Better Approximation Bounds for the Joint Replenishment Problem*

Marcin Bienkowskif

Dorian Nogneng

Abstract

The Joint Replenishment Problem (JRP) deals with op-
timizing shipments of goods from a supplier to retail-
ers through a shared warehouse. FEach shipment in-
volves transporting goods from the supplier to the ware-
house, at a fixed cost C, followed by a redistribution of
these goods from the warehouse to the retailers that or-
dered them, where transporting goods to a retailer p has
a fixed cost c,. In addition, we incur waiting costs for
each order, possibly an arbitrary non-decreasing func-
tion of time, different for each order. The objective is to
minimize the overall cost of satisfying all orders, namely
the sum of all shipping and waiting costs.

JRP has been well studied in Operations Research
and, more recently, in the area of approximation algo-
rithms. For arbitrary waiting cost functions, the best
known approximation ratio is 1.8. This ratio can be re-
duced to =~ 1.574 for the JRP-D model, where there is
no cost for waiting but orders have deadlines. As for
hardness results, it is known that the problem is APX-
hard and that the natural linear program for JRP has
integrality gap at least 1.245. Both results hold even
for JRP-D. In the online scenario, the best lower and
upper bounds on the competitive ratio are 2.64 and 3,
respectively. The lower bound of 2.64 applies even to
the restricted version of JRP, denoted JRP-L, where
the waiting cost function is linear.

We provide several new approximation results for
JRP. In the offline case, we give an algorithm with ratio
~ 1.791, breaking the barrier of 1.8. We also show that
the integrality gap of the linear program for JRP-L is at

" *Research partially supported by NSF grants CCF-1217314
and OISE-1157129, MNiSW grant no. N N206 368839, 2010-2013,
FNP Start scholarship , EU ERC project 259515 PAAL, and grant
CE-ITT (project P202/12/G061 of GA CR).

TInstitute of Computer Science, University of Wroctaw, Poland

fDepartment of Computer Science, University of California at
Riverside, USA

8Department of Computer, Control, and Management Engi-
neering, Sapienza University of Rome, Italy

TLIX, Ecole Polytechnique, Palaiseau, France

I Computer Science Institute, Faculty of Mathematics and
Physics, Charles University, Czech Republic

Jaroslaw Byrka'

Marek Chrobak! Fukasz Jezf8

Jit{ Sgalll

least 12/11 ~ 1.09. In the online case, we show a lower
bound of ~ 2.754 on the competitive ratio for JRP-L
(and thus JRP as well), improving the previous bound
of 2.64. We also study the online version of JRP-D, for
which we prove that the optimal competitive ratio is 2.

1 Introduction

The Joint Replenishment Problem (JRP) deals with
optimizing shipments of goods from a supplier to a set
R of retailers through a shared warehouse. Over time,
retailers issue orders for items. All ordered items must
be subsequently shipped to the retailers, although some
shipments can be delayed, in order to aggregate orders
into fewer shipments to reduce cost.

Specifically, for each p € R we are given the cost ¢,
of transporting goods from the warehouse to p. We are
also given the cost C of transporting goods from the
supplier to the warehouse. A shipment of goods from
the supplier to a subset S C R of retailers involves first
shipping them to the warehouse and then redistributing
them to all retailers in S, at cost equal C + ZpES Cp-
Note that this cost is independent of the set of items
shipped. The waiting cost of an item 7 ordered at time
a and delivered at time t > a is given by a function
h(t), possibly dependent on 7, where we assume that the
values of h(t) are non-decreasing with ¢. The objective
is to minimize the overall cost of satisfying all orders,
namely the total cost of shipments plus the total waiting
cost of all orders.

There are two natural restrictions on waiting costs
that have been previously considered in the literature.
One is to assume that the waiting costs are linear,
that is for any order m = (p,a,h) the cost function
is h(t) =t —a for t > a. We denote this version by
JRP-L. In the other version, called JRP with deadlines
(JRP-D), there is no waiting cost but ordered items
must be shipped before pre-specified deadlines; this can
be modeled by a threshold function A(t).

1.1 Previous Work. Several different, but mathe-
matically equivalent, definitions of JRP can be found
in the literature. In earlier papers, JRP is typically

phrased as an inventory management problem, where
the inventory of some commodity needs to meet a set
of demands that arrive over time. The objective is to
balance the cost of orders that replenish the inventory
and the cost of maintaining the inventory, referred to
as the holding cost. (Note that in this formulation
the meaning of the term “order” is different from our
usage and it corresponds to what we call a shipment;
while the holding cost corresponds to our waiting cost.)
This formulation would not quite make sense in the on-
line scenario, since the orders that need to be sched-
uled take place before demands. An online model of
JRP, referred to as Make-to-Order JRP, was introduced
by Buchbinder et al. [BKLT08]. In their description
there is no inventory; instead, a collection of demands
must be satisfied by subsequent orders. Except for mi-
nor terminology variations, our definition is essentially
the same as that in [BKLT08]. Some of recent pa-
pers [BMSVT09, BKV12, KNR02, BBCT13b] on con-
trol message aggregation in networks, introduce a model
where control packets (corresponding to orders, in our
definition) need to be transmitted to a common destina-
tion (corresponding to the supplier), paying the trans-
mission and delay costs. In particular, the flat-tree case
studied in [BKV12] is equivalent to JRP-L.

JRP has been well studied in Operations Re-
search and, more recently, also in the area of ap-
proximation algorithms. The problem is known to
be strongly NP-hard, even for the special cases of
JRP-D and JRP-L [AJR89, BMSV'09, NS09]. APX-
hardness proofs, even for some restricted versions of
JRP-D, were given by Nonner and Souza [NS09] and
Bienkowski et al. [BBC*13a]. The first approximation
algorithm, with ratio 2, was provided by Levi, Roundy
and Shmoys [LRS06], and was subsequently improved
by Levi et al. [LRSS08, LS06] to 1.8 (see also [LRS05]).
For JRP-D, the ratio was reduced to 5/3 by Nonner
and Souza [NS09] and then to ~ 1.574 by Bienkowski et
al. [BBC"13a]. All upper bounds are based on random-
ized rounding of the natural linear program for JRP. As
shown in [BBC™13a], the integrality gap of this linear
program is at least 1.245, even for JRP-D.

The online version of JRP was studied in the earlier
discussed paper by Buchbinder et al. [BKLT08], who
gave a 3-competitive algorithm, using a primal-dual
scheme, and showed a lower bound of 2.64 on the
competitive ratio, even for JRP-L. (See also Brito et
al. [BKV12] for related work.)

1.2 Our Contributions. We provide several new
approximation results for JRP. In the offline case, we
give an algorithm with approximation ratio ~ 1.791,
breaking the barrier of 1.8 from [LRSS08, LS06]. The

improvement is achieved by refining the analysis of the
LP-rounding algorithm in [LRSS08, LS06] and combin-
ing it with a new algorithm that uses an approximation
for JRP-D from [BBC*13a]. We also show that the in-
tegrality gap of the natural linear program for JRP-L
is at least 12/11 &~ 1.09. To our knowledge, this is the
first explicit integrality gap construction for this most
common version of JRP.

We also study online algorithms for JRP. We show
that deterministic online algorithms, even for JRP-L,
cannot be better than ~ 2.754-competitive, improving
the bound of 2.64 from [BKL"08]. For JRP-D, we prove
that the optimal competitive ratio is 2.

