
Discrete Applied Mathematics 170 (2014) 64–71

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Bubblesort, stacksort and their duals
Luca S. Ferrari
Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato, 5 - 40126 Bologna, Italy

a r t i c l e i n f o

Article history:
Received 24 July 2012
Received in revised form 9 November 2013
Accepted 17 January 2014
Available online 3 February 2014

Keywords:
Sorting
Pattern
Bubblesort
Stacksort
Dual
Commutation

a b s t r a c t

Let B and S be, respectively, the base steps of bubblesort and stacksort, and call B̃ and S̃ their
dual versions via the reverse-complement map. We find some unexpected commutation
properties between the classical operators and their duals, and we also prove that the
set of permutations sortable by a prescribed number of iterations of B and B̃ is a pattern
class.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Bubblesort is one of the most well-known elementary sorting algorithms. In a single step B of bubblesort, a permutation
is scanned from left to right, and two consecutive elements are interchanged if the smaller follows the greater.

Another very simple sorting algorithm makes use of a stack. In a single step of this algorithm, the input permutation is
scanned from left to right, and each element σi of the permutation is compared with the element τ on the top of the stack:
if σi < τ (or if the stack is empty), then σi is pushed to the top of the stack; otherwise, τ moves to the rightmost position of
the output permutation. Even for this algorithm, many single passes S are typically required before the sorting is complete.

As one might expect, if we mix together some steps of an algorithmwith some steps of a completely different one, like B
and S, the action of the resulting hybrid algorithm depends, in general, on the order we have used to perform the different
steps. Despite this, denoting by B̃ and S̃ the dual versions of B and S via the reverse-complement map, we will prove that –
quite surprisingly – they commute with the classical B and S. More precisely, the output of an algorithm consisting of some
steps S and some steps B̃ depends only on the number of steps of each type, and not on their relative order. The same holds
for B and B̃ together, and for S̃ and B, as stated in Theorem 4.8.

The analysis of sorting algorithms, and especially of stack-sorting ones, has often been related to the study of permutation
patterns. Knuth [5] observed for the first time that the set of permutations sortable by one pass of stacksort is a pattern class.
After this, many results have been found on different variations and generalizations of the original problem (see the 2003
survey by Bóna [4] for further details). Very recently, many interesting results about pattern classes related to bubblesort
have been found by Albert et al. [2] and by Barnabei et al. [3]. At the end of this paper, as a generalization of some of the
results contained in [2,3], we prove that the set of permutations sortable by a hybrid algorithm consisting of some passes of
B and some of its dual B̃ is the class of permutations avoiding a set of inflations of 21.

E-mail address: luca.ferrari20@unibo.it.

0166-218X/$ – see front matter© 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.dam.2014.01.014

http://dx.doi.org/10.1016/j.dam.2014.01.014
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2014.01.014&domain=pdf
mailto:luca.ferrari20@unibo.it
http://dx.doi.org/10.1016/j.dam.2014.01.014

L.S. Ferrari / Discrete Applied Mathematics 170 (2014) 64–71 65

Fig. 1. The action of S on the input permutation σ = 42 351.

2. Bubblesort and stacksort

In a single step B of bubblesort, a permutation σ is scanned from left to right, and two consecutive elements σi and σi+1
are interchanged if σi > σi+1. For instance, if σ = 26314875 then B(σ) = 23146758. It is also possible to give a recursive
definition for the operator B: if σ = αnβ , where n is the greatest element of σ , then

B(αnβ) = B(α)βn.

In order to sort a permutation using a stack, one of the possible definitions of a single step S of the algorithm (that we
will call stacksort for simplicity) is the following. First of all, the first element σ1 is pushed into the stack. Then, scanning the
input permutation σ from left to right, we compare σi with the element τ on the top of the stack: if σi < τ (or if the stack is
empty), then σi is pushed to the top of the stack; otherwise, τ is popped out and put at the rightmost position of the output
permutation S(σ). At the end, all the elements still lying into the stack are popped out from top to bottom. See Fig. 1 for an
example.

In order to describe the action of S in progress we can also use the notation

output ⟨stack] input,

where ⟨ is the top of the stack and] the bottom. For instance,

S(26314875) = ⟨2] 6314875 = 2 ⟨6] 314875 = 2 ⟨36] 14 875 = 2 ⟨136] 4875
= 213 ⟨46] 875 = 21346 ⟨8] 75 = 21346 ⟨78] 5 = 21346 ⟨578] = 21346578.

