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a b s t r a c t

We affirmatively answer and generalize the question of Kubicka, Kubicki and Lehel (1999)
concerning the path-pairability of high-dimensional complete grid graphs. As an intriguing
by-product of our result we significantly improve the estimate of the necessary maximum
degree in path-pairable graphs, a question originally raised and studied by Faudree,
Gyárfás, and Lehel (1999).
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1. Introduction

We discuss a graph theoretic concept of terminal-pairability emerging from a practical networking problem introduced
by Csaba, Faudree, Gyárfás, Lehel, and Schelp [1] and further studied by Faudree, Gyárfás, and Lehel [2–4] and by Kubicka,
Kubicki and Lehel [7]. Given a simple undirected graph G = (V (G), E(G)) and an undirected multigraph D = (V (D), E(D)) on
the same vertex set (V (D) = V (G)) we say that G can realize the edges e1, . . . , e|E(D)| of D if there exist edge disjoint paths
P1, . . . , P|E(D)| in G such that Pi joins that endpoints of ei, i = 1, 2, . . . , |E(D)|. We call D and its edges the demand graph and
the demand edges of G, respectively. Given G and a family F of (demand)graphs defined on V (G) we call G terminal-pairable
with respect to F if every demand graph in F can be realized in G. In particular, let |V (G)| be even and let M consist of all
perfect matchings of the complete graph on |V (G)| vertices; we call G a path-pairable graph if it is terminal-pairable with
respect to M.

A long-standing open question concerning path-pairability of graphs is the minimal possible value of the maximum
degree∆(G) of a path-pairable graphG. Faudree, Gyárfás, and Lehel [4] proved that themaximumdegreehas to grow together
with the number of vertices in path-pairable graphs. They in fact showed that a path-pairable graph with maximum degree
∆ has at most 2∆∆ vertices. The result yields a lower bound of order of magnitude log n

log log n on the maximum degree of a
path-pairable graph on n vertices. This bound is conjectured to be asymptotically sharp, although to date only constructions
of much higher order of magnitude have been found. The best known construction is due to Kubicka, Kubicki, and Lehel
[7] who showed that two dimensional complete grids on an even number of vertices (of at least 6) are path-pairable. A
two dimensional complete grid is the Cartesian product Ks□Kt of two complete graphs Ks and Kt and it can be constructed
by taking the Cartesian product of the sets {1, 2, . . . s} and {1, 2, . . . t} and joining two vertices if they share a coordinate.
Higher dimensional complete grids can be defined similarly; let n, t1, . . . , tn be positive integers and let V denote the set of
n-dimensional vectors of positive integer coordinates not exceeding ti in the ith coordinate, that is,

V(t1,...,tn) = {(a1, . . . , an) : 1 ≤ ai ≤ ti, i = 1, 2, . . . , n}.
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(a) A terminal-pairability problem and its solution. (b) A path-pairability problem and its solution.

Fig. 1. Examples for terminal-pairability and path-pairability problems. Each vertex is labeled with the demand edges to which it is incident to.

We construct the n-dimensional grid graph K n
(t1,...,tn) by taking V(t1,...,tn) as its vertex set and we join two vertices by an edge

if the corresponding vectors differ at exactly one coordinate. Note that this graph is isomorphic to the Cartesian product

Kt1□Kt2□ . . .□Ktn . For t1 = t2 = · · · = tn = t we use the notation K n
t =

n  
Kt□ . . .□Kt . For a more detailed introduction of the

Cartesian product of graphs we refer the reader to [6].
With s = t the construction of Kubicka, Kubicki, and Lehel gives examples of path-pairable graphs on n = s · t vertices

with maximum degree 2 ·
√
n. This bound was recently improved to

√
n by Mészáros [8]. It was also conjectured in [7] that

Kt□Kt□Kt is path-pairable for sufficiently large even values of t .
In this paper we significantly improve the upper bound on the minimal value of ∆ by proving path-pairability of high

dimensional complete grids.We eventually study themore general terminal-pairability variant of the above path-pairability
problem (see Fig. 1) and prove the following theorem:

Theorem 1. Let G = K n
t and let D = (V (D), E(D)) be a demand graph with V (D) = V (K n

t ) and ∆(D) ≤ ⌊
t
6⌋ − 2 even. Then

every demand edge of D can be assigned a path in G joining the same endpoints such that the system of paths is edge-disjoint.

Theorem 1 immediately implies the following corollary:

Corollary 2. If t ≥ 24, K n
t is path-pairable.

The above construction provides examples of path-pairable graphs on N = tn vertices with maximum degree t · n =

logN ·
t

log t . Observe that t can be chosen to be a constant (t = 24) thus we have obtained path-pairable graphs on N vertices
with ∆ ≈ 5.2 logN .

