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a b s t r a c t

A classical theorem of De Bruijn and Erdős asserts that any noncollinear set of n points in
the plane determines at least n distinct lines. We prove that an analogue of this theorem
holds for posets, where lines are defined using the natural betweenness relation in posets.
More precisely, we obtain a bound on the number of lines depending on the height of the
poset. The extremal configurations are also determined. Finally, we introduce a new notion
of lines in graphs and show that our result for posets can be extended to this setting.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The starting point of this paper is a classical result of De Bruijn and Erdős in combinatorial geometry. A set of n points in
the plane is called a near-pencil if exactly n − 1 of the points are collinear.

Theorem 1. Every noncollinear set of n points in the plane determines at least n lines. Moreover, equality occurs if and only if the
configuration is a near-pencil.

Erdős [11] showed that this result is a consequence of the Sylvester–Gallai theoremwhich asserts that every noncollinear
set of n points in the plane determines a line containing precisely two points. Coxeter [10] showed that the Sylvester–Gallai
theorem holds in a more basic setting known as ordered geometry. Here, the notions of distance and angle are not used and,
instead, a ternary relation of betweenness is employed. We write [abc] for the statement that b lies between a and c and
(V ,B) to denote a set of points V together with a betweenness relation B on it. Now, one can naturally define lines using this
betweenness relation as follows. For any two distinct points a and b in V , the line ab defined by a and b is:

ab = {a, b} ∪ {x : [xab] or [axb] or [abx] ∈ B}. (1)

In the rest of the paper we will define betweenness relations in various combinatorial objects. In each such case we will
use (1) to define lines. In this framework, a natural object to study is a metric space. Indeed, a metric space (V , d) defines a
betweenness relation on V in the following way:

[axb] ⇔ d(a, x) + d(x, b) = d(a, b). (2)
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Using (1), the line ab can be defined for any two distinct points a and b in V . Observe that this definition of a line generalizes
the classical notion of a line in Euclidean space to any metric space. However, it is important to note that lines in this setting
may have some unusual properties. For example, in an arbitrary metric space (as well as in another framework studied later
in this paper), two lines might have more than one common point, and it is even possible for a line to be a proper subset of
another line.

Chen and Chvátal [6] proposed the following conjecture, which, if true, would give a vast generalization of Theorem 1. In
a metric space (V , d), a line is called universal if it contains all points in V .

Conjecture 1 (Chen-Chvátal [6]). Any finite metric space on n points either induces at least n distinct lines or contains a universal
line.

Although the conjecture has been proved in several special cases [3,4,7–9,12], it is still wide open. The best known lower
bound on the number of lines in a general finite metric space with no universal line is (1/

√
2 + o(1))

√
n [2].

Following the lead of Chen and Chvátal, in this paper we are interested in another combinatorial object that defines a
natural betweenness relation: a poset. Let P = (X, ≺) be a finite poset with the order relation ≺ defined on the set X . As in
the metric space case, a poset P induces a natural betweenness relation:

[abc] ⇔ a ≺ b ≺ c or c ≺ b ≺ a. (3)

Therefore, we can define lines in posets using (1) again. As before, a line is universal if it contains every point from the
ground set. Our main result is to prove a De Bruijn–Erdős-type theorem for posets: A poset on n points either induces at
least n distinct lines or contains a universal line. In fact, we obtain a stronger bound on the minimum number of lines in a
poset P as a function of its height h(P), defined to be the maximum size of a chain in P .

Theorem 2. Let P be a poset on n points with no universal line, and with h(P) ≥ 2. Then P induces at least

h(P)
(

⌊n/h(P)⌋
2

)
+ ⌊n/h(P)⌋(nmod h(P)) + h(P) (4)

distinct lines.
Moreover, P induces exactly n distinct lines if and only if it consists of a chain of size n − 1 and a point which is comparable to

at most one point of this chain.

Observe that (4) is always greater than or equal to n (with equality if h(P) ≥ ⌊n/2⌋). Moreover, if h(P) = O(ns) for
0 < s ≤ 1, the number of distinct lines in P is Ω(n2−s).