According to our notation, if we write x ⟨y] (with empty input) we refer unambiguously to the last passage of S, just before
the final emptying of the stack. Even for stacksort, it is possible to give a recursive definition of the operator S: if σ = αnβ ,
then

S(αnβ) = S(α)S(β)n.

We can give equivalent definitions of B and S also referring to the local left-to-right maxima. We recall that an element
of a permutation σ is a left-to-right maximum if it is greater than all the elements to its left. Hence, the set of all left-to-right
maxima of σ is

Maxlr(σ) = {σi : σi > σj, ∀ j < i}.

We can write σ highlighting its left-to-right maximaM1,M2, . . . ,Mk, where Mk = n, in the following way:

σ = M1 u1 M2 u2 · · ·Mk uk = (Mα uα)α,

where uα are (possibly empty) words. Hence,

B((Mα uα)α) = (uα Mα)α (1)

and

S((Mα uα)α) = (S(uα)Mα)α. (2)

66 L.S. Ferrari / Discrete Applied Mathematics 170 (2014) 64–71

3. Dual sorting operators

A variant of the classic bubblesort operator is the dual bubblesort operator B̃, which reads the permutation from right
to left and interchanges two consecutive elements σi and σi+1 if σi > σi+1. Knuth ([6], Section 5.2.2) introduces B̃ in the
definition of a slightly more efficient version of bubblesort, the so called cocktail-shaker sort: in this algorithm, steps B and
B̃ are alternated, and this reduces the average number of comparisons. Very recently, the cocktail-shaker sort and other
combinations of the operators B and B̃ have been studied by Barnabei et al. [3].

Observe that, if σ = α1β , then

B̃(α1β) = 1αB̃(β).

We remark that, denoting by ρ the usual reverse-complement operator

ρ(σ)i = n + 1 − σn+1−i,

we have

B̃ = ρ ◦ B ◦ ρ. (3)

Similarly, we can define the dual stacksort operator as

S̃ = ρ ◦ S ◦ ρ. (4)

In other words, the operator S̃ reads the input permutation from right to left and compares σi with the element τ on the top
of the stack: if σi > τ (or if the stack is empty), then σi is pushed to the top of the stack; otherwise, τ is popped out and put
at the leftmost position of the output permutation S̃(σ). At the end, as for S, all the elements still lying into the stack are
popped out from top to bottom. We can visualize the action of S̃ in progress using the notation

input [stack⟩ output.

We can give equivalent definitions of B̃ and S̃ referring to the local right-to-left minima. An element of σ is a right-to-left
minimum if it is smaller than all the elements to its right:

Minrl(σ) = {σi : σi < σj, ∀ j > i}.

Observe that

ρ(Maxlr(σ)) = Minrl(ρ(σ)) and ρ(Minrl(σ)) = Maxlr(ρ(σ)). (5)

Writing σ as

σ = vh mh · · · v2 m2 v1 m1 = (vβ mβ)β ,

it follows that

B̃((vβ mβ)β) = (mβ vβ)β (6)

and

S̃((vβ mβ)β) = (mβ S̃(vβ))β . (7)

4. Commutation results

From now on, all inequalities involving sequences are intended to hold for all the elements belonging to the sequences:
for example, α < β means that every element of α is smaller than every element of β .

In order to prove that some of the operators defined above commute, we first give some simple results.

Remark 4.1. If M is both a left-to-right maximum and a right-to-left minimum of a permutation σ = αMβ (α and β
possibly empty), then

(i) α < M < β;
(ii) M lies in the M-th position of σ ;
(iii) M immediately precedes a left-to-right maximumM;
(iv) M immediately follows a right-to-left minimumm;
(v) the following relations hold:

B(αMβ) = B(α) M B(β), B̃(αMβ) = B̃(α) M B̃(β)

S(αMβ) = S(α) M S(β), S̃(αMβ) = S̃(α) M S̃(β).

