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a b s t r a c t

A relational characterization of cop-win graphs was provided by Nowakowski andWinkler
in their seminal paper on the game of Cops and Robbers. As a by-product of that character-
ization, each cop-win graph is assigned a unique ordinal, which we refer to as a CR-ordinal.
For finite graphs, CR-ordinals correspond to the length of the game assuming optimal play,
with the cop beginning the game in a least favourable initial position. For infinite graphs,
however, the possible values of CR-ordinals have not been considered in the literature until
the present work.

We classify the CR-ordinals of cop-win trees as either a finite ordinal, or those of the
form α + ω, where α is a limit ordinal. For general infinite cop-win graphs, we provide
an example whose CR-ordinal is not of this form. We finish with some problems on
characterizing the CR-ordinals in the general case of cop-win graphs.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In the gameof Cops andRobbers, cop-win graphs are those forwhich one cophas awinning strategy to capture the robber.
Nowakowski and Winkler [15] were the first ones to provide a characterization of cop-win graphs that is not restricted to
finite graphs. Consider an infinite graph G of orderℵγ andwrite κ = ℵγ+1, where γ ≥ 0 is an ordinal. For a vertex v, let N[v]

be its closed neighbourhood. Define the relations {≤α}α<κ onV (G) as follows (it is useful to remember that≤α⊆ V (G)×V (G)).

(i) If u = v, then u ≤0 v.
(ii) u ≤α v if for all x ∈ N[u], there exists y ∈ N[v] such that x ≤β y for some β < α.

Observe that for all α < β , ≤α ⊆ ≤β . It follows that this tower of relations stabilizes at some ordinal ρ ≤ κ; that is,
there is a minimum ρ such that ≤ρ = ≤ρ+1. We refer to ρ as the CR-ordinal of G. In the case G is a finite graph of order n,
note that ρ ≤ n(n − 1).

A result of [15] that had often been overlooked is that the graph G is cop-win if and only if the relation≤κ is trivial (that is,
≤κ= V (G)×V (G)). In this paper, we refer to ≤ρ as the capture relation on cop-win graphs. The capture relation has provided
insights into algorithms for recognizing cop-win graphs [14], graphs with higher cop number [9], and for generalized Cops
and Robbers games [6]. It is not well-defined for graphs whose cop number is greater than one and that is one reason we
still do not have a good characterization of k-cop-win graphs, where k > 0.

We say that an ordinal κ is a CR-ordinal if it is the CR-ordinal of some cop-win graph. We denote the CR-ordinal of a given
graph G by ρ(G). A basic question, therefore, is which ordinals are CR-ordinals?
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For finite graphs, ρ(G) is an integer and is the length of the game assuming that the cop and robber play optimally (that
is, the cop plays to minimize the length of the game, while the robber plays to maximize it), maximized over all possible
starting positions for the cop. A related notion is the capture time of G, which is the length of the game assuming optimal
play minimized over starting positions for the cop; see [4]. In the infinite case, we can no longer directly interpret the CR-
ordinal as a length of a game. We emphasize that even in the infinite case, a cop captures a robber in a cop-win graph in
finitely many rounds as there is no infinite descending sequence of ordinals.

Finite paths demonstrate that every non-negative integer can be a CR-ordinal. Not surprisingly, the classification of CR-
ordinals for infinite cop-win graphs is more complex. Indeed, [5] suggests that the family of cop-win graphs is likely not
classifiable as for each infinite cardinal ℵγ there are the maximum possible number 2ℵγ of non-isomorphic cop-win graphs
of order ℵγ .

We provide a characterization of CR-ordinals for cop-win trees in Theorem 3.1. The cop-win trees are precisely the rayless
ones: trees not containing an infinite path as a subgraph. Theorem 3.1 shows that finite ordinals and the ordinals of the form
α + ω, where α is a limit ordinal and ω is the first infinite ordinal, are the CR-ordinals witnessed by cop-win trees. In the
final section, we consider general cop-win graphs. We provide a family of cop-win graphs, inspired by the graphs in [16],
whose CR-ordinals are not those found from trees. Some open problems on the classification of CR-ordinals are stated at the
end of the paper.