2 Preliminaries

We now review our terminology and formalize the
definition of JRP. Recall that R denotes the set of
retailers. Each order can be specified by a triple 7 =
(p,a,h), where a is the time when 7 was issued, p is
the retailer that issued 7, and h() is the waiting cost
function of 7, where h(t) = oo for t < a and h(t) is
non-decreasing for ¢ > a. Let II be the set of all orders.
In JRP-L we will assume that h(t) =t —a for t > a,
and in JRP-D we have h(t) = 0 for a < ¢t < d and
h(t) = oo otherwise. Then d is called the deadline of
order w. In JRP-D, we will in fact specify an order by
a triple m = (p, a, d).

A shipment is specified by a pair (S,t), where S is
the set of retailers receiving the shipment and ¢ is the
time of the shipment. The cost of shipment (5,t) is
C+ > ,csC A schedule is a set S of shipments. An
order 7 = (p, a, h) is said to be pending in S at time 7
if @ < 7 and there is no shipment (S,t) in S with p € S
and a <t < 7. If 7= (p,a,h) is pending at time ¢ and
(S,t) is a shipment in S such that p € S, then we say
that (S,t) satisfies w. In such case, the waiting cost of
7 in S is h(t). The cost of S is the sum of its shipment
and waiting costs, that is

CosT(S) = COSTgyp(S) + COSTyur(S), where
CosTgur(S) = > (C+> ¢,) and
(S,t)esS pES
COSTyurr(9) = min_ h(t) .
r=(p.amen S
(In the last formula we assume that minf) = 4o0.)

The objective of JRP is to compute a schedule S with
minimum CosT(S).

We use the standard definition of approximation al-
gorithms. We will say that a polynomial-time algorithm
A is an R-approzimation algorithm for JRP if for any

instance it computes a schedule of shipments whose cost

is at most R times the optimal cost for this instance.

In the online scenario, orders arrive over time, and
at each time ¢ an online algorithm must decide whether
to ship at time ¢ and, if so, to which retailers, based
only on the existing orders. For online algorithms we
use the term “R-competitive” as a synonym of “R-
approximation”.

For convenience, for online algorithms, we use
a model where time is continuous, while some of pre-
vious works on this topic used the discrete-time model.
Algorithms for the continuous model can be easily trans-
lated into the discrete model, preserving the same per-
formance guarantee. In our lower bound proofs all
waiting-cost functions are left-continuous, and for such
functions lower bound arguments for competitive ratios
carry over to the discrete case as well. This relationship
will be formally spelled out in the full version of the
paper (see a similar argument in [BKL08]).

In the literature, some authors distinguish between
absolute approximation ratios (as defined above) and
asymptotic ratios, where an algorithm is allowed to pay
some additional constant overhead cost, independent of
the instance. While our upper bounds apply to the
absolute ratio, our lower bound proofs can be extended
to the asymptotic ratios by repeating the lower bound
strategies a sufficient number of times.

3 An Upper Bound of 1.791 for Offline JRP

We now present our 1.791-approximation algorithm.
The algorithm first computes an optimal solution
(z*,y*) of the linear program for JRP. Then, it chooses
randomly one of three different LP-rounding methods,
with probabilities and other parameters suitably opti-
mized, to obtain a ratio improving the bound of 1.8
from [LRSS08, LS06].

3.1 Linear Program. Let T = {a : (p,a,h) € 11}
be the times when orders are placed. We can as-
sume that all shipments occur at times in T. We
use the following indicator variables: =z, represents
a supplier-to-warehouse shipment at time a, =, , repre-
sents a warehouse-to-retailer p shipment at time a, and
Yr,a Tepresents an order 7 being satisfied by a shipment
at time a.

The following linear program is the fractional relax-
ation of the natural integer program for JRP. Its goal is
to minimize

ZC~xa+ ZZCP'IP,(L

acT acT peR

+ Z Z h(t) “Ynot

=(p,a,h)EIltET :t>a

subject to the following constraints:

(3.1) To > x5, forallpeR,acT

(3.2) Zpa ZYra forallm=(p,a,h)ell,d €T
(3.3) Zy”»t >1 for all m = (p,a,h) € II
t>a
(3.4) xq,2p0>0 forallpe R,a €T
(3.5) Yra >0 forallmell,aeT

The cost of any solution (x,y) to the LP above can
be naturally split into three summands: the supplier-
to-warehouse shipping cost, COSTwsup(®,y); the
warehouse-to-retailers shipping cost, COSTgsur(,¥y);
and the waiting cost, COSTwarr (2, y). When the solution
(z,y) is a random variable, these denote appropriate ez-
pected costs.

Throughout the rest of the paper, we will fix an op-
timal (fractional) solution to the LP above and denote
it by (z*,y*). Note that once z* variables are fixed, y*
can be chosen greedily to minimize waiting cost: for any
m € II, saturate constraints (3.2) starting from earliest
possible y; 4 till corresponding constraint (3.3) becomes
feasible. In effect, without loss of generality, we may as-
sume that constraints (3.3) are satisfied with equality

in (z%,y*).

3.2 Known Algorithms: 2SRP and 1SRP. We
say that a solution (z,y) isan (rq,r2,73)-approximation
of (z*,y*) if the following three conditions hold:

L4 COSTWSHIP(:E7 y) <r- COSTWSHIP($*7 y*)7
o COSTgsure (x7 y) <1y - COSTreump (1'*, y*)7 and
° COSTWAIT(xv y) <rg- COSTW’AIT(x*y y*)

In our solution, we build on two LP-based, polynomial-
time algorithms of Levi et al. [LRSS08]. Both are based
on random shifting. The first one (denoted 2SRP)
is called Two-Sided Retailer Push Algorithm, and the
other (denoted 1SRP) is called One-Sided Retailer Push
Algorithm.

LeMMA 3.1. ([LRSSO08]) Algorithm ~ 2SRP com-
putes an integral solution (x,y) that is a (1,2,2)-
approximation of the optimal fractional solution
(z*,y%).

LEMMA 3.2. ([LRSS08]) Algorithm 1SRP, parameter-
ized by c € (0,1/2], computes an integral solution (z,y)
that is a (%, 1=, -1)-approzimation of the optimal

. ¢’ 1-c’1-c
fractional solution (z*,y*).

The currently best known 1.8-approximation algo-
rithm [LRSSO08] is obtained by simply running 2SRP
with probability % and 1SRP with probability %, set-
ting ¢ = % in the latter.

3.3 High-level Idea. We start by showing that the
COSTyur estimate of Algorithm 1SRP in Lemma 3.2
is not tight. To analyze it more accurately, we define
a shipping pace of an algorithm and show a connec-
tion between the shipping pace and the waiting cost.
Roughly speaking, shipping pace defines how fast the al-
gorithm satisfies orders in comparison to how fast they
are satisfied in the optimal fractional solution. Using
our analysis it is possible to show that, for ¢ = %, 1SRP
computes in fact a (3,2, 2)-approximation. This im-
provement (over the (3, g, §)—approximation guaranteed
by Lemma 3.2) alone does not reduce the overall approx-
imation ratio of the 1SRP-and-2SRP combination, as it
is still dominated by the retailer shipment cost ratio.
However, we will add a third ingredient to this com-
bination: Algorithm LPS. This new algorithm uses scal-
ing of the fractional solution to obtain a new fractional
solution obeying certain deadlines and then applies the
recent result on JRP-D, the deadline-constrained variant
of JRP [BBC™13a], to round it to an integral solution.
By carefully choosing the scaling factor, probabilities
of choosing Algorithms 2SRP, 1SRP and LPS, and fine-
tuning the choice of ¢ in Algorithm 1SRP, we eventually
reduce the approximation ratio for JRP to about 1.791.