L.S. Ferrari / Discrete Applied Mathematics 170 (2014) 64–71 67

Proof. Statements (i)–(iv) are straightforward. Concerning (v), observe that σ can be written as σ = α′mMMβ ′, and hence
the application of B, S and their duals – see (1), (2), (6) and (7) – does not affect the relative order between α, M and β . �

Lemma 4.2. For every permutation σ the following relations hold:

(i) Maxlr(σ) ⊂ Maxlr(B(σ)) and Minrl(σ) ⊂ Minrl(B(σ));
(ii) Maxlr(σ) ⊂ Maxlr(S(σ)) andMinrl(σ) ⊂ Minrl(S(σ));
(iii) Maxlr(σ) ⊂ Maxlr(B̃(σ)) andMinrl(σ) ⊂ Minrl(B̃(σ));
(iv) Maxlr(σ) ⊂ Maxlr(S̃(σ)) andMinrl(σ) ⊂ Minrl(S̃(σ)).

Proof. (i) Let σ = (Mα uα)α , whence B(σ) = (uα Mα)α . Every Mi ∈ Maxlr(σ) is preceded, in B(σ), by the same elements as
in σ and by ui < Mi: this yields Mi ∈ Maxlr(B(σ)).

Let now m ∈ Minrl(σ). If m ∈ ui for some i, in B(σ) it is followed by the same elements as in σ and by Mi > m; hence,
m ∈ Minrl(σ) if and only if m ∈ Minrl(B(σ)). Otherwise, if m = Mi, then the elements following m in B(σ) follow m also in
σ , and thusm ∈ Minrl(B(σ)).

(ii) Let σ = (Mα uα)α and S(σ) = (S(uα)Mα)α . Every Mi ∈ Maxlr(σ) is preceded, in S(σ), by the same elements as
in σ and by S(ui) < Mi, and hence Mi ∈ Maxlr(S(σ)). Now, let m ∈ Minrl(σ). Immediately before we push m into the
stack, the smaller elements inside are popped out and, immediately after, also m is popped out by the following element,
which is greater. After this, the elements in the stack and those that are waiting to enter are all greater than m, and hence
m ∈ Minrl(S(σ)).

The proofs of (iii) and (iv) are straightforward by using (i), (ii) and relations (5). �

Example 4.3. We check (i) and (ii) taking σ = 315269784. Observe that Maxlr(σ) = {3, 5, 6, 9} and Minrl(σ) = {1, 2, 4}.
Since B(σ) = 132567849 and S(σ) = 132567489, we have that Maxlr(σ) ⊂ Maxlr(B(σ)) = {1, 3, 5, 6, 7, 8, 9} and
Maxlr(σ) ⊂ Maxlr(S(σ)) = {1, 3, 5, 6, 7, 8, 9}, Minrl(σ) ⊂ Minrl(B(σ)) = {1, 2, 4, 9} and Minrl(σ) ⊂ Minrl(S(σ)) =

{1, 2, 4, 8, 9}.

When bubblesort (or stacksort) acts on σ , some new right-to-left minima may arise. In the following lemma we prove
that each of them lies immediately to the right of a (new or old) right-to-left minimum; of course, a similar (reversed) result
holds for the dual operators B̃ and S̃.

Lemma 4.4. For every permutation σ the following relations hold:

(i) in B(σ), every m ∈ Minrl(B(σ)) r Minrl(σ) immediately follows an element m′
∈ Minrl(B(σ));

(ii) in S(σ), every m ∈ Minrl(S(σ)) r Minrl(σ) immediately follows an element m′
∈ Minrl(S(σ));

(iii) in B̃(σ), every M ∈ Maxlr(B̃(σ)) r Maxlr(σ) immediately precedes an element M ′
∈ Maxlr(B̃(σ));

(iv) in S̃(σ), every M ∈ Maxlr(S̃(σ)) r Maxlr(σ) immediately precedes an element M ′
∈ Maxlr(S̃(σ)).

Proof. (i) Let σ = (Mα uα)α and B(σ) = (uα Mα)α . The considerations made in the proof of case (i) of Lemma 4.2 imply
that, if m ∈ Minrl(B(σ)) r Minrl(σ), then necessarily m ∈ Maxlr(σ) and thus, by Lemma 4.2, m ∈ Maxlr(B(σ)). Hence, m is
both a left-to-rightmaximum and a right-to-left minimumof B(σ) and then (see Remark 4.1) it is preceded by a right-to-left
minimum.

