevant.

For the sake of completeness, we prove well-known facts about PGL2(K) and cross-
ratio. Recall that PGL2(K) (respectively, PSL2(K)) is the group of homographies h :
P

1(K) → P
1(K), z �→ (αz + β)/(γ z + δ) such that αδ − βγ is in K

∗ (respectively, is
a square in K

∗). (If every scalar is a square, PSL2(K) = PGL2(K).)

Lemma 1. The group PGL2(K) acts simply transitively on ordered triples of distinct
points of P1(K). The cross-ratio is invariant under PGL2(K).

If −1 is not a square in K
∗, the group PSL2(K) acts transitively on unordered

triples, but it does not act transitively on ordered triples. If −1 is a square in K
∗

and there is an element of K that is not a square, the group PSL2(K) does not act
transitively on unordered triples.

Proof. Let (a, b, c) be a triple of distinct points. The homography h defined by

∀z ∈ P
1(K), h(z) = c − a

c − b
× z − b

z − a

is the unique element in PGL2(K) that maps (a, b, c) to (∞, 0, 1) (if ∞ ∈ {a, b, c},
simply erase the corresponding factors). Invariance of cross-ratio is easy to check.

Now, assume −1 is not a square. Then the homography s defined by s(z) = 1 − z
does not belong to PSL2(K) so that either h or sh does. Since s maps (∞, 0, 1) to
(∞, 1, 0), the unicity claimed above shows that PSL2(K) is not transitive on ordered
triples. On the other hand, both h and sh map {a, b, c} to {∞, 0, 1} and one of them
lies in PSL2(K). Thus, PSL2(K) is transitive on unordered triples.

Eventually, if −1 is a square, then s ∈ PSL2(K). Let S be the order-6 subgroup of
PSL2(K) generated by s and t : z �→ (0z + 1)/(−z + 1). It stabilizes {∞, 0, 1} and
every permutation of this set can be realized by an element of S. Let λ ∈ K for which
there is h ∈ PSL2(K) such that h({∞, 0, λ}) = {∞, 0, 1}. Then λ is a square, which
implies the last statement of the lemma. Indeed, if composing by an element of S
if necessary, then one can assume that h(∞) = ∞, h(0) = 0, and h(λ) = 1; hence,
h(z) = z/λ, and, since h ∈ PSL2(K), λ is a square.

2. EQUIANHARMONIC QUADRANGLES OVER F7. Let K = F7 be the field
with seven elements. Since 7 − 1 is a multiple of 3, there are two primitive cubic
roots of unity in K, namely j = 2 and j2 = 4. For example, note that the quadrangles
Q3 = {∞, 0, 1, 3} and Q5 = {∞, 0, 1, 5} are equianharmonic.

Lemma 2. There are 28 equianharmonic quadrangles in P
1(F7).

Proof. Observe that the cross-ratio is a homography with respect to every variable.
Hence, given three distinct points a, b, c in P

1(F7) and λ in P
1(F7), there is a unique d
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such that [a, b, c, d] = λ. If λ /∈ {∞, 0, 1}, the point d is automatically distinct from a,
b, and c. By multiplying the number of triples by the number of admissible values for
the cross-ratio, one obtains 8 × 7 × 6 × 2 ordered quadruples and 8 × 7 × 6 × 2/4!
= 28 equianharmonic quadrangles.

Lemma 3. Equianharmonic quadrangles form a single orbit under PGL2(F7), and
two orbits under PSL2(F7).

Proof. Let Q = {a, b, c, d} be an equianharmonic quadrangle. Let h be the homog-
raphy that maps (a, b, c) to (∞, 0, 1). Then h(d) = [∞, 0, 1, h(d)] = [a, b, c, d].
Since Q is equianharmonic, h maps Q to {∞, 0, 1, 3} or {∞, 0, 1, 5}. Since s : z �→
1 − z exchanges these two quadrangles, h or sh maps Q to {∞, 0, 1, 3}, which proves
the first claim.