Three points a, b, c are said to be collinear if [abc] or [acb] or [bac]holds. Chen and Chvátal [6] observed that the set of lines
defined by a betweenness relation depends only on collinearity. That is, when three points are collinear, it is not important
which point is between which two, we just need to know that they are collinear. Let us explain this more formally.

A hypergraph is an ordered pair (V , E) such that V is a set of elements called vertices and E is a family of subsets of
V called edges. A hypergraph is k-uniform if each of its hyperedges consist of k vertices. Chen and Chvátal introduced
the following notions. For any betweenness relation (V ,B), define the 3-uniform hypergraph H(B) = (V , E(B)) with
E(B) := {{a, b, c} : [abc] ∈ B}. Then, define the line ab in a 3-uniform hypergraph as

ab = {a, b} ∪ {x : {a, b, x} ∈ E}.

Points that lie in a hyperedge can be thought of as being collinear. It is then easy to see that the betweenness relation (V ,B)
and the 3-uniform hypergraph H(B) determine the same set of lines.

Chen and Chvátal proved [6] that there is an infinite family of 3-uniform hypergraphs inducing only c
√

log2 n distinct
lines (where n is the number of vertices and c is a constant). Therefore, a De Bruijn–Erdős-type theorem does not hold for
3-uniform hypergraphs. The best known lower bound on the number of lines in a 3-uniform hypergraph with no universal
line is (2 − o(1)) log2 n [1].

However, in [5], Beaudou et al., provedDe Bruijn–Erdős-type theorems for some special classes of 3-uniformhypergraphs
described below. Let I ⊆ {0, 1, 2, 3, 4}. LetHI be the class of 3-uniform hypergraphs that satisfy the following property: any
4 vertices induce i hyperedges for an i ∈ I . For example, H ∈ H{0,1,2} if and only if any four vertices of H induce 0, 1 or 2
hyperedges. In [5], it is proved that a hypergraph H on n vertices that belongs to H{0,1,3,4} or H{0,1,2,3} or H{0,2,4} either has
a universal line, or induces at least n distinct lines. Moreover, the family of hypergraphs discovered by Chen and Chvátal [6]
containing only c

√
log2 n distinct lines belongs to H{0,1,2,4}. The question remains open for classes H{1,2,4}, H{2,3,4}, H{1,2,3,4}

and H{0,2,3,4}.
Our second result is a generalization from posets to graphs via comparability graphs, and lies in the framework of

3-uniform hypergraphs discussed above. For any graph G = (V , E), define the 3-uniform hypergraph H(G) = (V , E(G))
where {a, b, c} ∈ E(G) if and only if abc is a triangle of G. The lines of G are then defined as being the lines of H(G), i.e., the
line defined by two vertices a, b of G is:

ab = {a, b} ∪ {c : abc is a triangle of G}. (5)
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Let us explain why this definition of lines in graphs generalizes lines in posets. With a poset P = (V , ≺), we can associate
a graph G = (V , E) where ab ∈ E if and only if a ≺ b or b ≺ a. Such a graph is called a comparability graph. Hence for any
three vertices a, b, x in V , abx is a triangle of G if and only if [xab] or [axb] or [abx] hold in P (where betweenness is defined
by (3)). It is then clear that a poset (V , ≺) and its corresponding comparability graph define the same set of lines.

Using this definition of lines in a graph, we prove the following De Bruijn–Erdős-type result:

Theorem 3. If a graph G on n ≥ 4 vertices does not contain a universal line, then it induces at least n distinct lines, and equality
occurs only if G consists of a clique of size n − 1 and a vertex that has at most one neighbour in the clique.

It may be easily seen that the theorem also holds when n = 3, but we have an additional extremal example in this case:
a graph where all pairs of vertices are non-adjacent.