(ii) We focus on two consecutive right-to-left minima mi+1 and mi of σ , where mi+1 < mi. Thus, we can write σ =

umi+1 v mi w, where u, v and w are (possibly empty) words, with v, w > mi. After stacksort, every possible ‘‘new’’ right-to-
left minimum between mi+1 and mi, i.e. every possible m ∈ Minrl(S(σ)) r Minrl(σ), with mi+1 < m < mi, must belong to
u and must be popped out of the stack aftermi+1 and beforemi. This holds if and only if, at the timemi+1 is pushed into the
stack, there is a nonempty set u′

⊂ u,mi+1 < u′ < mi. In this case,mi+1 and all the elements of u′ are popped out in increas-
ing order when the first element of v is pushed (or when mi is, if v = ∅), and they become all (consecutive) right-to-left
minima of S(σ).

The proofs of (iii) and (iv) are straightforward by using (i), (ii) and relations (5). �

Example 4.5. We check (i) and (ii) taking σ = 236451987. The set of right-to-left minima of σ is Minrl(σ) = {1, 7}.
Moreover, B(σ) = 234516879 and S(σ) = 234156789, and hence Minrl(B(σ)) = {1, 6, 7, 9} and Minrl(S(σ)) = {1, 5,
6, 7, 8, 9}. Now, it is easy to check that the ‘‘new’’ right-to-left minima, in both cases (6 and 9 in B(σ) and 5, 6, 8, and 9 in
S(σ)), immediately follow a right-to-left minimum of B(σ) and S(σ), respectively.

We now introduce the notion of local sorting operator, which will be useful in the proof of the next theorem. Let
σ = (Mα uα)α = (vβ mβ)β , where Mi and mj are the left-to-right maxima and right-to-left minima of σ , respectively,
and define

BMi(σ) = M1 u1 · · ·Mi−1 ui−1 ui Mi Mi+1 ui+1 · · ·Mk uk

and

B̃mj(σ) = vh mh · · · vj+1 mj+1 mj vj vj−1 mj−1 · · · v1 m1.

68 L.S. Ferrari / Discrete Applied Mathematics 170 (2014) 64–71

Obviously,

B(σ) = BM1 ◦ BM2 ◦ · · · ◦ BMk(σ) (8)

and

B̃(σ) = B̃m1 ◦ B̃m2 ◦ · · · ◦ B̃mh(σ). (9)

Remark 4.6. The dependence of (8) and (9) on the local maxima and minima might cause a little trouble if we do not have
any information about them. For example, if we want to rewrite B ◦ B̃(σ) with the above notations, we have to know both
the right-to-left minima of σ and the left-to-rightmaxima of B̃(σ). Despite this, every new left-to-rightmaximumM of B̃(σ)
is immediately to the left of another left-to-right maximum (see Lemma 4.4), and hence its corresponding local bubblesort
BM does not perform any interchange (BM = id). More generally:

• M ∈ Maxlr(σ) immediately precedesM ′
∈ Maxlr(σ) H⇒ BM = id;

• m ∈ Minrl(σ) immediately followsm′
∈ Minrl(σ) H⇒ B̃m = id.

Therefore, in order to rewrite B ◦ B̃ or B̃ ◦ B via the local sorting operators, we only need to know Maxlr(σ) and Minrl(σ).
This yields the following lemma.

Lemma 4.7. Let σ = (Mα uα)α = (vβ mβ)β . Then

B ◦ B̃ = B̃ ◦ B ⇐⇒ BMi ◦ B̃mj = B̃mj ◦ BMi ∀ i, j ;
S ◦ B̃ = B̃ ◦ S ⇐⇒ S ◦ B̃mj = B̃mj ◦ S ∀ j.

Theorem 4.8. The following commutation properties hold:

(i) B ◦ B̃ = B̃ ◦ B;
(ii) S ◦ B̃ = B̃ ◦ S (and hence S̃ ◦ B = B ◦ S̃).

Proof. (i) Let σ = (Mα uα)α = (vβ mβ)β , and choose Mi and mj. By Lemma 4.7, it is sufficient to prove the commutativity
of the local sorting operators BMi and B̃mj .

If Mi = mj, Mi = mj+1 or Mi+1 = mj, then at least one of Mi and mj is simultaneously a left-to-right maximum and a
right-to-left minimum, and then (see Remarks 4.1 and 4.6) either BMi or B̃mj is the identity map.