3.4 Shipping Pace. In (z*,y*), the orders can be
thought of as being satisfied gradually with time. For
any a € [0,1] and any order m = (p,a,h), we define
ftue (T, @) to be the first time when the already satisfied
fraction of 7 in (z*,y*) is at least o. Formally:

ftyp (7, @) = min {t €T:t>aand >, yry > a}

To measure the waiting cost of an algorithm, we
estimate how fast it satisfies each particular order in
comparison to how fast these orders are satisfied in
the fractional solution (z*,y*). Specifically, for any
(randomized) algorithm A and an order m = (p,a, h),
we define shp 4(7) to be time of the shipment satisfying
m. Clearly, shp 4(m) > a with probability 1. Note that,
in the integral solution (z,y) generated by A, it holds
that yr . = 1 if and only if ¢ = shp 4().

DEFINITION 3.1. Let G : [0,1] — R>o be an integrable

and bounded function, such that fo z)dz =1. We say
that a (randomized) algorithm A has a shlpplng pace G
if for any order m = (p,a) € Il and any o € [0,1], 4t

holds that
/ G(z

A shipping pace is not unique; it is simply a lower
bound on the shipping probability. By taking @ = 1,

Pr[shpA() < ftop(m, a)

we obtain the property that if an algorithm has any
shipping pace then it satisfies 7 by the time ft, (7, 1)
with probability 1.

LEMMA 3.3. Let A be a (randomized) algorithm with
shipping pace G that produces a solution (x,y). Then
CoSTyarr(z,y) < Y(G) - COSTywarr(2*,y*), where

' G(z)dz
(G) = sup {fl_”) }
we(0,1] w

Proof. We show that the relation above holds for the

waiting cost of any individual order © = (p, a,h). For

the sake of this proof, we number all the consecutive

times from the set {t € T : t > a} as to = a,t1,t2,. ...
We first fix any k > 0 and show that

ZE[ymtj] <(G)- Zy;ta‘ :

jzk Jjzk

(3.6)

The relation (3.6) holds trivially for k¥ = 0 as in this
case both >, Elyrs,] and 37,5, 7, are equal to 1
and v(G) > 1 for any shipping pace G.

For k > 1, we define w = > ., yr,. By
the definition of ft p, it holds that ft.p(m,1 — w) <
tg—1. (Actually, this relation holds with equality if
Yn 1, > 0.) Then,

Z E[y‘fr,tj]

jzk

= Pr(shp 4 (7) > tx]

=1 —Pr[shp4(7) < tp_1]
<1 —Pr[shp 4(7) < ftpp(m, 1 — w)]

Sl—/le(z)dZZ 1 G(z)dz
0

1—w
where the first equality holds because yr;, are binary
random variables and exactly one of them is non-zero,
and the second inequality follows from the definition of
the shipping pace. Thus, relation (3.6) holds also for
k>1.

The waiting cost associated with 7 is

= h(t;)

i>0

= h(to) > Elyns)
>0
+_ (h(

>0

COSTWAIT T y y7r t;]

)' Z E[yﬂ-,t]‘}'

j>it1

z+1

The waiting cost of 7 in (z*,y*) can be expressed anal-
ogously, but without taking expected values. Thus, re-
lation (3.6) immediately implies that COSTy, . (z,y) <
Y(G)-CoSTy, (%, y*). The lemma follows by summing
the waiting costs for all orders = € II.]

3.5 Waiting Cost of 1ISRP. We start with a brief
description of Algorithm 1SRP (see Algorithm 2
in [LRSS08]). The algorithm is parametrized by ¢ €
(0,%]. It first computes the optimal fractional solu-
tion (2*,y*) and then it schedules the shipments, in
two phases. In the first phase, it schedules the supplier-
to-warehouse shipments. Intuitively, one can visualize
this schedule in terms of the “virtual warehouse time”,
equal to the accumulated fractional shipping value for
the warehouse, X; = Zt/<t x4 . The algorithm chooses
uniformly a random ¢ € [0,¢| and schedules the ship-
ments at virtual warehouse times ¥, v + ¢, ¥ + 2¢, ...,
which then can be translated into real times. More for-
mally, these shipments are scheduled at (real) times ¢
for which there is 7 such that X; 1 < ¥ 4+ic < X;. In
the second phase, we define tentative shipments from
the warehouse to each retailer p. This is done similarly,
by choosing a random 9, € [0,1 — ¢] and tentatively
scheduling these shipments at retailer p’s virtual times
Yo, Yp+1—c,,+2(1—c),.... For each tentative ship-
ment of p, say at a (real) time ¢, the actual shipment to
p will take place at the first time ¢’ > ¢ for which there
is a supplier-to-warehouse shipment.

LEMMA 3.4. Algorithm 1SRP, with parameter ¢ €
(0, 3], has a shipping pace

z/c for z € [0,¢),
1 for z € [¢,1—¢),
(1—-2)/c for z€[l—c1].

Proof. (Sketch.) Every order is analyzed as if it was
waiting first for a shipment (in the computed integral
solution) at its retailer and then at the warehouse, with
the analysis carried out with respect to the retailer’s vir-
tual time (the amount by which the fractional solution
satisfies the order). Then the waiting at the retailer has
uniform distribution U[0,1 — ¢] and the waiting at the
warehouse is upper-bounded with a uniform distribu-
tion U0, ¢]. Hence, the distribution of the total waiting
time is bounded by the convolution of these two uniform
distributions, which results in the trapezoidal shape of
the shipping pace Gisrp (), see Figure 1. |

1
1—c¢

Gisrp(2) =

Side note. We can use Lemma 3.4 along
with Lemma 3.3 to improve the waiting cost ra-
tio of Algorithm 1SRP. Namely, the supremum of
(fll,w Gisrp(z) dz)/w is achieved for w = 1 — ¢ and
is then equal to (2 — 3c)/(2(1 — ¢)?). Setting ¢ = 1,
we obtain that Algorithm 1SRP returns a (3,3, 3)-
approximation. As we noted earlier, this result alone
cannot improve the combination of 2SRP and 1SRP,
because in any combination of these algorithms the
retailer-cost ratio dominates the waiting-cost ratio.

3.6 Algorithm LPS. As indicated by the comment
in the last paragraph, to improve the overall approxi-
mation guarantee, we therefore need to improve the two
first coefficients in the approximation ratio. To this end,
we design a new algorithm that performs well in terms
of warehouse and retailer shipping costs and has a (rea-
sonably) bounded waiting cost ratio. This algorithm
(see below) randomly scales up the optimum solution
(z*,y*), then, on this basis, it creates an instance of
JRP-D, the variant of JRP with deadlines, to which it
applies an approximation algorithm from [BBC*13a].