Let us now compare our result with the results on 3-uniform hypergraphs mentioned above. Let G = (V , E) be a graph
and define the 3-uniform hypergraph H(G) as explained above. Since four vertices of a graph cannot induce exactly three
triangles, four vertices of H(G) induce 0, 1, 2 or 4 hyperedges. Hence our result is concerned with a subclass of H{0,1,2,4} and
is thus independent from the results described above. Actually, as observed by an anonymous referee, the class of 3-uniform
hypergraphs that we study are the hypergraphs H = (V , E) that satisfy the following property: For all a, b, c ∈ V , if there
exist e1, e2, e3 ∈ E such that {a, b} ⊂ e1, {a, c} ⊂ e2, {b, c} ⊂ e3, then {a, b, c} ∈ E .

We also want to point out to the reader that there is another natural way to define lines in graphs. Indeed, since graphs
naturally induce a metric space, and thus a betweenness relation, one can also use (1) to define lines in graphs and see it as
a special case of Conjecture 1. We note that even this special case is still open and seems quite challenging already. The best
known lower bound for the number of lines in a graph containing no universal line is (1/2 − o(1))n4/7 [2]. From now on,
when we speak about lines in a graph, we will always use (5).

The paper is organized as follows. In Section 2, we prove Theorem 2 by providing an algorithm for finding lines. In
Section 3, we prove Theorem 3 by induction.

2. Lines in posets

We begin by introducing some notation that will be useful in the proof of Theorem 2. For any pair of elements a, b in a
poset P = (X, ≺), we write a ≁ b to indicate that the points a and b are not comparable (that is, neither a ≺ b nor b ≺ a
hold). Let Y ⊆ X . We denote by P \ Y the poset on the set of points X \ Y together with ≺ restricted to X \ Y .

In this section, we prove a lower bound on the number of lines in a poset as a function of its height. Before we proceed
with the proof, we need a simple lemma.

Lemma 1. If a1, . . . , ar are nonnegative integers such that
∑r

i=1ai = n, then
∑r

i=1

(ai
2

)
≥ r

(
⌊n/r⌋

2

)
+ ⌊n/r⌋(nmod r).

Proof. First suppose that |ai −aj| ≤ 1 for all i and j. Then every ai is either ⌊n/r⌋ or ⌊n/r⌋+1 and there are exactly (nmod r)
values of i such that ai = ⌊n/r⌋ + 1. Using that

(c+1
2

)
=

(c
2

)
+ c for any nonnegative integer c , it follows that the bound in

our lemma holds with equality. Thus, it suffices to prove that if ai − aj > 1 then simultaneously decreasing ai and increasing
aj by 1 do not increase

∑r
i=1

(ai
2

)
. Indeed, we have:(

ai − 1
2

)
+

(
aj + 1

2

)
=

(
ai
2

)
− (ai − 1) +

(
aj
2

)
+ aj ≤

(
ai
2

)
+

(
aj
2

)
and the lemma follows. □

Wepoint out now that the fact that a poset on n points induces exactly n distinct lines if and only if it consists of a chain of
size n−1 and a point comparable to atmost one point of this chain is a trivial consequence of the equality case of Theorem 3.

Proof of Theorem 2. Observe first that, by the definition of lines in posets, if a is incomparable to b, then the line ab = {a, b}
and, if a is comparable to b, then

ab = {a, b} ∪ {x : x is comparable to both a and b}.

This simple observation is used implicitly throughout the proof.
Let A be a maximal partition of P into antichains, and let C ⊆ P be a maximal chain in P . By Mirsky’s theorem [13], we

know that |A| = |C | = h(P). For notational convenience, from now on, let h(P) be denoted by H . Denote the elements of A
and C , respectively, as A = {a1, . . . , aH} and C = {c1, . . . , cH} with c1 ≺ · · · ≺ cH . Assume, without loss of generality, that
ci ∈ ai for i = 1, . . . ,H .

Set

L0 :=

H⋃
i=1

{ab : a, b ∈ ai, a ̸= b}.
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Note that all of the lines in L0 are induced by incomparable points and are, thus, pairwise distinct. By Lemma 1, we have

|L0| =

H∑
i=1

(
|ai|
2

)
≥ H

(
⌊n/H⌋

2

)
+ ⌊n/H⌋(nmodH).

Next we use the chain C to find H further lines, distinct from those in L0. We do so via the following iterative process:
Set b1 = 1, t1 = H and L1 = ∅. For k = 1, 2, . . ., apply the following steps until a STOP condition is met.