Recall that the cardinality of the orbit of Q3 = {∞, 0, 1, 3} under a group G acting
on the set of quadrangles is |G|/|G Q3 |, where G Q3 is the stabilizer of Q3. Besides,
the order of GL2(F7) is the number of bases of F2

7, that is (72 − 1)× (72 − 7); hence,
the order of PGL2(F7) = GL2(F7)/F

∗
7I2 is 336. Since SL2(F7) is the kernel of the

determinant, which is surjective, its order is also |GL2(F7)| /|F∗
7| = 336. Finally,

since only two scalar matrices lie in SL2(F7), namely ±I2, the order of PSL2(F7) is
336/2 = 168.

Since PGL2(F7) acts transitively on the 28 quadrangles, the stabilizer A of Q3 in
PGL2(F7) has cardinality 336/28 = 12. Since the group A stabilizes the set Q3, it acts
on its elements. This action is faithful. By lemma 1, if a homography fixes three points,
it is the identity. Since its order is 12, it is isomorphic to the alternating group A4

(the unique subgroup of index 2 in the symmetric group). In fact, using the proof
of lemma 1, let us look for homographies that act on Q3 like double transpositions.
One finds that z �→ 3/z acts on Q3 as (∞0)(13); that z �→ (z − 3)/(z − 1) acts as
(∞1)(03), and z �→ (3z − 3)/(z − 3) acts as (∞3)(01). These are involutions, and
they commute on Q3, so they commute on P

1(F7).
The point is that these involutions belong to PSL2(F7). Indeed, the determi-

nants of the corresponding matrices are squares. Hence, A ∩ PSL2(F7) contains a
subgroup K � (Z/2Z)2 of order 4; besides, it also contains the order-3 element
z �→ 1/(1 − z) that permutes {∞, 0, 1} cyclically and fixes 3. Hence, the group A
is included in PSL2(F7), and A is the stabilizer of Q3 in PSL2(F7). Therefore, the
PSL2(F7)-orbit of Q3 has cardinality 168/12 = 14. Since Q5 = {∞, 0, 1, 5} is in the
same PGL2(F7)-orbit as Q3, its stabilizer is conjugated to A, and the orbit of Q5 under
PSL2(F7) has cardinality 14 too.

Lemma 4. The complement of an equianharmonic quadrangle in P
1(F7) is equian-

harmonic. Moreover, both are in the same orbit under PSL2(F7).

Proof. We start with an example: [∞, 0, 1, 3] = 3 = [4, 2, 5, 6]. The homogra-
phy defined by h(z) = 5(z − 2)/(z − 4) = (6z + 2)/(4z + 5) maps (4, 2, 5, 6) to
(∞, 0, 1, 3), and h belongs to PSL2(F7). This proves the claim for {∞, 0, 1, 3}.

Now, let Q = {a, b, c, d} be an equianharmonic quadrangle. By lemma 3, there is a
homography g ∈ PGL2(F7) such that g(Q) = {∞, 0, 1, 3}. Then the bijection g maps
the complement of Q to {2, 4, 5, 6}, which is equianharmonic. Moreover, g−1hg maps
the complement of Q to Q. This proves the claim for a general Q.

3. EQUILATERAL TRIANGLES OVER F7.
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Corollary 5. There are 14 equilateral triangles over F7. They are the following ones:

013��
1
z ��

z+1
��

124

z+1
��

235

z+1
��

346

z+1
��

450

z+1
��

561

z+1
��

602

015
z+1

�� 126
z+1

�� 230
z+1

�� 341
z+1

�� 452
z+1

�� 563
z+1

�� 604.

Proof. By lemma 4, one can arrange the 28 equianharmonic quadrangles in 14
complementary pairs. In a given pair, exactly one quadrangle contains ∞. Adding
or withdrawing ∞ gives a one-to-one correspondence between equilateral triangles
and equianharmonic quadrangles containing ∞, hence between equilateral triangles
and pairs of complementary equianharmonic quadrangles (e.g., 013 corresponds to the
pair

{{∞, 0, 1, 3}, {2, 4, 5, 6}}). Hence, the first statement holds.
To write a list, one starts with 013 and 015. Using invariance of ∞ under affine

transformations, one builds twelve new triangles out of the first two with the translation
z �→ z + 1. These are the rows of the list in the corollary.

Remark. The vertical arrow in the statement of corollary 5 has the following meaning.
The triangle 013 corresponds to the pair

{{∞, 0, 1, 3}, {2, 4, 5, 6}}. The homography
z �→ 1/z maps this pair to

{{∞, 0, 1, 5}, {2, 3, 4, 6}}, which corresponds to 015. This
extends to an action of PGL2(F7) on triangles.

