
Online Control Message Aggregation
in Chain Networks?

Marcin Bienkowski1, Jaroslaw Byrka1, Marek Chrobak2, Łukasz Jeż1,3, Jiří
Sgall4, and Grzegorz Stachowiak1

1 Institute of Computer Science, University of Wroclaw, Poland.
2 Department of Computer Science, University of California at Riverside, USA.

3 Dept. of Computer, Control, and Management Engineering, Sapienza University of
Rome, Italy.

4 Computer Science Institute, Faculty of Mathematics and Physics, Charles
University, Czech Republic.

Abstract. In the Control Message Aggregation (CMA) problem, control
packets are generated over time at the nodes of a tree T and need to
be transmitted to the root of T . To optimize the overall cost, these
transmissions can be delayed and different packets can be aggregated,
that is a single transmission can include all packets from a subtree rooted
at the root of T . The cost of this transmission is then equal to the total
edge length of this subtree, independently of the number of packets that
are sent. A sequence of transmissions that transmits all packets is called
a schedule. The objective is to compute a schedule with minimum cost,
where the cost of a schedule is the sum of all the transmission costs and
delay costs of all packets. The problem is known to be NP-hard, even for
trees of depth 2. In the online scenario, it is an open problem whether
a constant-competitive algorithm exists.
We address the special case of the problem when T is a chain network.
For the online case, we present a 5-competitive algorithm and give a
lower bound of 2 +φ ≈ 3.618, improving the previous bounds of 8 and 2,
respectively. Furthermore, for the offline version, we give a polynomial-
time algorithm that computes the optimum solution.

1 Introduction

In the Control Message Aggregation (CMA) problem, introduced in [6], we are
given a tree T whose edges have positive lengths. Over time, packets are gener-
ated at the nodes of T . Each packet is specified by a pair (t, v), where t is the
injection time of this packet and v ∈ T the vertex where the packet is injected.
All packets must be transmitted to the root of T , although not necessarily im-
mediately; to reduce cost, packets can be delayed and different packets can be
aggregated into a single transmission. A transmission is defined as a subtree
? Research partially supported by NSF grants CCF-1217314 and OISE-1157129,
MNiSW grant no. N N206 368839, 2010-2013, EU ERC project 259515 PAAl, CE-ITI
(project P202/12/G061 of GA ČR), and grant IAA100190902 of GA AV ČR.



rooted at the root of T that transports all the packets currently contained in its
nodes. The cost of this transmission is then equal to the total edge length of this
subtree, independently of the number of packets that are sent. Delaying a trans-
mission of a packet incurs cost equal to the time it waits for the transmission.
A schedule is specified by a sequence of transmissions that transmit all packets
to the root. The cost of a schedule is the sum of its transmission costs and the
waiting costs of all packets. The objective is to find a schedule of minimum cost.

In reality, what we refer to as packets in the paper are abstractions of control
messages acknowledging the receipt of some network packets from a communi-
cation stream. This motivates the assumptions of our cost model, in particular
the fact that the transmission cost does not depend on the number of pack-
ets involved. The reason is that in practice acknowledgement messages are very
small, so the cost of including them in the transmission is negligibly small in
comparison to the overhead of sending it. More generally, the CMA problem can
model transportation problems where large quantities of small items need to be
shipped to a common destination, incurring both the transportation and delay
costs.

While it is possible to consider the problem in the offline scenario, where the
algorithm knows the whole input sequence in advance, the online model more
accurately reflects the constraints that arise in practice. In the online model,
packets arrive as time passes, with each packet (t, v) arriving at time t, and at
each time step the algorithm needs to decide whether and what to transmit.
In the online model, one can further distinguish two versions: distributed al-
gorithms, where the nodes make local decisions independently, and centralized,
full information algorithms [2], that have complete knowledge about the input
sequence so far and the current state.

Previous work. Khanna et al. [6] defined the CMA problem and gave an
O(logα)-competitive online algorithm, where α is the sum of all edge lengths.
(Their algorithm works under an additional technical assumption that each
packet has to wait at least one time unit.) The CMA problem on a single-edge
tree is equivalent to the prominent TCP acknowledgement problem. The online
version of TCP acknowledgement has been essentially solved: the optimal com-
petitive ratios for deterministic and randomized algorithms are, respectively, 2
and e/(e− 1) ≈ 1.582 [4,5].

While finding better bounds on the competitive ratio remains an open prob-
lem, O(1)-competitive online algorithms were presented for some special classes
of trees. For flat trees, where the tree has depth two and the root has only
one child, the problem becomes equivalent to the Joint Replenishment Prob-
lem (JRP) with linear penalties, well studied in Operations Research. For this
version, Brito et al. [2] gave a 5-competitive algorithm. The ratio was later im-
proved to 3 by Buchbinder et al. [3], who also presented a lower bound of 2.64.
These results apply in fact to arbitrary trees of depth two, as such trees can be
decomposed into flat trees that are processed independently. In the offline case,
Arkin et al. [1] proved that JRP is NP-hard and a 1.8-approximation algorithm
was given by Levi et al. [7,8,9].