LEMMA 3.5. ([BBC*134]) Fiz any (not necessarily
optimal) fractional solution (&,9) of an instance of the
JRP-D problem. It is possible to compute, in polyno-
mial time, an integral solution (xz,y) which is (A, N)-
approximation of (Z,9), where X = 1.574, i.e.,

° COSTWSHIP(‘T7 y) <A COST\VSHIP(j:? ?j) and
o COSTrsurp (x, y) < A - COSTrgure (fa Zj)

Algorithm LPS uses a probability distribution D of
the scaling parameter that we will define later.

Algorithm LPS

1. Compute an optimal fractional solution (z*,y*).

2. Choose ¢ € (0,1] from a distribution with the
density function D : (0,1] — Rx>o.

3. Create a new fractional solution (Z, y) by setting
Z = min{l,2*/(}, and (greedily) choosing ¥y
to minimize the waiting cost, subject to fixed
fractional shipments 7.

4. Create an instance £ of JRP-D, by inserting
a deadline for each order 7 at the first time ¢
for which Y, ., Jx+ > 1. (Thus, in (Z,y) each
order is served “just in time”.)

5. Randomly round the fractional solution (Z,9)
for £ using the (A, A)-approximation algorithm
from [BBC'13a], where A ~ 1.574.

6. Return the obtained solution (z,y).

11

LEMMA 3.6. Let & = [, 7 - D(z)dz. Algorithm LPS
produces a feasible integral solution (x,y) with

CoSTysur (2, y) < X-& - COSTwsup (2, 9y") and

COSTrgup (2, y) < A& - COSTremp (2%, 4%).

Proof. We analyze the output (z,y) of Algorithm LPS
for a fixed ¢ € (0,1]. By Step 3, COSTwgur(Z,7) <
CoSTwsur (z*,y*)/¢ and by Step 5, COSTwsur (7, y) <
A - COSTwsuip(Z,y) (see also Lemma 3.5). Thus,
CosTysur (2, y) < (A/Q) - COSTwsur(2*,y*). By inte-
grating this estimate above over the probability distri-
bution of ¢, we immediately obtain the first property of

the lemma. The proof for the second property is analo-
gous. O

LEMMA 3.7. Algorithm LPS has a
GLPS =D.

shipping pace

Proof. Fix any order m = (p,a,h) € II. We first show
that if Algorithm LPS randomly choses scaling factor ¢,
then it holds that

shppps(m) < ftup(m, Q) -

To this end, define T'(w) = [a,ftyp(7m, ()] NT. Then,
using the definition of T from Step 3, relation (3.2)
from the original LP, and the definition of ft,,(m, (),
we obtain

ZtGT(ﬂ) z

(3.7)

t= ZtGT(rr) min{1, 2} ,/C}
min {1» ZtET(ﬂ) m:,t/g}
min {17 ZteT(ﬂ') y:,t/C}

> 1.

Y

Y]

As the variables 7 are greedily chosen to minimize the
waiting costs (cf. Step 3), 32, <q; .(mc) Yot = 1, and
therefore the deadline for order 7 in £ is set no later
than at time ft;p (7, (). As the solution (z,y) is feasible
for L, it obeys its deadlines, shipping 7 to p before
ftup(m, ¢), i.e., (3.7) holds.

Relation (3.7) means that for any fixed «, the ran-
dom event ¢ < « implies that shp;pg(7m) < ftip (7, @),
and thus

/ D(z)dz =Pr[(< a] <Pr [shprS(w) < ftLp(ma)},
0
which is exactly the definition of shipping pace D. O

3.7 Combining Algorithms 1SRP and LPS. Al-
gorithm 1SRP+LPS simply runs Algorithm 1SRP with
probability p and Algorithm LPS with probability 1—p.
(Recall that we still have to choose parameter ¢ in Al-
gorithm 1SRP and the probability density D in Algo-
rithm LPS.) We observe that such an algorithm has pace
Gisrp4+Lps = p-Gisrp+(1—p)-Grps. The following re-
sult is an immediate consequence of (i) using Lemma 3.2
and Lemma 3.6 to estimate the total warehouse and
retailer shipping costs, (ii) applying Lemma 3.3 and
Lemma 3.7 to estimate the waiting costs, and (iii) using
the inequality v(G) = SUPwe(o,l](fll,w G(2)dz)/w <
sup,cpo,1) G(2)-

11

LEMMA 3.8. Let & = [/ - D(z)dz. Algorithm

1SRP+LPS computes an integral solution (x,y) that is

Gips(2) Gisrr(@)

| T~ 2
T t t +—>

0 c 1-c 1

x (1-p) Gisrpors(®) G

I:'| > z
T T T | } ‘\ +—>

0 1-b 0 c I-c 1-b 1

Figure 1: Shipping paces of Algorithms 1SRP, LPS and
1SRP+LPS.

a (r1, 19, r3)-approzimation of the optimal fractional so-
lution (z*,y*), where

=p/ec+ (1 =p)A¢ ,
) zp/(l—C)-l-(l—p)/\f 7a’nd

rg = sup Gisrp4+rps(2) -
z€10,1]

Our next step is to choose a probability den-
sity function D in Algorithm LPS. This choice affects
the approximation ratio in two ways. On the one
hand, we want the value of £ in Lemma 3.8 to be as
small as possible. To this end, the probability mass
should be accumulated close to the point 1. On the
other hand, we need to take into account that Algo-
rithm 1SRP+LPS approximates the waiting cost within
the factor sup,¢(g 1 G1isrp+Lps(z), where Gisrp+Lps =
p-Gisrp + (1 —p)-Grps =p-Gisrp + (1 —p) - D.

Therefore, we choose D to be supported on the
interval [1 — b, 1], where b < ¢ is a parameter that we
will fix later. Furthermore, we choose D to be such
an increasing linear function that the resulting function
G1srp+Lps is constant on [1—b, 1], cf. Figure 1. To this
end, we require that — within the interval [1 — b, 1] —
the slope of the function (1 — p) - Grps = (1 —p) - D
matches the negated slope of the function p - Gisgrp.
These considerations imply that once we fix parameters
p, ¢ and b, the probability density D should be

B-b

(38) D)=pzty ot —p
where
p
p= :
(I=p)-c-(1-¢
for z € [1 — b,1] and zero outside of this interval.

Straightforward calculations verlfy that D is indeed
a probability density, i.e., fo z)de = Further-

more, G1sRp+LPS = P- Glst—i—(l p)-GLpS is constant
on the interval [1 — b, 1] and its value there is equal to

Gisrp4+rps(l) = (1-p)-D(1) = (1—p)/b+pb/(2c(1—c)).

Thus
/11
o <
1 1
1 - b 1
= ﬁdz+<+ﬂ —ﬁ)/ —dz
1-b b 2 1-b #

B 1 B-b
—ﬁ'b—<b+2—ﬁ>~ln(1—b) .

-D(z)dz

We numerically optimize the parameters p, ¢ and b.
Specifically, we choose p = 0.822599, ¢ = 0.342538 and
b = 0.136366. For those values the maximum of function
Gisrp+Lps is achieved in the interval [1 — b,1], and is
at most 1.549968. Using the bounds of Lemma 3.8, we
conclude that Algorithm 1ISRP+LPS is an (Ry, Ra, Ra)-
approximation of (z*,y*), where R; < 2.700277 and
Ry < 1.549968.