Lemma 6. There is a canonical action of PGL2(F7) on equilateral triangles. All
triangles are in the same PGL2(F7)-orbit, but there are two PSL2(F7)-orbits described
by the lines of corollary 5.

Proof. By invariance of cross-ratio, a homography in PGL2(F7) maps an equian-
harmonic quadrangle to another one. Since this action on parts of P1(F7) commutes
with taking the complement, it maps a pair of complementary equianharmonic quad-
rangles. Hence, the group PGL2(F7) acts on the set of pairs of complementary equian-
harmonic quadrangles. But there is a one-to-one correspondence between such pairs
and equilateral triangles; one inherits an action of PGL2(F7) on triangles. If abc is a
triangle and g ∈ PGL2(F7), one defines g · abc as the triangle corresponding to the
pair g · {{∞, a, b, c},P1 \ {∞, a, b, c}}.

Two triangles abc and a′b′c′ are in the same PGL2(F7)-orbit by lemma 1. The
homography that maps (a, b, c) to (a′, b′, c′) also maps

{{∞, a, b, c},P1 \ {a, b, c}}
to

{{∞, a′, b′, c′},P1 \ {a′, b′, c′}}.
As for PSL2(F7)-orbits, lemma 4 implies that the pairs of the form {Q,P1 \ Q},

where Q runs over a PSL2(F7)-orbit of quadrangles, are orbits of pairs. Hence, by
lemma 3, there are two orbits of pairs, corresponding to two orbits of triangles. Since
triangles in the same line in corollary 5 are in the same orbit (simply apply z �→ z + 1),
the two lines are exactly the two orbits.

Example. Let h(z) = 1/z. Then h
({∞, 0, 1, 3}) = {0,∞, 1, 5}, so h maps the tri-

angle 013 to 015; moreover, h
({∞, 1, 2, 4}) = {0, 1, 2, 4} = P

1(F7) \ {∞, 3, 5, 6} so
that h maps the triangle 124 to 356.
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Equilateral triangles over F7 as equilateral triangles on a torus. Say that two
(equilateral) triangles (over F7) are adjacent if they have two vertices in common.
It is easy to check that a triangle in either line of corollary 5 is adjacent to exactly three
triangles, and all three lie on the other line. The upshot is that one can arrange triangles
over F7 as equilateral triangles in the real plane in a periodic manner. By gluing the
sides of a fundamental parallelogram, one tiles a torus by 14 triangles (Figure 2).

Figure 2. Triangles over F7 as triangles on a torus

The picture is more appealing when one draws the actual adjacency graph �7: Its
vertices are triangles; there is an edge between two triangles if they are adjacent. In the
torus, the meeting points of triangles become seven hexagons that define a tiling (Fig-
ure 3). Since each hexagonal face touches all the others, the chromatic number of the
torus is at least 7. A polyhedral version of this tiling was constructed by L. Szilassi [7].

Figure 3. Seven hexagons tiling a torus

Equilateral triangles and the Fano plane. Forgetting the tilings, let us consider the
graph �7 with 14 vertices labeled by equilateral triangles over F7, where two vertices
are connected if the corresponding triangles are adjacent. This gives rise to a graph
known as the Heawood graph (see [5]). It is bipartite because a triangle on a line of
corollary 5 is adjacent to triangles on the other line.

The Heawood graph is the incidence graph of the Fano plane: One can label vertices
and lines of the Fano plane by triangles so that adjacency of triangles corresponds to
incidence (Figure 4).
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Figure 4. Incidence of triangles: Heawood graph �7 and Fano plane

Application: Two exceptional isomorphisms.

Theorem 7. One has: PSL2(F7) � GL3(F2).

Proof. One can label vertices of the Fano plane by nonzero vectors in F
3
2 so that

the third vertex on the line containing v and v′ is labelled by v + v′ (put, for instance,
the canonical basis vectors on the vertices of the triangle and use this rule to complete
the labelling). Hence, a permutation f of vertices and lines of the Fano plane, once
completed into a map F

3
2 → F

3
2 by setting f (0) = 0, is additive. However, on a prime

field, additivity is equivalent to linearity so that automorphisms of the Fano plane are
linear automorphisms of F3

2. This is in fact a special case of the “fundamental theorem
of projective geometry” ([1, Theorem 2.26]) by which any incidence preserving map
is a projective map, i.e., an element in PGL3(F2) � GL3(F2).