All the graphs we consider are simple and undirected. We assume the reader is (or will be) familiar with the basic game
of Cops and Robbers as defined in, for example, [8,15]. For additional background on Cops and Robbers and its variants,
see the book [8] and the surveys [1–3,13]. For background on graph theory, see [11,18]. We denote the distance between
vertices u and v by d(u, v). If u is a vertex and S a set of vertices, then d(u, S) is the minimum distance from u to a vertex
in S. Let ON be the proper class of ordinals. We use the property that every ordinal is the set of ordinals preceding it in the
well ordering of ON. For instance, ω consists of the set of all finite ordinals, and we use this notation throughout. Hence,
ω = N = {0, 1, 2, . . .}. Recall that a successor ordinal is one which contains a maximum element; such ordinals are of the
form α + 1, where α is some ordinal. A limit ordinal is not a successor ordinal; for example, ω is a limit ordinal. Transfinite
induction is analogous to usual induction, but considers the cases of both successor and limit ordinals. For further reading
on ordinals and cardinals, see [10,17].

2. Capture-time ordinal

Throughout this section, let G be a cop-win graph. Before we state our main result in the next section, it will be useful to
use the sequence {≤α}α≤ρ(G) to introduce a parameter that provides a simpler means of computing ρ(G). Capture-time [4] is
a temporal counterpart to the cop number for a graph, measuring the length of the game assuming optimal play. We now
provide an ordinal analogue of capture-time.

For u, v ∈ V (G), define η(u, v) = α, where α is the minimum ordinal for which u ≤α v holds. Note that η(u, v) is
well-defined as ordinals are well-ordered. If η(u, v) is finite, then we may interpret it as the length of time it takes a cop on
v to capture a robber on u, assuming both play optimally and the robber moves first. Note that the relation is not necessarily
symmetric: η(u, v) may be different than η(v, u). For an example, see Fig. 1 and its corresponding table of η values.

Define η(v) as the minimum ordinal α such that u ≤α v holds for every u ∈ V (G). Observe that from the definitions, for
any v ∈ V (G) we have that η(v) = supu∈V (G)η(u, v). Finally, we define

η(G) = min
v∈V (G)

η(v).

When finite, η(G) is precisely the capture time [4] of the cop-win graph G, and, hence, we will call such ordinals the capture-
time ordinals associated with cop-win graphs.

A crucial observation (which follows from the definitions) is that

ρ(G) = sup
v∈V (G)

η(v).

In particular, in the finite case, ρ(G) is the maximum capture time over all initial positions of the cop.
Define θ (G) to be the set of vertices that realize η(G); namely

θ (G) = {v ∈ V (G) : η(v) = η(G)}.

Note that by the definitions, θ (G) ̸= ∅. We may view the set θ (G) as the set of vertices which are optimal starting positions
for the cop. For example, in a finite tree T , θ (T ) is the centre of the tree.

As we have just introduced a number of graph parameters, we give an example that illustrates them. Consider the tree
T depicted in Fig. 1, along with its table of η-values. Note that by considering the table, we derive that ρ(T ) = 5, η(T ) = 3,
and θ (T ) = {r, x31}.

To further explore the capture-time ordinals, we consider the following example. Define the tree Tω = (V (Tω), E(Tω)) by
setting

V (Tω) = {r} ∪ {xi,j : 0 < i, j < ω, j ≤ i} and
E(Tω) =

{
{r, xi,1} : 0 < i < ω

}
∪

{
{xi,j, xi,j+1} : 0 < i, j < ω, j < i

}
.
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Fig. 1. The tree T and its table of η values.

Fig. 2. The tree Tω .

In other words, for each positive integer n attach a path of length n to the root vertex r . The tree Tω is suggested in Fig. 2.
The tree Tω possesses no ray and so is cop-win. However, the robber may choose as starting position any given end-vertex,
making the capture-time unbounded. We now make this precise in the setting of CR-ordinals. Note that

η(xi(j+k), xij) = i − j for any 0 < i, j, k < ω such that j + k ≤ i.

Hence, we have that

η(xij, r) = i for any 0 < i, j < ω, j ≤ i.