3.8 Combining All Algorithms. Finally, we com-
bine algorithm 1SRP+LPS with algorithm 2SRP. The
resulting algorithm 2SRP+1SRP+LPS uses 2SRP with
probability (R1 — Rs)/(R1 — Rz + 1) and 1SRP+LPS
with probability 1/(R; — Ra + 1). Such algorithm is a
(R, R, R)-approximation (of the fractional optimal solu-
tion), where

2. Ry —
o 2Ry

= — < <1.790713 .
Ri—Ry+1—

We therefore obtained the following result.

THEOREM 3.1. There is a polynomial-time 1.791-
approximation algorithm for JRP. The approximation
ratio holds even against an optimal fractional solution
of natural LP relazation of the problem.

4 Integrality Gap for JRP-L

In this section we show that the integrality gap for the
natural linear program for JRP-L (namely the linear
program given in Section 3.1, but with the linear cost
function) is at least 12/11 ~ 1.09. Our construction is
inspired by some ideas behind the integrality gap proof
for JRP-D in [BBC*13a].

We will use an instance with three retailers that we
identify by numbers 0, 1 and 2: R = {0,1,2}. The
supplier-to-warehouse shipment cost is C = 3 and all
warehouse-to-retailer shipment costs are c, = ¢ = 2, for
p=0,1,2

Orders will be issued only at integral times, between
0 and K, for some large integer K, that is T =
{0,1,..., K}. We assume that K is a multiple of 3. For
any retailer p, we will issue two orders at each time 3i+p
and a single order at each time 3i+p+1 (see Figure 2).

Yo Yo Yo Yo Yo Yo 1

1 — 8 o 8 o 8 o
Yo Yo Yo Yo Yo Yo Yo Yo

26— 8 o 8 o 8 o
Yo Yo Yo Yo Yo Yo 1

0 1 2 3 4 5 6 7 8 9

Figure 2: The instance of JRP-L used in the integrality
gap construction, with K = 9. The horizontal lines
correspond to the three retailers, numbered 0, 1 and 2;
while the dots represent their orders. The figure also
shows the fractional (half-integral) solution.

More precisely, to deal correctly with boundary cases,
we define the order set II as follows: for each time t € T,
IT contains the following three orders, all with waiting
cost h(t) =7 —tfor v > t:

(tmod3,t,h), (tmod3,t, k), and ((t +2)mod3,t,h).

For each time ¢, we will refer to the three retailers as the
two-retailer, one-retailer, and zero-retailer, according to
the number of their orders issued at time ¢t. Thus, the
two-retailer is t mod 3, the one-retailer is (¢t + 2) mod 3
and the zero-retailer is (¢t 4+ 1) mod 3.

4.1 Fractional Cost. We consider a fractional solu-
tion (z*,y*) in which each retailer has a fractional ship-
ment of % at each time ¢ < K when it issues an order
(see Figure 2). Formally, for each t =0,1,..., K — 1 let
1 .
f_ 1 « _ [3 ifpe{tmod3,(t+2)mod3}

7r =g and zy, { 0 ifp=(t+1)mod3

for each p =0,1,2. For t = K, to guarantee feasibility,
we let 2j = xf ¢ = 23 = 1 and a7 x = 1. (Recall
that K is a multiple of 3.) The values of y are assigned
greedily, that is, if 7 = (p, a, h) for p = amod 3 then for
a< K—-1lweletyy , =yr 41 = 1, and for a = K we let
Yr i = 1. Similarly, if 7 = (p,a, h) for p = (a+2) mod 3
% for
fora =K —1and y; , =1 for

then we let yr , =
a < K — 2? y;kr,K =
a=K.

We now estimate the cost of this solution. Consider
some time t = 0,...,K — 1. With this time ¢t we
associate the cost of the shipment at ¢ and the waiting
cost of all retailers in the interval [¢,¢+1). The shipment
at t costs 1(C + 2c). In the interval [t,¢ + 1), the
waiting cost of the two-retailer is 1 -2 = 1, and the
waiting costs of the one-retailer and the zero-retailer
are both % So the total cost associated with time t is
2(C+2)+1+ 3+ 4 =3 We thus conclude that

fora < K -1, y; o0 =

N = no =

the cost of (x*,y*) per time unit is 12—1, not counting the

shipment cost at time K, so the overall cost of (x*,y*)
is 2 K4+ O(1). (Although it is not needed for our proof,
one can show that (z*,y*) is at most a constant away
from the actual optimum solution.)

4.2 Integral Cost. To estimate the integral cost,
we will represent integral solutions by paths through
a state diagram. In this diagram, the states will store
the number of yet unsatisfied orders of each retailer
at a given time. Moving from time ¢ to ¢t + 1 will be
represented by a transition between the corresponding
states, labelled by the cost of this step. This cost will
include the shipment cost at time ¢, if any, and the
waiting cost incurred in the time slot [¢,¢ + 1). This
state diagram may have infinitely many states, but we
can reduce it to only six states, by eliminating states
and transitions that cannot occur in an optimal integral
solution and by using symmetry.

The state at time ¢ will be represented by a triple
of integers (A, B,C), where A is the number of yet
unsatisfied orders of the two-retailer, B is the number
of yet unsatisfied orders of the one-retailer, and C' is
the number of yet unsatisfied orders of the zero-retailer,
right after the orders were issued at time t but before
the shipment is completed at time ¢, if any. For each
state we will have A > 2 and B > 1, due to the orders
placed at time t. For example, the initial state, at time
0, will be (2,1,0).

Let (z,y) be some optimal integral solution for
the above instance. We observe that, without loss
of generality, we can assume that (x,y) satisfies the
properties below:

(a) If in (z,y) the total number of yet unsatisfied
orders at some time ¢ is at least 9 then (x,y) has
a shipment at time ¢. This holds because without
a shipment at time ¢, (z,y) would pay cost 9 for
waiting in the time interval [t,¢t + 1), which is at
least as large as the cost of any shipment.

(b) If (x, y) has a shipment at time ¢ then this shipment
includes the two-retailer. This is true, since and
thus the waiting cost for the a-retailer in the time
interval [t,¢ 4+ 1) would be at least A > 2, which
is the same as the cost of joining the shipment at
time ¢.

(c) If (x, y) has a shipment at time ¢ then this shipment
includes the one-retailer. To justify this, note that
if (x,y) has a shipment involving this retailer at
time t+1 then we could reduce the cost by removing
this retailer from the shipment at time ¢ + 1 and
have him join the shipment at time ¢. On the other

hand, if there is no such shipment at time ¢ + 1,
then this retailer would pay at least 2B > 2 for
waiting until the next shipment, so he can instead
join the shipment at time ¢, without increasing the
cost.

(d) If (x,y) has a shipment at time ¢ and the C' > 2
then this shipment includes the zero-retailer. This
follows by the same argument as in part (b).

From these observations, we can assume that each
state (A, B,C) in our state diagram has the following
properties:

e (A, B,(C) has a transition that corresponds to the
shipment which involves all retailers with yet un-
satisfied orders, going to state (2,1,0). If C = 0
then the cost of this transition is 7, otherwise its
costis 9. If A+ B+ C > 9 and C > 2 then this is
the only transition from this state.

o If A+ B+ C < 8 then (A, B,C) has a transition
that does not involve a shipment, going to state
(C+2,A+41,B). The cost of this transition is
A+ B+C.

e If C =1 then (A, B,1) has a transition correspond-
ing to the shipment that involves the two- and one-
retailer, going to state (3,1,0). The cost of this
transition is 8.