Remark. The action of PGL2(F7) on PSL2(F7) by conjugation embeds the former
group in Aut(PSL2(F7)). On the other hand, the automorphism group Aut(GL3(F2))

is the semidirect product of GL3(F2) and Z/2Z acting by g �→ (gT )−1. Hence,
PGL2(F7) � Aut GL3(F2).

One can identify PGL2(F7) to its image in the automorphism group of the Heawood
graph �7.

Corollary 8. Aut(�7) = PGL2(F7).

Proof. The Heawood graph �7 is bipartite; its vertices are colored in black and
white as in Figure 4. Since a given vertex can be characterized as the unique vertex
adjacent to three suitable vertices of the other color, an automorphism that fixes all
vertices of a given color is the identity.

Let ϕ ∈ Aut(�7). Fix a vertex, say 013. If ϕ(013) is not the same color as 013,
one replaces ϕ by hϕ, where h : z �→ 1/z. Theorem 7 means that the group of color-
preserving automorphisms of �7 is PSL2(F7). So one can find g ∈ PSL2(F7) such that
gϕ (or ghϕ) fixes all vertices the same color as 013. Then gϕ (or ghϕ) is the identity
so that ϕ ∈ PGL2(F7).

4. STEINER SYSTEMS. Recall a Steiner system with parameters (t, k, n), written
S(t, k, n), is a set of cardinality n and a collection of k-sets called blocks such that
every t-set is contained in a unique block.
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Proposition 9. An orbit under PSL2(F7) of equianharmonic quadrangles forms an
S(3, 4, 8). An orbit under PSL2(F7) of equilateral triangles forms an S(2, 3, 7) (here,
the action is the one defined in lemma 6).

To be more explicit, recall that a PSL2(F7)-orbit of triangles is but a line in corol-
lary 5. Starting from such an orbit, one rebuilds quadrangles by adding ∞ to every
triangle and by adding to the collection the complements of these quadrangles. For
instance, starting from the orbit containing 013, one builds the following S(3, 4, 8):

∞013 ∞124 ∞235 ∞346 ∞045 ∞156 ∞026
2456 0356 0146 0125 1236 0234 1345.

Proof. The underlying set of the S(3, 4, 8) is P
1(F7); blocks are quadrangles in

a given PSL2(F7)-orbit. To fix notations, let us consider that of {∞, 0, 1, 3}. Let
{a, b, c} be a 3-set. By lemma 1, there exists h ∈ PSL2(F7) that maps {a, b, c}
to {∞, 0, 1}. Then {a, b, c, h−1(3)} is an equianharmonic quadrangle in the same
PSL2(F7)-orbit as {∞, 0, 1, 3}. If {a, b, c} is included in some block {a, b, c, d}, then
h(d) = [∞, 0, 1, h(d)] = [a, b, c, d] ∈ {3, 5}. Since {∞, 0, 1, 5} is not a block (013
and 015 are not in the same line in corollary 5; see lemma 6), one has h(d) = 3, which
proves the unicity of a block containing {a, b, c}.

Now, the underlying set of the S(2, 3, 7) is F7; blocks are triangles in a fixed
PSL2(F7)-orbit, say, that of 013. A block is in particular a triple {a, b, c} such that
{∞, a, b, c} is equianharmonic. Hence, given a pair {a, b} in F7, the unique block con-
taining {a, b} is obtained by erasing ∞ from the unique equianharmonic triangle in
the PSL2(F7)-orbit of {∞, 0, 1, 3} that contains {∞, a, b}.

Remark. The passage from quadrangles to triangles follows the classical construction
of an S(t − 1, k − 1, n − 1) out of an S(t, k, n) by selecting blocks containing a fixed
point (here, ∞), then erasing it.

Remark. There are other ways to relate the Fano plane and the projective line over F7.
For instance, one can replace equilateral triangles by self-polar triangles with respect to
a conic in the projective plane or elementary 2-subgroups of PSL2(F7), i.e., isomorphic
to (Z/2Z)2. See, e.g., [3].