Step 1 If bk = tk, set Lk := Lk−1 ∪ {c1cH} and STOP.
Otherwise bk < tk and, since cbkctk is not a universal line, there exists sk ∈ P \ cbkctk . If sk is incomparable with both cbk
and ctk , go to Step 2a. If sk is incomparable with cbk and comparable with ctk , go to Step 2b. Finally, if sk is incomparable
with ctk and comparable with cbk , go to Step 2c.

Step 2a Set Lk := Lk−1 ∪ {cisk : bk ≤ i ≤ tk} ∪ {c1cH} and STOP.
Step 2b Set bk+1 = maxbk≤i<tk{i : ci ≁ sk} + 1,

tk+1 = tk, Lk := Lk−1 ∪ {cisk : bk ≤ i ≤ bk+1}. Go to Step 1.
Observe that, in this case, we have that bk < bk+1 ≤ tk, sk ≺ cbk+1 and, for j = bk, . . . , bk+1 − 1, we have sk ≁ cj.

Step 2c Set tk+1 = minbk<i≤tk{i : ci ≁ sk} − 1,
bk+1 = bk, Lk := Lk−1 ∪ {cisk : tk+1 ≤ i ≤ tk}. Go to Step 1.
Observe that, in this case, we have that bk ≤ tk+1 < tk, ctk+1 ≺ sk and, for j = tk+1 + 1, . . . , tk, sk ≁ cj.

Assume that the process stops after K iterations.
For any k < K , in the kth iteration, exactly one line added to Lk is induced by two comparable points. We call this

line lk. Thus, there are K − 1 such lines, namely l1, . . . , lK−1. Notice that lk is either cbk+1sk or ctk+1sk. If lk = cbk+1sk, since
sk ≺ cbk+1 , we have {cbk+1 , cbk+2 , . . . , cbK , ctK , ctK−1 , . . . , ct1} ⊆ cbk+1sk, and since cbk ≁ sk, we have cbk ̸∈ cbk+1sk. Similarly, if
lk = ctk+1sk we have {cb1 , . . . , cbK , ctK , . . . , ctk+1} ⊆ ctk+1sk and ctk ̸∈ ctk+1sk. Observe now that the line c1cH , that is added at
the K th iteration, contains all points in C . This implies that the lines l1, . . . , lK−1, c1cH are pairwise distinct. Thus, the process
finds K pairwise distinct lines which are induced by comparable points. Moreover, since all the lines in L0 are induced by
incomparable points, none of these K lines belong to L0.

The rest of the lines found by the process are induced by incomparable points. Hence, it remains to prove that H − K of
them are pairwise distinct and do not belong to L0.

Let k < K . We claim that Lk contains at least bk+1 − bk + tk − tk+1 − 1 (new) lines that are not in Lk−1. Assume first that,
in the kth iteration, lines are added at Step 2b (so tk − tk+1 = 0). So bk+1 − bk lines induced by two incomparable points are
added, namely cbksk, . . . , cbk+1−1sk. At most one of these lines belongs to L0 and none of them belongs to Lk−1 \ L0 because
lines induced by incomparable points that are added in previous iterations of the process involve points of C either strictly
below bk or strictly above tk ≥ bk+1. Hence, at least bk+1 − bk − 1 new lines induced by incomparable points are added at
Step 2b. A symmetric argument proves that, in the case where the lines are added at Step 2c (so bk+1 − bk = 0), we have
added tk − tk+1 − 1 new lines induced by incomparable points.

So, after K − 1 iterations, the number of lines induced by incomparable points, in LK−1 \ L0 is
K−1∑
k=1

(bk+1 − bk + tk − tk+1 − 1) = t1 − b1 − (tK − bK ) − (K − 1) = H − K − (tK − bK ).

Hence, it remains to show that tK − bK new distinct lines induced by incomparable points are added at the K th iteration.
In the case where bK = tK we are done, so we may assume that bK < tK and the process terminates at Step 2a. So, the lines
cbK sk, cbK+1sk, . . . , ctK sk are added. At most one of these lines belong to L0 and none of them belong to LK−1 \L0 since lines
induced by incomparable points added at iterations 1, . . . , K −1 involve points of C either strictly below bK or strictly above
tK . It follows that tK − bK new lines are added.