Before the proof of Theorem 1 we set the notation and terminology: for i = 1, . . . , t let Li be the subgraph of K n
t induced

by {(a1, . . . , an−1, i) : 1 ≤ aj ≤ tj, j = 1, 2, . . . , n − 1}. We call L1, . . . , Lt the layers of K n
t . Similarly, by fixing the first n − 1

coordinates we get tn−1 copies of Kt ; we denote these complete subgraphs by l1, . . . , ltn−1 and refer to them as columns.

2. Proof of Theorem 1

Given an edge uv of the demand graph with u, v ∈ K n
t we replace uv by a path of three edges uu′, u′v′, and v′v

where u′, v′
∈ K n

t and u, u′ and v, v′ lie in the same columns and u′, v′ share the same layer, that is, u′, v′
∈ Li for some

i ∈ {1, 2, . . . , t}. Having done that, we consider the new demand edges defined within the t layers and tn−1 columns and
break the initial problem into tn−1

+ t subproblems that we solve inductively. We devote the upcoming sections to the
detailed discussion of the above described solution plan.

For the discussion of the base case n = 1 as well as for the inductive step we use the following theorem:

Theorem 3 ([5]). Let Kt (q) be a q-regular demand multigraph of the complete graph Kt . If q ≤ 2⌊ t
6⌋ − 4, then Kt is terminal-

pairable with respect to Kt (q).

We mention that instead of using Theorem 3 we could use a weaker version of the theorem with q ≤
t

4+2
√
3
proved by

Csaba et al. in [1]. With every further step of our proof unchanged a result similar to Theorem 1 could be proved with a
smaller bound on ∆(D).

Let q be an even number with 2 ≤ q ≤ ⌊
t
6⌋ − 1 and let D = (V (D), E(D)) be a demand multigraph with V (D) = K n

t and
∆(D) ≤ q. Let E ′(D) denote the set of demand edgeswhose endvertices lie in different li, lj columns.We construct an auxiliary
graph H with V (H) = V (K n−1

t ) and project every edge of E ′(D) into H by deleting the last coordinates of the endvertices. It is
easy to see that ∆(H) ≤ t · q. We may assume without loss of generality that D is t · q-regular by joining additional pairs of
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vertices or replacing edges by paths of length two if necessary. We use the well known 2-Factor-Decomposition-Theorem
of Petersen [9] to distribute the original demand edges among the layers L1, . . . , Lt and define new subproblems on them:

Theorem 4 ([9]). Let G be a 2k-regular multigraph. Then E(G) can be decomposed into the union of k edge-disjoint 2-factors.

Obviously, the graphH satisfies the conditions of Theorem 4 thus E(H) can be partitioned into q
2 ·t edge-disjoint 2-factors.

By arbitrarily grouping the above two factors into q
2 -tuples we can partition E(H) into t edge disjoint subgraphs H1, . . . ,Ht

with ∆(Hi) ≤ q.
Assume now that the vertices u = (a, i) and v = (b, j) (a, b ∈ [t]n−1) are joined by a demand edge belonging to E ′(D)

(thus a ̸= b) and assume that the corresponding edge in H is contained by Hk. We then replace the demand edge uv by the
following triple of newly established demand edges: (a, i)(a, k), (a, k)(b, k), and (b, k)(b, j). We claim the following:

(i) For every layer Lj the condition ∆(Lj) ≤ q holds.
(ii) For every layer lj the condition ∆(lj) ≤ 2q holds.

The first statement obviously follows from the partition of E ′(D). For the second one observe that a vertex v in lj initially
was incident to q demand edges and at most q additional demand edges have been joined to it (otherwise i) is violated).
Notice now that every layer Lj contains an (n − 1)-dimensional subproblem that can be solved (within the layer) by an
inductive hypothesis. Also, every layer lj contains a subproblem (note that the original demand edges in E(D) \ E ′(D) are
incorporated into these subproblems) that can be solved by Theorem 3. That completes our proof.

3. Conclusions and additional remarks

By using Theorem 3 and the described inductive approach we proved that K n
t is path-pairable for t ≥ 24, n ∈ Z+. It was

conjectured by Faudree, Gyárfás, and Lehel [4] that the result of Theorem 3 is true for q ≤ ⌊
t
2⌋. If the conjecture is true it

improves the constant 4.3 and decreases the lower bound on t in Corollary 2, yet it does not effect the order of magnitude
logN of ∆.

We mention that one particularly interesting and promising path-pairable candidate (with the same order of magnitude
but better constant for∆) is the n-dimensional hypercubeQn on 2n vertices (∆(Qn) = n). Observe that hypercubes are special
members of the above studied complete grid family as Qn = (K2)n. Although it is known that Qn is not path-pairable for even
values of n [2], the question is open for odd dimensional hypercubes if n ≥ 5 (Q1 and Q3 are both path-pairable).

Conjecture 5 ([1]). The (2k + 1)-dimensional hypercube Q2k+1 is path-pairable for all k ∈ N.
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