If we start from the initial state (2, 1,0) and expand the
state diagram according to the rules above, we obtain
the diagram shown in Figure 3. Each state is labeled
by three integers (A, B, (), as explained above, and its
potential value, to be discussed shortly. Transitions
are represented by arrows with two labels. The first
label indicates which retailers (two-, one- or zero-)
are involved in a shipment, with “s” indicating that
the corresponding retailer is in the shipment and “-”
indicating that it’s not. The second label is the cost of
the transition.

To estimate the cost of the integral solutions, we
use the potential function ® on the states such that
®(2,1,0) = 3, (3,1,0) = 2 and ®(s) = 0 for all other
states (see Figure 3). By routine verification, for any
transition s — s’ this potential satisfies

U(s,8") > ®(s") — ®(s) + 6,

where £(s, s') is the cost associated with this transition.
By adding up this inequality over all transitions corre-
sponding to an optimal integral solution (x,y), we ob-
tain that the cost of (x,y) is at least 6K — O(1). (This
analysis is tight, since there are some cycles in the dia-
gram where the per-transition cost is 6.)

Figure 3: The state diagram showing possible behaviors
of an optimal integral solution.

Finally, putting together our estimates of the frac-
tional and integral solutions, we obtain that the ratio
between the cost of (z,y) and the cost of (z*,y*) is

6K —O(1) |, 12
dK+0(1) & 11

The argument is now complete, giving us the following
theorem.

THEOREM 4.1. The integrality gap of the linear pro-
gram for JRP-L is at least % ~ 1.09.

5 A Lower Bound of 2.754 for Online JRP-L

We now show our lower bound of 2.754 for the compet-
itive ratios for JRP, which improves the previous lower
bound of 2.64 by Buchbinder et al. [BKLT08]. Since we
use only linear waiting-cost functions in our construc-
tion, as in [BKLT08], our result applies to JRP-L as
well.

5.1 Single-Phase Game. In our lower-bound proof
it will be convenient to consider a simple version of
JRP-L that we refer to as the Single-Phase JRP-L.
In the Single-Phase JRP-L all orders are issued at the
beginning at time 0. Recall that the waiting cost is
linear. In addition to the set of retailers and orders,
the instance specifies also an expiration time 6. At
time € all orders expire: they need not be shipped
anymore, but each incurs the waiting cost h(f) = 6.
Note that all information about the instance is known
to the online algorithm, except for 8, which represents
the adversary strategy. Thus, the Single-Phase JRP-L
is in fact a generalization of the well studied rent-or-buy
problem.

We claim that a lower bound of R for Single-Phase
JRP-L implies a lower bound of R for JRP-L (and thus
for JRP as well). Since a similar argument appeared be-
fore in [BKLT08, BBC'13b], we only briefly sketch the
proof of this claim. Suppose that we have an adversary
strategy that forces ratio R for Single-Phase JRP-L. We
modify it into an adversary strategy that forces the same
ratio for JRP-L. This strategy creates a large number
of single-phase instances, concatenated together, with
the i-th instance scaled by a factor of M?, for some very
large M, in the following sense: each order is replaced
by M identical orders and the time is accelerated by
a factor of M* as well. By accelerating the time we mean
that all time values used to make decisions in the strat-
egy are multiplied by M ~*. These two changes together
ensure that the waiting costs are not affected. The ad-
versary applies the same strategy in each phase, forcing
ratio R for each phase. Each phase may produce some
number of non-satisfied orders, but these can be satis-
fied by one shipment for all retailers at the end of the
game. This will add only a constant to the adversary
shipment cost and, since the phase lengths are decreas-
ing so fast, the increase of the adversary’s waiting cost
will be also negligible.

5.2 Single-Phase Construction. We will use an in-
stance of Single-Phase JRP-L with N + 1 retailers in R,
denoted pg, p1,--.,pn- The costs of shipping from the
warehouse to each of them are as follows: c,, =cy =0
and c,, = ¢; = c for all i > 0 and c that we fix later.
These are normalized so that C = 1, i.e., the cost of
shipping from the supplier to the warehouse is 1.

Each retailer p; places w; identical orders (p;, 0, h;)
at time 0, where h;(t) = ¢ for all i. Equivalently, we
can view this as issuing a single order m; = (p;, 0, h})
with weight w;, that is with waiting cost function
Ri(t) = w; -t. We will adopt this latter terminology
in this section. We choose the weights to be quickly
decreasing, that is w; > w;41 for all i < N, so that the
slopes of the functions h} are decreasing rapidly with
1. As a result, in the proof below, when the algorithm
satisfies an order 7;, the waiting costs (of the algorithm
and the adversary) of all orders m;i1,mito,... will be
negligible. For clarity, in the calculations below we
will assume these costs to be 0. (By adjusting the
weights appropriately, we can make these costs at most
an arbitrarily small €, and then our lower bound will
approach R.)

Let A be an online algorithm for Single-
Phase JRP-L. To describe the adversary strategy, we
first normalize the way A proceeds. Using a simple ex-
change argument, it is easy to show that, without loss
of generality, A satisfies all the demands in increasing

order of their indices, i.e., if ¢ < j then m; is satisfied
earlier than or together with m;. Then, the adversary
stops the game the moment that A satisfies more than
one order with a single shipment. (“Stopping” means
that the expiration time 6 is set to the current time.)
To complete the strategy’s description we can thus fo-
cus on A satisfying orders mg, 71, ... in this order, each
with a dedicated shipment. If the waiting cost associ-
ated with m; at the moment of its satisfaction is smaller
than a certain threshold value o;, the game ends, other-
wise it continues. This means that as long as the game
did not end at of before A’s shipment satisfying m;, A’s
cost for these shipments is at least Z;:o(l +c; +0j).
In particular, if the game does not end due to any afore-
mentioned reason at or before the time that A4 satisfies
TN, then the game ends naturally with this shipment;
otherwise we say that the game ends prematurely.

As was the case with ¢;’s, all the thresholds o;
coincide and are denoted o, with the exception of og.
We now give the values of all the parameters. We let c
be the only real root of

(5.9) Aectrl)=1,
and

— 1 2 _ 2 4 2
(510)00:(:4»71: s U:UO:C =C +C_1,

where the identities follow from (5.9). We have ¢ =~
0.7548, 09 ~ 0.5698 and o ~ 0.3247.

We claim that unless the game ends naturally, the
competitive ratio of A is at least R = 2+ c. To see this,
let us consider all the ways in which the game can end
prematurely.

Let w be A’s waiting cost of g when it satisfies g.
If w < og then A’s cost is at least 1 + w, whereas OPT
can pay the waiting cost w alone, resulting in ratio no
smaller than

1
1+—=24+c=R.
0o

If A satisfies my together with another order by a
single shipment, then A’s cost is at least 1 + ¢ + w,
whereas OPT will either pay the waiting cost w for mg
or 1 for satisfying my at time 0. Thus, the competitive
ratio is at least

l+c+w 24c

=2 =R .
min{l,w} — 1 te

Now we consider analogous two cases regarding the
shipment for 7;, where ¢ > 1, assuming that the game
did not end before. This means that A already suffered
a cost of at least og + 1+ (i — 1)(0 + 1 + ¢) associated

with satisfying orders m, ..., m;_1, plus some additional
cost associated with satisfying 7;. Let now w denote the
waiting cost of m; when A satisfies ;.