3. Lines in graphs

We first need two easy observations about lines in a graph G = (V , E). A vertex x in a graph is universal if it is adjacent to
all vertices in V \ x.

1. If ab ̸∈ E, then ab = {a, b}.
2. A line ab is universal if and only if both a and b are universal.

We are now ready to prove our generalization to the graph case.

Proof of Theorem 3. Wewill use induction on n on the full statement of the theorem. First, we show that the theorem holds
when n = 4. If there is no triangle in our graph, then every pair of vertices induces a distinct line, giving us 6 lines. If there are
two different triangles in our graph, then there exist 2 vertices p, q, that belong to both triangles, and the line pq is universal,
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a contradiction. Therefore, we have exactly one triangle, and it is easy to see that in this case we have exactly 4 lines in our
graph and the extremal graphs are exactly as desired.

Let G = (V , E) be a graph on n ≥ 5 vertices having no universal lines, and assume the statement holds for smaller n.
Let V ′

⊆ V be the set of points x ∈ V such that G \ {x} has no universal line. Assume first that V ′
= ∅. Thus, for any x ∈ V ,

V \ {x} induces a universal line. Since G has no universal lines, V \ {x} is a line of G for any x ∈ V . Thus, G induces n distinct
lines of size n − 1. Moreover, since it has no universal lines, G has at least two non-adjacent vertices, providing a line of size
two. Thus, if V ′

= ∅, we have that G induces at least n + 1 lines.
So we may assume from now on that V ′

̸= ∅. We will distinguish between two cases:

Case 1. There exists a point x in V ′ that is not universal.

Let y be a vertex non-adjacent to x. Since G \ {x} has no universal lines, by induction, G \ {x} induces at least n− 1 distinct
lines. If ℓ is a line of G \ {x}, then either ℓ or ℓ ∪ {x} is a line of G. It follows that these lines are all distinct in G. Moreover, if
they contain x, then they have at least 3 vertices and so they are all distinct from xy = {x, y}. Hence, G has at least n distinct
lines.

Now, assume that G induces exactly n distinct lines. Then, G \ {x} must contain exactly n − 1 lines and so by induction,
G \ {x} consists of a clique K on n − 2 vertices, x1, x2, . . . , xn−2, and a vertex z which has at most one neighbour in K . Notice
that the set of lines of G \ {x} is LG\{x} := {{x1, . . . , xn−2}, {z, x1}, . . . , {z, xn−2}}, giving us n − 1 distinct lines of G, namely,
L := {ℓ or ℓ ∪ {x} : ℓ ∈ LG\{x}}.

We claim that x is adjacent to all vertices of V \ {x, y}. Suppose for contradiction that x is non-adjacent to a vertex
y′

∈ V \ {x, y}. Then, xy′ = {x, y′
} is a line of G. Since xy = {x, y} is also a line of G, and we have xy′, xy ̸∈ L, there are

a total of n − 1 + 2 = n + 1 distinct lines in G, a contradiction to our assumption that G has exactly n distinct lines.
Assume that y ∈ K , and let z ′ be the unique neighbour of z in K . Consider a vertex w in K \ {y, z ′

} (such a vertex exists
because n ≥ 5). Since y ̸∈ xw and z ̸∈ xw, we have xw ̸∈ L. Of course, xy ̸∈ L is a line of G like before. Thus, G induces at
least n + 1 distinct lines again. Therefore, y = z, and K ∪ {x} is a clique of G as desired.

Case 2. All points of V ′ are universal.

Since G has no universal line, it follows that V ′ contains exactly one vertex, say x. So, for any u ∈ V \ {x}, V \ {u}, is a line
of G. This yields n−1 lines of size n−1. Moreover, it is easy to see that since G has no universal lines, it must contain at least
two pairs of non-adjacent vertices (as n ≥ 4), providing us with two more distinct lines of size two. Hence, G has at least
n + 1 distinct lines.
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