For any v ∈ V (Tω) there exists an i < ω such that v ≤i r . Further, for any i < ω there exists a v ∈ V (Tω) such that v ≤i r
does not hold. Thus, we have that η(r) = ω.

It is straightforward to derive that for any 0 < i < ω, η(r, xi1) = ω. Further, for any vertex v ∈ V (Tω), v ≤ω xi1. Actually,
regardless of the robber’s moves, the cop can move to r . Hence, for any 0 < i < ω we have that η(xi1) = ω.

In addition, for 0 < i, j < ω, j ≤ i, η(r, xij) = ω + j − 1. Note that for any vertex v ∈ V (Tω) we have v ≤ω+j−1 xij. In
addition, for some v, η(v, xij) may be smaller than ω + j − 1. Hence, η(xij) = ω + j − 1.

By the above observations, we find that for all positive integers t , there are vertices xwith η(x) = ω + t . Hence, we have
the perhaps surprising conclusion that ρ(Tω) = ω + ω = ω · 2. Note that η(Tω) = ω, while θ (Tω) = {r} ∪ {xi1 : 0 < i < ω}.

An analogous argumentworks for any infinite tree obtained by attaching any cardinal number of finite paths to a common
root, provided the path lengths are unbounded. Such trees may be uncountable. This gives examples of uncountable graphs
with η(G) = ω · 2 (see also the construction in the next section).

3. The classification of CR-ordinals for trees

The main result of the paper is the following theorem. Define

ΛT =
{
ρ(T ) : T is a cop-win tree

}
.

Theorem3.1. A CR-ordinal for a cop-win tree is either a finite ordinal, or of the formα+ω, whereα is a limit ordinal. In particular,

ΛT = ω ∪
{
α + ω : α is a limit ordinal

}
.
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Fig. 3. The rooted trees S1 , S2 , S3 and S4 , with roots coloured black.

The proof of Theorem 3.1 is divided into two parts: necessity (see Lemmas 3.2 and 3.3) and sufficiency (see Lemma 3.4).
For necessity, the main idea of the proof is to determine the relationship between the values of η(T ), ρ(T ) and the radius of
the given tree. For sufficiency, we give a transfinite construction of trees whose CR-ordinals have values in ΛT .

We first present a lemma which is essentially a part of folklore. We omit the proof as it is straightforward.

Lemma 3.2. Let T be a tree with finite radius. Then η(T ) equals the radius of T , and ρ(T ) equals the diameter of T . In particular,
ρ(T ) is a finite ordinal.

The next lemma complements the above for the necessity part of Theorem 3.1.

Lemma 3.3. If T is a cop-win tree with infinite radius, then η(T ) is infinite and ρ(T ) = η(T ) + ω.

In the proof we heavily use that in a tree, an optimal cop strategy is always to go directly towards the robber using the
unique geodesic connecting the two players’ vertices. Observe that this greedy strategy of the cops may not be optimal for
other graph classes. See the results on the game of Zombies and Survivors [7,12].

Proof. As η(u, v) ≥ d(u, v) for any two vertices u, v ∈ V (T ), we derive immediately that η(T ) is infinite.
We claim that the set θ (T ) induces a subtree of T with diameter at most two. Now, if θ (T ) contains more than one vertex,

let u and v be distinct vertices in θ (T ). If u and v are not adjacent, then let w be any vertex on the unique uv-path. Note that
vertexw has the property that for any vertex x ∈ V (T ) at least one of ux-path or vx-path contains vertexw. Therefore, vertex
w is also contained in the set θ (T ). Hence, the subgraph induced by θ (T ) in T is connected.

By rechoosing u and v if necessary, suppose for a contradiction that the length of the uv-path is three; say the path is
uu′v′v. Let Tu, Tv be the two disjoint subtrees obtained from T by removing edge {u′, v′

}, such that u ∈ V (Tu) and v ∈ V (Tv),
respectively. Notice that u′

∈ θ (T ) implies that either η(v′, u′) = η(T ), or for each ordinal α < η(T ), there exists a vertex
w ∈ V (Tu) such that η(w, u′) > α. The second case, however, implies that η(u′, v′) ≥ η(T ). As v′

∈ θ (T ) as well, we have
that η(v′, u′) = η(T ) or η(u′, v′) = η(T ). But then we have that

η(u) ≥ η(v′, u) > η(T ) or η(v) ≥ η(u′, v) > η(T ),

which contradicts that both u and v are contained in the set θ (T ). Hence, the claim concerning θ (T ) follows.
By induction we have that for any vertex v ∈ V (T ) \ θ (T ), we have that

η(v) = η(T ) + d(v, θ (T )).