5. EQUILATERAL TRIANGLES OVER OTHER FIELDS. In this section, we
study the graph of equilateral triangles over other finite fields. Characteristic 7 turns
out to be the only one where a projective group governs an apparently affine situation.

Let K = Fq be a finite field of characteristic p �= 3 and cardinality q = pe. There
are cubic roots of unity j and j2 either in Fp or in Fp2 \ Fp, depending on the Legendre
symbol

(−3
p

)
. Let us assume that K contains them, i.e., that q ≡ 1 (mod 3). As above,

one defines a graph �q : Its vertices are equilateral triangles; two triangles are related
by an edge if they have a common side. Let �0

q be the connected component of �q that
contains the triangle 01d, where d = − j2.

Example. For q = 4, write F4 = {0, 1, j, j2}. There are four triangles, all of them are
equilateral, and �4 is the complete graph with 4 vertices.

Example. For q = 13, it is obvious that �13 has at least two connected components.
Indeed, let bcd be an equilateral triangle. Since −1 = 52 is a square in F13 so that
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− j2 is one too, b − c is a square if and only if c − b is a square if and only if d − b
= − j2(c − b) is a square. If one dare say so, this means that a side of a triangle is a
square if and only if its three sides are squares. Hence, there are two types of triangles:
triangles the sides of which are squares and the other ones (Figure 5).

Figure 5. Equilateral triangles over F13

Connected components of �q .

Proposition 10. There are q(q − 1)/3 equilateral triangles over Fq . The affine group
over Fq acts edge-transitively on �q . In any connected component of �q , there are:

• 2p vertices if p is odd and j ∈ Fp;
• 2p2 vertices if p is odd and j ∈ Fp2 \ Fp;
• 4 vertices if p = 2.

Proof. Given distinct points b and c in Fq , there are two points d such that bcd is
equilateral, namely d1 = b − j (c − b) and d2 = b − j2(c − b). Since every triangle
has three sides and since there are

(q
2

)
pairs bc = {b, c}, there are 2

(q
2

)
/3 = q(q − 1)/3

equilateral triangles.

Figure 6. Adjacent equilateral triangles

The adjacent triangles bcd1 and bcd2 with a common side bc are mapped to each
other by the affine involution sd : z �→ b + c − z. (If p is odd, this is the symmetry
with respect to the middle of bc; see Figure 6.) Indeed, sd interchanges b and c and,
with notation as above, d1 + d2 = 2b − ( j + j2)(c − b) = 2b + (c − b) = b + c.
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Let (T1, T2) = (bcd1, bcd2) and (T ′
1, T ′

2) = (b′c′d ′
1, b′c′d ′

2) be two pairs of adjacent
equilateral triangles. The affine map f : z �→ c′−b′

c−b (z − b)+ b′ sends b to b′, c to c′,
and d1 to d ′

1 or d ′
2 so that f maps (T1, T2) to (T ′

1, T ′
2) or (T ′

2, T ′
1), and f or sd ′

1
f maps

(T1, T2) to (T ′
1, T ′

2).
We claim that the connected component of a triangle T = bcd is its orbit under

the subgroup H generated by the involutions sd : z �→ b + c − z, sb : z �→ c + d − z,
and sc : z �→ d + b − z. Indeed, the three neighbors of T are sbT , scT , and sd T . More
generally, since H preserves adjacency, given h ∈ H , the three neighbors of hT are
hsbT , hscT , and hsd T (see Figure 6). This implies the claim.

Besides, the stabilizer of T in H is trivial. Indeed, elements of H are all of the form
s : z �→ αz + β for α ∈ {−1, 1} and β ∈ Fq . If p is odd, an involution z �→ −z + β

has only one fixed point: β/2; if it stabilized T = bcd, as it can act neither trivially
nor as a 3-cycle on {b, c, d}, it would permute two vertices, say b and c, and fix the
third one, say d. This would imply (b + c)/2 = d, which is absurd since {∞, b, c, d}
cannot be both harmonic and equianharmonic. Assume a translation z �→ z + β fixes
a triangle bcd, with β �= 0: Since it has no fixed point, it acts on {b, c, d} as a 3-cycle;
this forces 3β = 0, thus 3 = 0, which contradicts the standing assumption p �= 3.

