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Abstract: In 1998 the second author proved that there is an ε > 0 such
that every graph satisfies χ ≤ �(1 − ε)(� + 1) + εω�. The first author re-
cently proved that any graph satisfying ω > 2

3 (� + 1) contains a stable set
intersecting every maximum clique. In this note, we exploit the latter result
to give a much shorter, simpler proof of the former. Working from first
principles, we omit only some five pages of proofs of known intermedi-
ate results (which appear in an extended version of this paper), and the
proofs of Hall’s Theorem, Brooks’ Theorem, the Lovász Local Lemma, and
Talagrand’s Inequality. C© 2015 Wiley Periodicals, Inc. J. Graph Theory 81: 30–34, 2016
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1. INTRODUCTION

Much work has been done toward bounding the chromatic number χ of a graph in terms
of the clique number ω and the maximum size of a closed neighborhood � + 1, which
are trivial lower and upper bounds on the chromatic number, respectively. Recently, much
of this work has been done in pursuit of a conjecture of Reed, who proposed that the
average of the two should be an upper bound for χ , modulo a round-up:

Conjecture 1 [11]. Every graph satisfies χ ≤ � 1
2 (� + 1 + ω)�.

This conjecture has been proven for some restricted classes of graphs [1, 7, 6, 9],
sometimes in the form of a stronger local conjecture posed by King or superlocal
conjecture posed by Edwards and King [4, 2]; all three forms are known to hold in the
fractional relaxation [2].

For general graphs, we only know that we can bound the chromatic number by some
nontrivial convex combination of ω and � + 1:

Theorem 2 [11]. There exists an ε > 0 such that every graph satisfies

χ ≤ �(1 − ε)(� + 1) + εω�.

The original proof of this theorem is quite long and complicated, requiring a careful
probabilistic approach applied to a specific structural decomposition. In this note, we
give a much shorter, simpler proof that exploits the following new existence condition
for a stable set hitting every maximum clique, the proof of which from first principles is
itself short and simple:

Theorem 3 [5]. Every graph satisfying ω > 2
3 (� + 1) contains a stable set hitting

every maximum clique.

This result is a strengthening of a result of Rabern [10], which could be used to similar
effect.

2. A PROOF SKETCH

We sketch the proof here, prove the necessary lemmas in the following two sections, then
finally prove the theorem more formally.

Suppose G is a minimum counterexample to Theorem 2 for some fixed ε. Applying
Theorem 3 and Brooks’ Theorem tells us that G satisfies ω ≤ 2

3 (� + 1) and � > 1
ε
.

Our proof then considers two cases: If every neighborhood contains much fewer than(
�

2

)
edges, we can apply a simple probabilistic argument. Otherwise we have a vertex

v whose neighborhood contains almost
(
�

2

)
edges. The fact that ω ≤ 2

3 (� + 1) tells us
that there is a large antimatching in N(v) (i.e. a large matching in the complement of G
induced on N(v)), and since there are few edges between N(v) and G − v, we can take an
optimal coloring of G − N(v) − v and extend it to a coloring of G in which many pairs
of the antimatching are monochromatic, which is enough to contradict the minimality
of G.
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3. DEALING WITH SPARSE NEIGHBORHOODS

Theorem 10.5 in [8], which is a straightforward application of Talagrand’s Inequality,
gives us a bound on the chromatic number when no neighborhood contains almost

(
�

2

)
edges:

Theorem 4. There is a �0 such that for any graph with maximum degree � > �0

and for any B > �(log �)3, if no N(v) contains more than
(
�

2

) − B edges then χ(G) ≤
(� + 1) − B

e6�
.

We let α = B/
(
�

2

)
and restate this theorem as follows:

Corollary 5. There is a �0 such that for any graph with maximum degree at most
� > �0 and for any α > 2(log �)3/(� − 1), if no N(v) contains more than (1 − α)

(
�

2

)
edges then

χ(G) ≤ (� + 1) − α(� − 1)

2e6
≤

(
1 − α

2e6

)
(� + 1) + α

2e6
ω.

This is all we need for the case in which no neighborhood contains almost
(
�

2

)
edges.

4. DEALING WITH DENSE NEIGHBORHOODS

We need the following theorem to extend a coloring when we have a dense neighbourhood.

Theorem 6. Let α be any positive constant and let ε be any constant satisfying
0 < ε < 1

6 − 2
√

α. Let G be a graph with ω ≤ 2
3 (� + 1) and let v be a vertex whose

neighborhood contains more than (1 − α)
(
�

2

)
edges. Then

χ(G) ≤ max{χ(G − v), (1 − ε)(� + 1)}.
This immediately implies:

Corollary 7. Let ρ be a positive constant satisfying ρ ≤ 1
160 , let G be a graph with

maximum degree at most �, ω ≤ 2
3 (� + 1), and let v be a vertex whose neighborhood

contains at least (1 − ρ)
(
�

2

)
edges. Then

χ(G) ≤ max{χ(G − v), (1 − ρ)(� + 1)}.
Before we prove Theorem 6 we need to lay out one more simple fact:

Lemma 8. Every graph G contains an antimatching of size � 1
2 (n − ω(G))	.

Proof. Let M be a maximum antimatching; there are n − 2|M| vertices outside M,
and these vertices must form a clique. Thus ω(G) ≥ n − 2|M|; the result follows.