Now, suppose that Mi ≠ mj, Mi ≠ mj+1 and Mi+1 ≠ mj. If Mi ui ∩ vj mj = ∅, or Mi ui ⊂ vj, or even vj mj ⊂ ui, the
commutative property follows immediately from the fact that the interchanges operated by BMi and B̃mj do not cross each
other. In the only two remaining cases, namely, Mi w1 mj+1 w2 Mi+1 w3 mj and mj+1 w1 Mi w2 mj w3 Mi+1, where the wk are
(possibly empty) words, the commutativity can be directly checked.

(ii) Choosing a right-to-leftminimummj, by Lemma 4.7 it is sufficient to prove that S and B̃mj commute. Let σ = u vj mj w,
where u = vh mh · · · vj+1 mj+1 and w = vj−1 mj−1 · · · v1 m1. Obviously, vj > mj and w > mj.

Let S(u) = u′
⟨u′′ u′′′

], where u′′ < mj and u′′′ > mj, and let t ′, t ′′ and q be the sequences such that ⟨u′′′
] vj = t ′ ⟨t ′′] and

⟨t ′′] w = q. Now, we have

S ◦ B̃mj(σ) = S ◦ B̃mj(u vj mj w) = S(umj vj w) = u′
⟨u′′ u′′′

]mj vj w

= u′u′′
⟨mj u′′′

] vj w = u′u′′mj t ′ ⟨t ′′] w = u′u′′mj t ′ q

and

B̃mj ◦ S(σ) = B̃mj ◦ S(u vj mj w) = B̃mj(u
′
⟨u′′ u′′′

] vj mj w)

= B̃mj(u
′u′′ t ′ ⟨t ′′]mj w) = B̃mj(u

′u′′ t ′ ⟨mj t ′′] w)

= B̃mj(u
′u′′ t ′ mj q) = u′u′′mj t ′ q.

Hence, S ◦ B̃ = B̃ ◦ S, and then, using (3) and (4), we get S̃ ◦ B = B ◦ S̃. �

Example 4.9. We show each passage of the proof of (ii) by taking σ = 218 356 497. Among the right-to-left minima of σ ,
we choosem2. Then σ = uv2m2w, where u = 2183, v2 = 56,m2 = 4 andw = 97. Following the same notations used in the
proof, we have that S(u) = S(2183) = 12 ⟨38], whence u′

= 12, u′′
= 3 and u′′′

= 8. Moreover, ⟨u′′′
] v2 = ⟨8] 56 = 5 ⟨68]

(where t ′ = 5 and t ′′ = 68), and ⟨t ′′] w = ⟨68] 97 = 6879 = q. Now, we have that

S ◦ B̃m2(σ) = S ◦ B̃4(218356497) = S(218345697)
= 123 ⟨48] 5697 = 12345 ⟨68] 97 = 123456879

L.S. Ferrari / Discrete Applied Mathematics 170 (2014) 64–71 69

and

B̃m2 ◦ S(σ) = B̃4 ◦ S(218356497) = B̃4(12 ⟨38] 56497) = B̃4(1235 ⟨68] 497)

= B̃4(1235 ⟨468] 97) = B̃4(123546879) = 123456879.

Remark 4.10. We can rewrite the commutation properties stated in Theorem 4.8 by using ρ:

(i) (B ◦ ρ)2 = (ρ ◦ B)2;
(ii) S ◦ ρ ◦ B ◦ ρ = ρ ◦ B ◦ ρ ◦ S (and hence ρ ◦ S ◦ ρ ◦ B = B ◦ ρ ◦ S ◦ ρ).

Proposition 4.11. All the other possible pairs of operators, listed below, do not commute:

(i) B ◦ S ≠ S ◦ B (and hence B̃ ◦ S̃ ≠ S̃ ◦ B̃);
(ii) S ◦ S̃ ≠ S̃ ◦ S.

Proof. (i) Let σ = 2431: we have B ◦ S(σ) = 1234, while S ◦ B(σ) = 2134.
(ii) Taking σ = 3421, we have S ◦ S̃(σ) = 1234, while S̃ ◦ S(σ) = 1324. �

5. Sorting algorithms and pattern avoidance

A permutation σ is said to avoid a pattern τ if it does not contain any subsequence which is order isomorphic to τ . In
this case, we write τ ⊀ σ . For example, the permutation σ = 5162374 contains τ1 = 3412 (which is order isomorphic to
5623), but avoids τ2 = 2431.