2



Another previously studied case is that of chain networks, where each non-
leaf node has exactly one child. This version was introduced by Brito et al. [2],
who presented an 8-competitive online algorithm. No online algorithm can be
better than 2-competitive in this case, due to the lower bound for the TCP-
acknowledgement problem [4].
Our contributions. Following the work in [2], we study online and offline
algorithms for Control Message Aggregation on chain networks. Three results are
provided. In the online case, we focus on centralized algorithms. For this model
we give a 5-competitive algorithm and we prove a lower bound of 2 + φ ≈ 3.618
(where φ = (1 +

√
5)/2 is the golden ratio). Both results improve the previously

known bounds, described above. As we show, the analysis of our online algorithm
is tight. For the offline case, we provide an algorithm that computes an optimal
schedule in polynomial time.

2 Preliminaries

Throughout the paper, we think of a chain network as a half-line R+, consisting
of all non-negative real numbers. Slightly abusing the terminology, we will refer
to it as the line. Any x ∈ R+ represents a node of the network at distance x from
the origin. Packets arrive over time and need to be transmitted to the destination
at point 0. A transmission from x at time t sends all packets from the interval
(0, x], and the cost of this transmission is x. (Without loss of generality, we
may assume that no packet ever arrives at point 0 as they might be transmitted
immediately at zero cost.) We consider continuous time, that is packets can be
injected and transmitted at arbitrary real-valued times. We also allow packets
to have non-negative weights. The penalty function for waiting is assumed to
be linear, that is a packet of weight w injected at time a and transmitted at
time t pays the cost w(t − a) for waiting. The weights do not affect the cost of
transmissions. Thus, for the purpose of computing cost, w unit-weight packets
arriving at the same time are equivalent to one packet of weight w. Note that
our lower bounds use only integer weights, and thus can be trivially simulated
using non-weighted packets.

3 An Online 5-Competitive Algorithm

In this section, we present our 5-competitive algorithm for Control Message
Aggregation on chain networks.

For any x ∈ R+ and time t, denote by twct[x] the total waiting cost of
the packets currently at x, starting at their arrival until time t. We generalize
this notation to intervals: for example twct(x, y] is the total waiting cost in the
interval (x, y], that includes y but not x, etc. We will drop subscript t if its
value is clear from the context or not relevant. The length of a transmission from
point x is equal to x. For any time t, trl(t) denotes the length of a transmission
at time t; we let trl(t) = 0 if there is no transmission at t. For the analysis, we
define an analogous notion of trlADV(t) for adversarial transmissions.

3



time
t0t1t2t3t4tk=t5

2b

tADV

2b-1

2b-2

2j

lo
ca
tio
n

Fig. 1. An example for the analysis of Balance’s cost at time t0. The line (the vertical
axis) is shown in the logarithmic scale. The algorithm’s transmissions end with empty
triangles. The adversary’s transmissions end with circles. The algorithm’s cost at t0
is charged to the waiting cost of packets within the shaded area and the 2b−1-to-2b−2

segment of the adversarial transmission (marked with thick line) at tADV.
Algorithm Balance. At every time t, transmit from the maximum point 2j

such that twct(0, 2j ] = 2j−2, if such j exists; otherwise stay idle. (Note that
every packet will eventually be transmitted.)

Theorem 1. Balance is 5-competitive.

Proof. Assume that Balance transmits from 2j at time t0. Then, it pays 2j for
the transmission and it has paid twc(0, 2j ] = 2j−2 for waiting of the packets it
has just transmitted. Altogether, these terms contribute 5 ·2j−2 to the total cost
of Balance. We show that it is possible to charge this cost to adversary’s actions
(waiting or transmitting), whose cost is at least 2j−2, assuring that no action
will be charged more than once. This implies that Balance is 5-competitive.

To this end, we choose the sequence of Balance’s transmissions at times
t1, t2, . . . , tk, going back in time, with k largest possible, where t1 is the last
transmission time before t0, each other ti has a transmission longer than the one
at ti−1, and the transmission at tk has length at least 2j . (To avoid boundary
cases, we assume that there is an artificial transmission at time −1 of infinite
length and zero cost, so tk is always well defined.) Formally, we find a sequence
of transmission times tk < tk−1 < . . . < t2 < t1 < t0, such that

1. trl(tk) ≥ 2j ,
2. trl(ti+1) > trl(ti) for 1 ≤ i ≤ k − 1,
3. trl(t) ≤ trl(ti) for 0 ≤ i ≤ k−1 and t ∈ (ti+1, ti), and trl(t) = 0 for t ∈ (t1, t0).