If w < o then OPT satisfies the orders m; for all
j < i with a single shipment at time 0, and pays the
waiting cost w for m;. The competitive ratio is at least

oo+1+@GE—-1)(c+1+c)+w+1+c
T+(—1c+w
itctog+(i—1)o
1+ (G —1ctw
Sy itetout(i=1o
1+(—1)c+o

3

which after substituting formulas (5.10) for g and o,
as well as using (5.9), becomes

1+1—&Tic+z’c2 .y 1—|—i‘c2—c2
ic + 2 c(i+c)
:2+z’c2.+c3
c(i+c)
=24+c=R.

Let us consider the remaining case in which A satisfies
another order together with m;. In this case OPT
satisfies all the previous orders with a single shipment
at time 0. As for m;, OPT can satisfy it also with the
shipment at time 0 or it can pay the waiting cost w for
m;, whichever is cheaper. Thus the ratio is at least

oo+1+(G—1)(c+14+c)+w+1+2
1+ (i — 1)c + min{c,w}

i+2c+o9+ (i—1)o
14 1c

>1+

)

which after substituting formulas (5.10) for og and o,

becomes

1+ (i+ 1)c+ic?
1+ic

(1+c)(1+ic)

1
* 1+41c

=1+ =24c=R .

Thus the ratio is at least R if the game ends
prematurely. But if it does not, then A’s cost for each
shipment, except the one for 7, is at least 1 +c+ o0 =
c? + 2¢, by (5.10). On the other hand, OPT satisfies
all orders with a single shipment at time 0, which costs
1+ Nc. With N — oo, OPT’s cost of 1 for shipment
from the supplier to the warehouse becomes negligible
and OPT’s cost per order tends to c. Therefore, the
competitive ratio tends to R = 2 + c. Summarizing the
above argument, we obtain:

THEOREM 5.1. Fach online deterministic algorithm for
JRP-L has competitive ratio at least 2.754.

6 An Upper Bound of 2 for Online JRP-D

We now present an online algorithm for JRP-D with
(optimal) competitive ratio 2. A matching lower bound
is given in Section 7. We will denote the shipments
of the algorithm by (Bj,t1), (Bs,t2),..., where t; <
ta < ... The set B; of retailers participating in the
j-th shipment is called the jth batch. For convenience,
we introduce a “dummy” 0’th shipment at time tg = 0,
which we think of as if it shipped to all the retailers
in the instance at no cost. (All that matters is that at
time 0 no retailer has any pending orders.) For a retailer
p and time t, we define the deadline of p to be the
earliest deadline of an order in p pending at time ¢. If
a retailer does not have any pending orders, its deadline
is +00. Without loss of generality, we can assume that
all shipments (of an online algorithm and the adversary)
take place only at deadlines of some retailers. If ¢; is
the deadline of a retailer p then we say that p, or the
order in p with deadline ¢;, triggers shipment (Bj,t;).

6.1 Algorithm G. Suppose that we just completed
shipment (B;j_1,t;_1). We wait until we reach a dead-
line of a retailer, which will become the trigger re-
tailer for the jth shipment. We denote this retailer
by x; and its deadline by ¢;. At time ¢; our batch is
B; = {x;}UX;, where X, contains the maximum num-
ber of retailers, in order of increasing deadlines, such
that C(Xj) S C.

If j = 1 then, according to our convention, j—1 =0
refers to the dummy shipment at time ¢y = 0. Thus
the first shipment will occur at the first deadline of the
instance.

6.2 Analysis. We now analyze this algorithm. To
simplify the analysis we will assume that all order arrival
times and deadlines are different. The instance can
be converted to have this property by an infinitesimal
perturbation of arrival times and deadlines.

We divide the sequence of shipments into phases.
A phase is a maximal interval [g, h] of integers (indices
of shipments), where 1 < g < h, such that the adversary
does not make any shipments in the time interval
(tg,tn]. In other words: (i) there are no adversary
shipments in (t4,t,], (ii) the adversary shipped in
(ty—1,tq), and (iii) either ¢, is the last deadline or the
adversary shipped in (¢p, tp+1]. Note that the first phase
starts with the first shipment (that is ¢ = 1). Indeed,
the adversary must ship in the interval (¢, 1], because
t1 is the first deadline. The lemmas below elucidate
properties of phases that will be critical to our analysis.

LEMMA 6.1. Let [g,h] be a phase and g < j < h. Let
7 be the order in x; that triggers shipment B;. Then m

was pending at time t;_1, and among all orders pending
at time tj_q it was the earliest-deadline order not in
Bj—l-

Proof. Suppose that m = (x;, a,d), that is d = t;. If we
had a > t;_; then the adversary would have to make
a shipment in the interval [a, d] C (t,;_1,t;], which would
contradict the definition of a phase. So m was pending at
time ¢;_;. It must also be in fact the earliest-deadline
order outside B;_;, because B; is the first shipment
after B;_1.]

LEMMA 6.2. Let [g,h] be a phase and g < j < h.
Suppose that p € Bj, where for j = h we assume that
p = Xn. Let j' < j be mazimum such that p € Bj (if
there is no shipment to p before t;, let j' = 0). Then
j' < g and the adversary must ship to p in the interval

(tj/v tg]'

Proof. Right after the shipment Bj/, there were no
orders in p, so all orders in p satisfied by B; arrived
after ¢;;. Denote the order with the earliest deadline
out of those by 7 and its deadline by d. Then d < t:
if 5 = h, this follows from our assumption that p = xs,
and otherwise from Lemma 6.1 by considering the order
that triggers B;.

Hence, the adversary has to satisfy m in (¢;/, ¢5], and
as he makes no shipments in (¢4, ¢], he must do so in
(tj7,t4]; so in particular we get j' < g. O
THEOREM 6.1. Algorithm G s for
JRP-D.

2-competitive

Proof. Consider a phase [g, h]. Using the above lemma,
if p € B;, where either g < j < hor j = h and p = xz,
then with the G’s warehouse-to-p shipment at time ¢;
we can associate a unique warehouse-to-p shipment of
the adversary that occurred not later than at time ¢;,.

With this in mind, we can now analyze the algo-
rithm using a charging argument, as follows:

o We charge c(x,), namely the cost of the warehouse-
to-xy shipment at time t, to the associated
warehouse-to-x, shipment of the adversary (as de-
scribed above). The charging ratio here is 1.

e We charge C + c¢(X},), representing the cost of the
first supplier-to-warehouse shipment at time ¢, and
the cost of the warehouse-to-X}, shipment at time
tn, to the adversary cost of C of the supplier-to-
warehouse shipment in (t,_1,t,]. Since ¢(X};) < C,
the charging ratio is at most 2.

e For j =g,...,h—1, we charge the cost C+c(X;) +
c(x;+1), that represents the supplier-to-warehouse
shipment cost at time ¢;4; and the cost of ship-
ments warehouse-to-X; and warehouse-to-x;1, to

c(X;)+c(x;j+1), namely the adversary’s warehouse-
to-retailer shipment cost associated with the re-
tailers in X; U {x;4+1}. By the choice of X; and
Lemma 6.1, we have c(X;) + c(x;+1) > C, so the
charging ratio is at most 2.
In all cases the charging ratio is at most 2, and
different charges are assigned to different portions of
the adversary cost, which implies the competitive ratio
of Algorithm G. O

7 A Lower Bound of 2 for Online JRP-D

In this section we show that no online algorithm for
JRP-D can have competitive ratio smaller than 2,
thus proving the optimality of the algorithm from the
previous section.