Proof of Theorem 6. We may assume that d(v) = � since if this is not the case we
can hang pendant vertices from v, and we may assume α < 1

144 , since otherwise no valid
value of ε exists. Our approach is as follows. We first partition the closed neighborhood
of v, denoted Ñ(v), into sets D1, D2, and D3 such that D1 and D2 are small, each u ∈ D2

has few neighbors outside D2 ∪ D3, and each u ∈ D3 has very few neighbors outside D3.
In particular, v ∈ D3. Then, using at most max{χ(G − v), (1 − ε)(� + 1)} colors, we
first color G − (D2 ∪ D3), then greedily extend the coloring to D2. Finally, we exploit
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the existence of a large antimatching in G|D3 and extend the coloring to D3 using an
elementary result on list colorings.

Since N(v) contains more than (1 − α)
(
�

2

)
edges, the number of edges between G −

Ñ(v) and Ñ(v) is less than �(� − 1) − 2(1 − α)
(
�

2

) = α(�2 − �). We set c1 = 1
2 and

c2 = √
α. We partition N(v) into D1, D2, and D3 as follows:

D1 = { u ∈ Ñ(v) | u has more than c1(� + 1) neighbors outside Ñ(v) }
D2 = { u ∈ Ñ(v) \ D1 | u has more than c2(� + 1) neighbors outside Ñ(v) \ D1 }
D3 = Ñ(v) \ (D1 ∪ D2)

Let β1 denote |D1|/(� + 1) and let β2 denote |D2|/(� + 1). Thus |D3| = (1 − β1 −
β2)(� + 1). Since there are fewer than α�2 edges between Ñ(v) and G − Ñ(v), we
can see that |D1| < α�2/(c1(� + 1)) < 2α�. Further, since α < 1

144 , we have 2α� <
1
6

√
α(� + 1). Note that every vertex in D1 has more neighbors outside Ñ(v) than in Ñ(v),

so there are fewer than α�2 edges between D2 ∪ D3 and G − (D2 ∪ D3). Thus |D2| <

α�2/(c2(� + 1)) <
√

α(� + 1). Therefore β1 < 2α < 1
6

√
α and β2 < c2 = √

α. By
the first of these two facts, we can see that v is in D3.

Now let k denote �(1 − ε)(� + 1)	, let k′ denote max{k, χ(G − v)}, and take a k′-
coloring of G − (D2 ∪ D3). We greedily extend this to a k′-coloring of G − D3. To see that
this is possible, note that while extending, every vertex in D2 has at most |D1| + |D2| +
c1(� + 1) − 1 = (β1 + β2 + c1)(� + 1) − 1 colored neighbors, so each vertex has at
least k − (β1 + β2 + c1)(� + 1) + 1 > ( 1

2 − ε − 7
6

√
α)(� + 1) > 0 available colors,

so we can indeed extend to all vertices of D2 greedily.
Extending the partial coloring to D3 takes a little more finesse. Let M be a maximum

antimatching in G|D3. We now define the graph G3 as a clique of size |D3| minus |M|
vertex-disjoint edges. Note that G|D3 is a subgraph of G3. By assumption, ω(G|D3) ≤
2
3 (� + 1). Solving for |M| in Lemma 8 gives |M| ≥ 1

2 |D3| − 1
3 (� + 1). A classical result

of Erdős, Rubin, and Taylor on list colorings states that if H is a complete multipartite
graph with t parts, each of size at most 2, then χl(H) = χ(H) = t [3] (this can be
proven easily using induction and Hall’s Theorem). Combining this result with the
bound on |M| from Lemma 8 tells us that χl(G|D3) ≤ χl(G3) = χ(G3) = |D3| − |M| ≤
1
2 |D3| + 1

3 (� + 1) ≤ 5
6 (� + 1). It follows that if we give each vertex of D3 a list of at

least 5
6 (� + 1) colors, we can find a coloring of G|D3 such that every vertex gets a color

from its list.
We extend the partial coloring of G − D3 to a coloring of G by assigning each vertex

u in D3 a list 	u consisting of all colors from 1 to k not appearing in N(u) \ D3. Each
list has size at least k − (β2 + c2)(� + 1) > (1 − ε − β2 − c2)(� + 1) − 1 > (1 − ε −
2
√

α)(� + 1) − 1 > 5
6 (� + 1) − 1 (the last inequality holds since, by hypothesis, ε <

1
6 − 2

√
α). Since the list sizes are integers, each list has size at least |D3| − |M|. Therefore

we can extend the k′-coloring of G − D3 to a k′-coloring of G. This completes the proof.

5. PUTTING IT TOGETHER

We can now prove Theorem 2.

Proof of Theorem 2. Take �0 from the statement of Corollary 5 and set ε as
min{ 1

�0
, 1

320e6 }.
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Let G be a counterexample on a minimum number of vertices and denote its maximum
degree and clique number by � and ω respectively. If � ≤ �0 then the result is implied
by Brooks’ Theorem, so we can assume � > �0. If ω < 2

3 (� + 1), then Theorem 3
guarantees that we have a maximal stable set S such that �(G − S) < � and ω(G − S) <

ω. By the minimality of G we have a proper coloring of G − S using

�(1 − ε)(�(G − S) + 1) + εω(G − S)� < �(1 − ε)(� + 1) + εω�
colors, to which we can add S as a color class, giving the desired coloring of G. So G

satisfies ω ≤ 2
3 (� + 1).

Now G must be vertex-critical, must satisfy ω ≤ 2
3 (� + 1) and � > �0, and must

have chromatic number > (1 − 1
320e6 )(� + 1). Thus by Corollary 7 there is no vertex

v such that the neighborhood of v contains more than (1 − 1
160 )

(
�

2

)
edges. The theorem

now follows immediately from Corollary 5.
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service.
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