As the radius of the tree is infinite while the diameter of the subgraph induced by θ (T ) is finite, for any n < ω there exists
some vertex v ∈ V (T ) such that d(v, θ (T )) > n. Hence, we derive that ρ(T ) = η(T ) + ω. □

By elementary ordinal arithmetic, we may assume that η in the sum η + ω is a limit ordinal. This follows since every
successor ordinal is of the form α + k, where α is a limit ordinal, and k is a finite ordinal.

To prove Theorem 3.1, it is enough to construct a family of trees with CR-ordinals taking all values in the set ω ∪
{
α +ω :

α is a limit ordinal
}
. Finding examples of trees with CR-ordinals equalling all the finite, non-zero ordinals is straightforward.

For this, consider the family of finite paths {Pn}n≥2: Lemma 3.2 implies that η(Pn) = ⌈
n−1
2 ⌉ and ρ(Pn) = n − 1.

We now turn to our construction in the infinite case. We construct a family {Tα : α ∈ ON}, such that for any α ∈ ON we
have that η(Tα) = α. This construction, in light of Lemma 3.3, will complete the proof of Theorem 3.1.

The construction is based on the operation of summing rooted trees. The basic idea is to form a new root, then append
trees to the root by new edges. To be precise, suppose that {(Ti, ri) : i ∈ α} is a set of disjoint rooted trees indexed by the
ordinal α. Form the rooted tree

⨁
i∈α(Ti, ri) by adding a new vertex r that is joined to each of the ri.

We construct our examples by transfinite induction. Let S1 = (K1, r1) with r1 equalling the single vertex. For any ordinal
α > 1, assume that all the rooted trees (Sα, rα) are defined. Let Sα be the rooted tree

⨁
i<α(Si, ri), whose root we denote rα .

See Fig. 3 for the first four trees in the family {(Sα, rα) : α ∈ ON}. For simplicity, we refer to these as Sα .
As an aside, by Lemma 3.2, we have that for 0 < n < ω, η(Sn+1) = n and ρ(Sn+1) = 2n − 1.

Lemma 3.4. For α ∈ ON we have that η(Sα+1) = α.

Note that taking Tα = Sα+1 for α ∈ ON \ ω constructs the desired family.
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Fig. 4. The Polat graph.

Proof. We prove a slightly stronger statement; namely that for any α ∈ ON there exists a vertex v ∈ V (Sα+1) such that

η(Sα+1) = η(rα+1) = η(v, r) = α

and, when α is a limit ordinal, there is η(Sα) = η(rα) = α.
We proceed by transfinite induction on α, with case α = 1 being trivially true. Assume that for some α ∈ ON and for all

β < α one has η(Sβ+1) = β , and η(rβ+1) = η(vβ+1, rβ+1) = β , for some vβ+1 ∈ V (Sβ+1) and for all limit ordinals β < α

there is η(Sβ ) = η(rβ ) = β .
Let α = β + 1 be a successor ordinal. By construction, we see that (Sα+1, rα+1) consists of the two copies of (Sβ+1, rβ+1)

on disjoint vertex sets, say (S, r) and (S ′, r ′) joined by the edge {r, r ′
}, with rα+1 = r .

Consider the capture relation in Sα+1. Note that every non-leaf vertex of a tree is a cut vertex; hence, the cop can forbid
the robber to enter any component (that is, subtree) except the one occupied by the robber. Therefore, using the induction
hypothesis, we have that η(u, r) ≤ β for all u ∈ V (S) and that there exists v ∈ V (S ′) such that η(v, r ′) = β , while η(u, r ′) ≤ β

for all u ∈ V (S ′). Since r ′ is a neighbour of r we have that η(v, r) ≤ β + 1 for any v ∈ V (Sα+1), while η(r ′, r) = β + 1.
Observe that η(r ′, v) ≥ η(r ′, r) for any v ∈ V (S) and, by the symmetry, for any v ∈ V (S ′) we have that η(r, v) ≥ η(r, r ′) =

β + 1. Hence,

η(Sα+1) = η(r) = η(r ′, r) = β + 1 = α.