THEOREM 7.1. FEvery deterministic online algorithm
for JRP-D has competitive ratio at least 2.

Proof. Similarly to the proof in Section 5, we actually
provide this lower bound for the restricted variant of
JRP-D called Single-Phase JRP-D. In Single-Phase
JRP-D, all orders arrive at time 0. The adversary can
stop the game at any time 6 (the expiration time),
unknown to the online algorithm. All orders not
satisfied by time 6 incur no shipping cost. By an
argument similar to the one given in Section 5, any
lower bound for Single-Phase JRP-D implies the same
lower bound for JRP-D. (For JRP-D the argument in
Section 5 has to be slightly refined; the details will be
given in the full version of this paper.)

In our instance, the supplier-to-warehouse shipping
cost is C = 1. We have N + 1 retailers p;, i = 0,1, ..., N,
for some sufficiently large V. Retailer py has shipping
cost ¢,, = 0, and each retailer p;, for i > 0, has shipping
cost ¢,, = 1. For each i, retailer p; issues one order m;
at time 0 with deadline equal to i.

Let A be an online algorithm for JRP-D. A must
ship to each p; no later than at time ¢. Without loss of
generality, A ships only at integer times, so as long as
A ships to each retailer separately then each p; will be
shipped at time i. The adversary will stop the game as
soon as A ships to more than one retailer. If this does
not happen, the game stops after the shipments to all
retailers, that is right after time N.

We argue now that this forces the competitive ratio
of A to be arbitrarily close to 2. If A ships to each
retailer separately, it pays 1 for retailer 0 and 2 for
each retailer p;, ¢ > 1, for the total cost of 2N + 1.
The adversary can ship to all retailers at the beginning,
paying N + 1. So the ratio approaches 2 with N — co.

Suppose that at some time k, A ships to p; and
some other retailer, and let k& be the first such k. Then
A’s cost is 1+ 2(k— 1) +3 = 2k + 2. The adversary can

ship to all retailers po, ..., pr at the beginning, paying
k 4+ 1. So the ratio is 2 also in this case. O

8 Final Comments

There are still significant gaps between the lower and
upper bounds for the approximability of different vari-
ants of JRP. For JRP-D, we have APX-hardness [NS09,
BBC*13a] and an integrality gap of 1.245 [BBC'13a],
while the best approximation ratio is 1.574 [BBC*13a].
Interestingly, JRP-L, which is the most common vari-
ant of JRP in the literature (in fact, JRP is frequently
defined using linear waiting costs), is even less under-
stood than JRP-D. The best upper bound is the same
as for the general case, namely 1.791, shown in this pa-
per, even though at this time not even an approxima-
tion scheme has been ruled out. Some progress on this
problem was recently reported in [NS13]. The approx-
imability of the online version of JRP-L also remains
open.

It may be possible to use our approach to reduce
the ratio for the general version of JRP to below 1.791
by modifying the 1.574-approximation algorithm for
JRP-D in [BBCT13a], to obtain a parametrized bi-
criteria approximation that can be then optimized after
combining it with Algorithms 2SRP and 1SRP. We leave
this as a project for future work.

JRP can be naturally generalized to trees of ar-
bitrary depth. This multi-level JRP problem with
deadlines was studied by Bechetti et al. [BMSVT09],
who provided a 2-approximation algorithm. (The ob-
jective function in [BMSVT09] is different than ours,
but their proof works for our model.) Khanna et
al. [KNRO2] considered the case of linear waiting costs.
Very recently, Lehilton Chaves (private communication)
has shown that the general case can be reduced to
the so-called multi-stage assembly problem, for which
a 2-approximation algorithm was given by Levy et
al. [LRS06].

References

[AJR89] Esther Arkin, Dev Joneja, and Robin Roundy.
Computational complexity of uncapacitated multi-
echelon production planning problems. Operations Re-
search Letters, 8(2):61-66, 1989.

[BBC*13a] Marcin Bienkowski, Jaroslaw Byrka, Marek
Chrobak, Neil Dobbs, Tomasz Nowicki, Maxim Sviri-
denko, Grzegorz Swirszcz, and Neal E. Young. Approx-
imation algorithms for the joint replenishment problem
with deadlines. In Proc. of the 40th Int. Collog. on Au-
tomata, Languages and Programming (ICALP), pages
135-147, 2013.

[BBCT13b] Marcin Bienkowski, Jaroslaw Byrka, Marek
Chrobak, tukasz Jez, Jifi Sgall, and Grzegorz Sta-

chowiak. Online control message aggregation in chain
networks. In Proc. of the 13th Algorithms and Data
Structures Symposium (WADS), pages 133-145, 2013.

[BKL108] Niv Buchbinder, Tracy Kimbrel, Retsef Levi,
Konstantin Makarychev, and Maxim Sviridenko. On-
line make-to-order joint replenishment model: primal
dual competitive algorithms. In Proc. of the 19th
ACM-SIAM Symp. on Discrete Algorithms (SODA),
pages 952-961, 2008.

[BKV12] Carlos Brito, Elias Koutsoupias, and Shailesh
Vaya. Competitive analysis of organization networks
or multicast acknowledgement: How much to wait?
Algorithmica, 64(4):584-605, 2012.

[BMSV'09] Luca Becchetti, Alberto Marchetti-
Spaccamela, Andrea Vitaletti, Peter Korteweg, Martin
Skutella, and Leen Stougie. Latency-constrained
aggregation in sensor networks. ACM Transactions on
Algorithms, 6(1):13:1-13:20, 20009.

[KNRO2] Sanjeev Khanna, Joseph Naor, and Danny Raz.
Control message aggregation in group communication
protocols. In Proc. of the 29th Int. Collog. on Au-
tomata, Languages and Programming (ICALP), pages
135-146, 2002.

[LRS05] Retsef Levi, Robin Roundy, and David B. Shmoys.
A constant approximation algorithm for the one-
warehouse multi-retailer problem. In Proc. of the 16th

ACM-SIAM Symp. on Discrete Algorithms (SODA),
pages 365374, 2005.

[LRS06] Retsef Levi, Robin Roundy, and David B. Shmoys.
Primal-dual algorithms for deterministic inventory
problems. Mathematics of Operations Research,
31(2):267-284, 2006.

[LRSS08] Retsef Levi, Robin Roundy, David B. Shmoys,
and Maxim Sviridenko. A constant approximation
algorithm for the one-warehouse multiretailer problem.
Management Science, 54(4):763-776, 2008.

[LS06] Retsef Levi and Maxim Sviridenko. Improved ap-
proximation algorithm for the one-warehouse multi-
retailer problem. In Proc. of the 9th Int. Workshop
on Approximation Algorithms for Combinatorial Opti-
mization (APPROX), pages 188-199, 2006.

[NS09] Tim Nonner and Alexander Souza. Approximat-
ing the joint replenishment problem with deadlines.
Discrete Mathematics, Algorithms and Applications,
1(2):153-174, 20009.

[NS13] Tim Nonner and Maxim Sviridenko. An efficient
polynomial-time approximation scheme for the joint re-
plenishment problem. In Proc. of the 16th Integer Pro-
gramming and Combinatorial Optimization (IPCO),
pages 314-323, 2013.