A pattern class with basis Π is the set of permutations avoiding all the patterns π ∈ Π :

Av(Π) = {σ : π ⊀ σ , ∀ π ∈ Π}.

The relationships between sorting algorithms and pattern-avoiding permutations have been studied by many authors:
we briefly recall only some of the results involving bubblesort and stacksort. If A is any sorting operator, we denote by

Sort(A) = {σ | A(σ) = 12 · · · n}

the set of permutations sortable by A. Knuth [5] observed that

Sort(S) = Av(231).

In recent years, Albert et al. [2] found that

Sort(B) = Av(231, 321) (10)

and

Sort(S ◦ B) = Av(2341, 2431, 3241, 4231). (11)

Moreover, as a generalization of (10), the authors proved that the permutations sortable by h passes of B are exactly those
that avoid all the patterns of length h + 2 whose final term is 1. In other words,

Sort(Bh) = Av(Γh+2), (12)

where

Γh+2 = {τ ∈ Sh+2 | τh+2 = 1}.

Very recently, Barnabei et al. [3] showed that

Sort(B̃ ◦ B) = Av(3412, 3421, 4312, 4321). (13)

Now, by making use of the commutation properties proved in Theorem 4.8, we are able to prove that the permutations
sortable by a fixed number of passes of B and B̃ can be expressed in terms of pattern-avoiding permutations. In order to
describe the patterns involved, we need the following definition.

Given a permutation σ = σ1σ2 · · · σn and n permutations α1, α2, . . . , αn, the inflation of σ by α1, α2, . . . , αn (denoted by
σ [α1, α2, . . . , αn]) is the permutation Σ ∈ Sℓ (where ℓ =

n
i=1 |αi|) which is obtained by replacing each element σi with

a permutation τi such that:

• τi is order isomorphic to αi;
• τi < τj ⇐⇒ σi < σj, ∀ i, j = 1, . . . , n.

70 L.S. Ferrari / Discrete Applied Mathematics 170 (2014) 64–71

For example, 312 [21, 213, 132] = 87213465. We denote by

σ [[ℓ1, . . . , ℓn]] = {σ [α1, . . . , αn] : |αi| = ℓi, ∀ i = 1, . . . , n}

the set of all possible inflations of σ by n permutations α1, α2, . . . , αn of fixed lengths ℓ1, ℓ2, . . . , ℓn. For instance,
231 [[2, 1, 2]] = {34512, 34521, 43512, 43521}.

Observe that the result (12) can be described in terms of inflations as follows:

Sort(Bh) = Av(21 [[h + 1, 1]]). (14)

This kind of pattern classes have also been studied in [1], where the authors give some very interesting results on classes
of permutations avoiding particular inflations of 21. In the following, we will show that even the permutations that can be
sorted by a fixed number of B and B̃ can be characterized using the same kind of pattern classes.

Lemma 5.1. For every h, k ≥ 1 the following equivalences hold:

σ ∈ Av(21 Jh + 1, k + 1K)
3;

(1)

s{ oooooooooooo

oooooooooooo ck
(2)

#+OOOOOOOOOOOO

OOOOOOOOOOOO

B(σ) ∈ Av(21 Jh, k + 1K) ks
(3)

+3 B̃(σ) ∈ Av(21 Jh + 1, kK)

Proof. We prove only equivalence (1), since (2) can be proved analogously and (3) follows from (1) and (2). For con-
venience, we will equivalently show that σ contains a pattern τ ∈ 21 [[h + 1, k + 1]] if and only if B(σ) contains τ ′

∈

21 [[h, k + 1]].
Let σ = (Mα uα)α contain τ ∈ 21 [[h + 1, k + 1]]. Observe that the last k + 1 elements of τ are not left-to-right maxima

of σ , and thus they belong to some of the uα . Hence, in B(σ) = (uα Mα)α their relative order is preserved, and the first of
them (i.e. τh+2 ∈ ui) follows the same elements than in σ , except for Mi. This implies that B(σ) contains a subsequence
τ ′

∈ 21 [[h, k + 1]]. The proof of the converse is analogous. �

Theorem 5.2. The set of permutations sortable by h steps of B and k steps of B̃ (h, k ≥ 0), performed in any order, is the set

Sort(Bh
◦ B̃k) = Av(21 [[h + 1, k + 1]]).