Therefore, the cardinality of the connected component of T is the order of H . Thus,
it only remains to compute the order of H . First assume p is odd. Then H contains
an index 2 subgroup H0 generated by the translations scsb : z �→ z + b − c, sdsc :
z �→ z + c − d, and sbsd : z �→ z + d − b. Since b − c + c − d + d − b = 0, H0 is
generated by scsb and sdsc. Recall that d − b = − j (c − b) or d − b = − j2(c − b). If
j ∈ Fp, there is an integer k such that d − b = k(c − b) so that sdsc = (scsb)

−k , but
the order of scsb is p so that the order of H0 is p and the order of H is 2p. If j /∈ Fp,
then c − b and d − b span an Fp-vector space of dimension 2 so that the order of H0

is p2 and the order of H is 2p2. Finally, if p = 2, then sb, sc, and sd are translations of
order 2 and sd = sbsc so that the order of H is 4.

Remark. If p is odd, then �q is bipartite. Indeed, with notations as above, triangles
in the connected component of T split into {hT, h ∈ H0} and {hT, h ∈ H \ H0}; an
edge relates one vertex in each of these sets.

Corollary 11. All connected components of �q are isomorphic to �0
q and, in fact,

either to �0
p if j ∈ Fp or to �0

p2 if j ∈ Fp2 \ Fp.

Cycles of minimal length. From now on, p is assumed to be odd. We proceed to
show why p = 7 is exceptional.

Lemma 12. If p �= 7, then j /∈ {±2,±1/2}. If p = 7, then { j, j2} = {2, 1/2}.

Proof. Recall p �= 2, 3. The cases p = 5 and p = 7 are straightforward. For p > 7,
the integers (±2)2 + (±2)+ 1 are odd, and their absolute values are strictly less than
p so that j �= ±2 in Fq . This implies that j �= ±1/2 as well.

Lemma 13. Assume p is odd. Then �q has girth 6. The number of hexagons (cycles
of length 6) in any connected component of �q is:

• p if p �= 7 and j ∈ Fp;
• p2 if p �= 7 and j ∈ Fp2 \ Fp;
• 28 if p = 7.
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Proof. Let T = bcd be a triangle in �q . Thanks to the affine group, one can assume
without loss of generality that b = 0, c = 1, and d = − j2. By proposition 10 and its
proof, a path of length 	 starting at T is a sequence (T, sa1 T, . . . , sa1 · · · sa	T ), where
(a1, . . . , a	) ∈ {0, 1, d}	 is such that ai+1 �= ai if 1 ≤ i < 	. Such a path is a cycle if
and only if sa1 · · · sa	T = T , i.e., if sa1 · · · sa	 = id. Reversed sequences (a1, . . . , a	)
and (a	, . . . , a1) describe the same cycle traversed in the opposite direction.

Since p is odd, the relation sa1 · · · sa	 = id implies that 	 is even and that

a2 − a1 + a4 − a3 + · · · + a	 − a	−1 = 0 (§)

(recall that sa1sa2 is the translation by a2 − a1). The six differences a − a′ (where
a, a′ ∈ {0, 1, d}, a �= a′) are

0 − d = j2 d − 1 = j 1 − 0 = 1,
d − 0 = − j2 1 − d = − j, 0 − 1 = −1.

They are all distinct. This forces 	 > 4, since a2 − a1 + a4 − a3 = 0 would imply
a3 = a2 (and a4 = a1), which is excluded.

Since j2 + j + 1 = 0, one has sds0s1sds0s1 = id. This gives a hexagon, namely
(T, sd T, sds0T, sds0s1T, sds0s1sd T, sds0s1sds0T, T ); hence, �q has girth 6.

Now assume p �= 7. Let us count the hexagons. By lemma 12, the only zero sums
of three elements of {±1,± j,± j2} are j2 + j + 1 = 0 and − j2 − j − 1 = 0 (this is
wrong if p = 7). Hence, if (§) holds with 	 = 6, then {a2 − a1, a4 − a3, a6 − a5} is
{ j2, j, 1} or {− j2,− j,−1}. This means one must compose sds0, s1sd , and s0s1 in the
first case (resp. s0sd , sds1, and s1s0 in the second case) so that two consecutive sa’s are
different. This gives three relations for each case:{

sds0s1sds0s1 = s0s1sds0s1sd = s1sds0s1sds0 = id
s1s0sds1s0sd = sds1s0sds1s0 = s0sds1s0sds1 = id .