Now let α be a limit ordinal. Using the induction hypothesis it is straightforward to see that in (Sα, rα) =
⨁

β<α(Sβ , rβ ),
for any ordinal β < α there exists a neighbour of rα , namely rβ+1, such that η(rβ+1, rα) = β + 1. On the other hand, for any
v ∈ V (Sα) \ {rα} we have that v ∈ V (Sβ ), for some β < α; hence, there is η(v, r) ≤ β + 1 < α. Therefore, we have that
η(rα) = α, while for any vertex v ∈ V (Sα) we have that η(v, rα) < α. Moreover, we find that η(rα, v) ≥ α, for v ∈ V (Sα)\{rα}.
This follows since a robber on rα may choose to escape to any neighbour of rα except at most the one leading towards vertex
v, on which the cop resides. Hence, η(Sα) = α = η(rα).

To finish this case consider tree (Sα+1, rα+1) as two copies of (Sα, rα) on disjoint vertex sets, say (S, r) and (S ′, r ′) joined
by the edge {r, r ′

}, with rα+1 = r . By considering the capture relation on Sα+1, we see that η(r ′, r) = α, while for any vertex
v ∈ V (Sα+1) there is η(v, r) ≤ α. Of course there is η(r ′, v) ≥ η(r ′, r) for any v ∈ V (S) and, by the symmetry, for any v ∈ V (S ′)
we have that η(r, v) ≥ η(r, r ′) = α.

Hence, we have that

η(Sα+1) = η(r) = η(r ′, r) = α,

and the proof follows. □

4. General cop-win graphs

Define

Λ =
{
ρ(G) : G is a cop-win graph

}
.

Of course, ΛT ⊆ Λ. However, the containment is strict as we describe in the following example.
Consider the following cop-win graph introduced in [16], which we refer to as the Polat graph. Let X = {xn : n < ω},

Y = {yn : n < ω}, and Z = {z} be disjoint sets of vertices. Let G be the graph defined by V (G) = X ∪ Y ∪ Z and

E(G) =

⋃
n<ω

(
{xn, xn+1}, {xn, z}, {xn, yn}, {xn, yn+1}, {xn, yn+2}, {xn, yn+3}

)
.

The Polat graph is suggested in Fig. 4. By direct checking, we have that ρ(G) = ω + 1, η(G) = ω and θ (G) = X ∪ Z (we omit
the details here). Hence, the Polat graph witnesses the fact that ω + 1 ∈ Λ \ ΛT .
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Wemaymodify the construction of the Polat graph in several ways to obtain other CR-ordinals. For example, wemay add
a finite path to the vertex z obtaining graphs with CR-ordinal equalling ω + i, for 0 < i < ω. By forming a sum (akin to the
rooted tree sum described in the previous section) of these generalized Polat graphs, for j < ω, j > 1, there exist cop-win
graphs with CR-ordinal ω · j + (i + j).

5. Problems

The main open problem we consider is to classify which ordinals belong to Λ. Define

Υ =
{
ω · i + (i + j) : i, j < ω

}
∪

{
α + ω : α is a limit ordinal

}
.

Our family of cop-win graphs derived from the Polat graph supports the assertion that Λ = Υ . We leave this as an open
problem. Some ordinals do not seem possible to attain as a CR-ordinal. For example, is ω ∈ Λ? Note that this question is
answered negatively if Λ = Υ . Observe that ρ(G) is well-defined for any (not necessarily cop-win) graph. Another question,
therefore, is to classify the ordinals ρ(G).

We mention in closing that the paper [15] does not distinguish between cardinals and ordinals (though its results are
correct when the distinction is made). Further, we do not know the best upper bound on the tower of relations {≤α}α<ℵγ+1
for a graph G of cardinality ℵγ .
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