Proof. Applying Lemma 5.1 h times for B and k for B̃, we obtain that

σ ∈ Av(21 [[h + 1, k + 1]]) ⇐⇒ Bh
◦ B̃k(σ) ∈ Av(21) = {id}. �

6. Conclusions and open problems

In this paper, we proved some commutation properties between the sorting operators B, S and their dual versions via
the reverse-complement operator. As a generalization of (13) and (14), we also found a pattern class description of the
permutations sortable by a fixed number of iterations of B and B̃.

Beyond this, many questions remain open: we list below just a few of them.

(1) We proved that B commutes with B̃, while S does not commute with S̃. Hence, it may be interesting to find other sorting
operators which commute with their dual versions, and, if possible, to characterize them against those which do not.

(2) We did not describe the permutations sortable by h passes of B (or B̃) mixed with k passes of S (or S̃) in terms of pattern-
avoiding permutations. The only result involving these operators, for h = k = 1 and S performed after B, is given by
Albert et al. [2] (see (11)). Is it possible to give such a characterization for the other cases? And what about just S and S̃?

(3) For which other sets of permutations Π there exists an operator AΠ such that

Sort(AΠ) = Av(Π)?

(4) Let A be any sorting operator. Denote by

ℓA = min{|τ | : A(τ) ≠ id}

the shortest length of A-unsortable permutations, and let

ΠA = {π : A(π) ≠ id ∧ |π | = ℓA}.

Then, for which operators Awe have

Sort(A) = Av(ΠA)? (15)

L.S. Ferrari / Discrete Applied Mathematics 170 (2014) 64–71 71

Observe that for S and for every operator of the form Bh
◦ B̃k the equality (15) holds, while, for instance, for S2 does not.

In fact, ΠS2 = {2341, 3241} while Sort(S2) ≠ Av(2341, 3241). More precisely, the permutations sortable by two passes
of stacksort are Av(2341, 35̄241), where 35̄241 denotes the patterns 3241which are not part of a pattern 35241 (see [7]
for a proof and further details).

Acknowledgments

I would like to thank Marilena Barnabei and Robert Cori for their precious advice.

References

[1] M.H. Albert, R.E.L. Aldred, M.D. Atkinson, C.C. Handley, D.A. Holton, D.J. McCaughan, H. van Ditmarsch, Sorting classes, Electron. J. Combin. 12 (2005)
R31.

[2] M.H. Albert, M.D. Atkinson, M. Bouvel, A. Claesson, M. Dukes, On the inverse image of pattern classes under bubble sort, J. Comb. 2 (2011) 231–243.
[3] M. Barnabei, F. Bonetti, M. Silimbani, Two permutation classes related to the bubble sort operator, Electron. J. Combin. 19 (3) (2012) P25.
[4] M. Bóna, A survey of stack-sorting disciplines, Electron. J. Combin. 9 (2) (2003) A1.
[5] D.E. Knuth, The Art of Computer Programming—Volume 1: Fundamental Algorithms, Addison-Wesley, 1968.
[6] D.E. Knuth, The Art of Computer Programming—Volume 3: Sorting and Searching, Addison-Wesley, 1973.
[7] J. West, Sorting twice through a stack, Theoret. Comput. Sci. 117 (1993) 303–313.

http://refhub.elsevier.com/S0166-218X(14)00018-3/sbref1
http://refhub.elsevier.com/S0166-218X(14)00018-3/sbref2
http://refhub.elsevier.com/S0166-218X(14)00018-3/sbref3
http://refhub.elsevier.com/S0166-218X(14)00018-3/sbref4
http://refhub.elsevier.com/S0166-218X(14)00018-3/sbref5
http://refhub.elsevier.com/S0166-218X(14)00018-3/sbref6
http://refhub.elsevier.com/S0166-218X(14)00018-3/sbref7

	Bubblesort, stacksort and their duals
	Introduction
	Bubblesort and stacksort
	Dual sorting operators
	Commutation results
	Sorting algorithms and pattern avoidance
	Conclusions and open problems
	Acknowledgments
	References