Recall that two relations read in reverse order, e.g., sds0s1sds0s1 and s1s0sds1s0sd ,
correspond to the same cycle. In other terms, every triangle lies in three hexagons. Each
connected component contains 2p triangles (respectively, 2p2) if j ∈ Fp (respectively,
j /∈ Fp), so there are 3 × 2p/6 = p (respectively, p2) hexagons.

For p = 7, we interpret the Heawood graph �7 as lines and planes in F
3
2. Up to

cyclic permutation and reversal, a hexagon is a sequence D1 ⊂ P12 ⊃ D2 ⊂ P23 ⊃
D3 ⊂ P31 ⊃ D1 where the Di ’s are distinct lines and the Pi j ’s are distinct planes.
Such a hexagon is determined by the three noncoplanar lines Di ’s (by the rule Pi j

= Di + D j ). There are seven lines in F
3
2, hence

(7
3

)
triplets of lines. There are seven

planes, each one contains three lines, hence seven triplets of coplanar lines. There
remain

(7
3

) − 7 = 28 hexagons.

Corollary 14. If p �= 2, 7, every edge is contained in exactly two hexagons.

Proof. Since the affine group acts edge-transitively on �q , all edges are contained
in the same number of hexagons. Assume that j ∈ Fp. There are 2p triangles, and
each of them belongs to three edges, so there are 3p edges. On the other side, there are
p hexagons, each of which contains six edges, so each edge belongs to (6p)/(3p) = 2
hexagons. If j /∈ Fp, simply replace p by p2.
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Proposition 15. Assume p �= 2, 7. All triangles in a given hexagon of �q contain
a unique common point in Fq . This induces a bijection between hexagons in the
connected component �0

q of the triangle 01d (where d = − j2) and the subgroup K
spanned by 1 and − j2 in Fq .

Figure 7. The relation sd s0s1sd s0s1 = id and the point 0 are associated to the same hexagon.

Proof. The scalar 0 is the unique one that belongs to every triangle in the hexagon
C = (T, sd T, sds0T, . . . , T ) (Figure 7). Recall the subgroup H0 generated by s0s1 and
s0sd from the proof of proposition 10. It is isomorphic to Fp if j ∈ Fp (respectively,
Fp2 if j /∈ Fp). For h ∈ H0, the scalar h(0) is the unique one in every triangle of
the hexagon hC = (hT, hsd T, hsds0T, . . . , hT ); moreover, H0 acts by translations on
scalars. So all hexagons hC are different. Since the number of hexagons is the order
of H0, the action of H0 on cycles is simply transitive, hence the proposition.

Remark. Let p �= 2, 7. Points of K , sides of equilateral triangles, and triangles in
�0

q form a combinatorial cell-complex C of dimension 2. Since two triangles share at
most one edge, this is orientable. Thus, C can be embedded into a surface, the Euler
characteristic of which is 0 (= 2p − 3p + p or 2p2 − 3p2 + p2). Then, �0

q is the dual
graph of the 1-skeleton of C . This extends the torus tilings in section 3 (Figures 8
and 9).

Figure 8. Equilateral triangles in �0
13 pave a torus ({− j2,− j} = {4, 10}).
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Figure 9. The graph �0
13 and its hexagons tile a torus ({− j2,− j} = {4, 10}).

Automorphisms of a connected component of �q . From now on, we assume that
p �= 2, 7. We introduce two “geometric” groups that act on the connected component
�0

q , then we identify its full automorphism group.
Let G be the group generated by s0 : z �→ 1 − j2 − z, s1 : z �→ − j2 − z, sd : z �→

1 − z and t : z �→ j (z − e)+ e, where d = − j2 and e = (0 + 1 + d)/3. The map t has
order 3; it stabilizes the subgroup K of Fq spanned by 1 and d = − j2 (note that K �
H0). Elements of G are the maps z �→ α(z − e)+ β + e, where α ∈ {±1,± j,± j2} (a
sixth root of unity) and β ∈ K . Hence, G has order 6p if j ∈ Fp (respectively, 6p2 if
j /∈ Fp).

Being affine, t preserves adjacency, so t acts on �q ; it fixes the triangle T = 01d,
so it acts on �0

q . The group G acts faithfully on �0
q . Indeed, the kernel of the action of

G is contained in the stabilizer S of T = 01d. But S contains the order-3 element t ,
and S intersects H trivially, so S embeds into G/H � Z/3Z (recall G is generated by
H and t); in other terms, S is generated by t . But t permutes cyclically the triangles
incident to T , so the kernel is trivial.

Assume moreover that j ∈ Fp2 \ Fp. Let σ : x �→ x p be the unique (Frobenius)
involution in the Galois group of Fp2/Fp. Let Ĝ be the group generated by σ and G
(in the symmetric group of Fp2 ). Then Ĝ has order 12p2. Since σ( j) = j2, σ preserves
equilateral triangles, so Ĝ acts on �q . Since σ sd fixes T = 01d, the group Ĝ acts on
�0

q . The action is faithful by the same kind of arguments as we used for G.

Lemma 16. Let T be a triangle in �0
q . The only automorphism of �0

q that fixes T , an
edge {T, T ′}, and that stabilizes a hexagon containing the edge {T, T ′} is the identity.

Proof. Assume an automorphism ϕ fixes T and T ′ adjacent to T and stabilizes a
hexagon containing T and T ′. The only automorphism of a hexagon with two con-
secutive fixed vertices is the identity so that ϕ fixes all vertices of the hexagon. Since
p �= 7, there is exactly one other hexagon containing T and T ′, which ϕ necessarily
fixes (vertex-wise). In particular, ϕ fixes the other two vertices that are adjacent to
T too. One can thus extend the assumption from one vertex to its adjacent vertices.
Hence, ϕ fixes vertex-wise the connected component of T .

Lemma 17. Assume p �= 7 and j ∈ Fp. There is no automorphism of �q that fixes two
adjacent triangles and permutes the two hexagons that contain them.

Proof. One can assume the fixed triangles are T = 01d and T ′ = 01d ′, with d =
− j2 and d ′ = − j . Since j ∈ Fp, hexagons are numbered by Fp according to which
scalar belongs to all triangles in the hexagon. Recall from proposition 15 that the (k +
1)th hexagon is the image of the k th one by s0s1 : z �→ z + 1.
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Assume an automorphism ϕ fixes T and T ′ and permuted the hexagons 0 and 1.
Consider the edge opposite to {T, T ′} in hexagon 0. It belongs to hexagons 0 and
−1, and it is mapped to the edge opposite to {T, T ′} in hexagon 1, which belongs to
hexagon 2. Hence, ϕ maps hexagon −1 to hexagon 2 and, more generally, hexagon k
to hexagon 1 − k for all k ∈ Fp (see Figure 9). However, ϕ necessarily fixes hexagon
d because it is the only one that shares a triangle with hexagons 0 and 1. Hence, one
has d = 1 − d, which contradicts lemma 12.

Theorem 18. Assume p �= 2, 7. Then the automorphism group of �0
q is either the

subgroup G of the affine group if j ∈ Fp or its twofold extension Ĝ if j ∈ Fp2\Fp.

Proof. Let ϕ be an automorphism of �0
q . Since H is transitive on vertices of �0

q and
t permutes cyclically the vertices of T and, therefore, the triangles adjacent to T , the
group G is transitive on oriented edges of �0

q . By composing by some ψ ∈ G, one can
thus assume that ψϕ fixes T and T ′ = sd T .

Assume j ∈ Fp. By lemma 17, ψϕ fixes both hexagons containing T and sd T too.
By lemma 16, ψϕ is the identity, so ϕ ∈ G.

Assume j ∈ Fp2 \ Fp. If ψϕ fixes a hexagon containing T and sd T , we can con-
clude as above. Otherwise, σ sd fixes T and sd T and permutes both hexagons contain-
ing this edge so that σ sdψϕ fixes T , sd T and a hexagon. By lemma 16, ϕ ∈ G.

Conclusion. We have seen how the geometric idea of equilateral triangles over F7

gives rise to natural constructions of combinatorial structures related to the Fano
plane–the Heawood graph, a tiling of a torus by seven hexagons, the Steiner systems
S(2, 3, 7) and S(3, 4, 8). Moreover, characteristic 7 is exceptional: Here, this notion
falls under projective geometry, while for other finite fields, it is essentially affine.
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