We call these transmissions the cover sequence for t0, cf. Fig. 1.
Then, we consider adversarial transmissions occurring within the time inter-

val (tk, t0]. An adversarial transmission occurring at time t ∈ (t`+1, t`] is called
unobstructed if its length is at least trl(t`). Let tADV ∈ (tk, t0] be the time of
the longest unobstructed adversary’s transmission (with ties broken in favor of
later transmissions), and let A = trlADV(tADV); if there was no unobstructed
adversary’s transmission in (tk, t0], then let tADV = t0 and A = 0. Finally, let
b = min{j, blog2 Ac+ 1}, where b = −∞ if A = 0. Thus, for A ∈ (0, 2j), it holds
that 2b−1 ≤ A < 2b.

4



Now we focus on packets at points from (2b, 2j ] that are transmitted at t0;
their waiting periods are contained in the shaded area in Fig. 1. Let us denote
these packets by W (t0). Note that the waiting cost of W (t0) is twct0(2b, 2j ],
and that, by the definition of tADV, the adversary pays for the waiting of these
packets at least as much as Balance does.

We will charge Balance’s cost of 5 ·2j−2 to two actions of the adversary: its
waiting of the packets in W (t0) and the movement of packets from 2b−1 to 2b−2

during the transmission at tADV (if there was any). In other words, we charge to
the segment [2b−2, 2b−1] of the adversary’s transmission at tADV. As mentioned
at the beginning of the proof, it is sufficient to show two properties: (i) the total
cost of these two actions is at least 2j−2 and (ii) none of these actions is charged
again when we analyze another transmission of algorithm Balance.

For property (i), we claim that twct0(2b, 2j ] ≥ 2j−2 − 2b−2. Clearly, this
is the case for b = j or b = −∞. For b < j, recall that twct0(0, 2j ] = 2j−2

and furthermore, twct0(0, 2b] ≤ 2b−2 as otherwise the algorithm would have
transmitted from 2b earlier. The adversary cost of transmitting across the seg-
ment [2b−1, 2b−2] at time tADV is 2b−2. Together, these costs add up to at least
2j−2 − 2b−2 + 2b−2 = 2j−2, as claimed in (i).

To show property (ii), consider a transmission of Balance at some time
t′0 > t0 with trl(t′0) = 2j′ . We also consider the corresponding cover sequence for
t′0, the time t′ADV of the longest unobstructed adversarial transmission within
that cover sequence, and the corresponding values of A′ = trlADV(t′ADV) and b′.
W (t0) and W (t′0) are disjoint sets of packets since Balance transmits them at
distinct times t0 and t′0. Thus, it suffices to prove that transmissions at t0 and t′0
charge their costs to different parts of the adversarial transmissions. Clearly, it
is the case when they are charged to different transmissions, so in the following
we assume that t′ADV = tADV (and hence A = A′). Note that tADV ≤ t0 < t′0.
Then j < j′, as otherwise the cover sequence for t′0 would end at some time point
after t0. Furthermore, the adversarial transmission at tADV is unobstructed in
the cover sequence for t′0, which means that A ≥ 2j , and hence b = j. But then,
as j′ > j, by the definition of b′, we have b′ > j. This means that b′ 6= b, i.e.,
the transmissions at t0 and t′0 are charged to different parts of the adversarial
transmission at t′ADV = tADV. ut

The analysis of our algorithm can be shown to be tight. In fact, we can prove
(the proof will be given in the full version) an even stronger tightness result,
namely the following: Every deterministic algorithm that transmits only from
integer powers of 2 has competitive ratio at least 5.

4 A Lower Bound of 2 + φ ≈ 3.618

To prove the lower bound of 2 +φ, it is sufficient to show that for any R < 2 +φ
there is a strategy for the adversary that forces any deterministic algorithm Alg
to pay at least R times the cost of an optimal solution Opt.

In the next section we show how to construct an adversarial strategy for a
slightly modified version of the problem, called the single-phase game. In such

5



a game, the adversary injects (weighted) packets only at time 0, at points b1 <
b2 < . . . < bm that will be specified later. Additionally, the adversary has the
capability to end the game at an arbitrary time τ . As an algorithm may finish
with non-transmitted packets, the definition of cost associated with such a packet
q has to be adapted: it is simply the waiting time of q from time 0 till time τ . We
define phase ratio as the Alg-to-Opt cost ratio with the waiting costs modified
as described above. Our single-phase construction has two additional properties,
namely that there exist absolute lower and upper bounds on the duration of a
game, and there exists an absolute lower bound on the cost of Alg in a single
phase.

While the actual adversarial construction of a single-phase game and its anal-
ysis are given in the subsequent subsections, here we argue that if the adversary
can force the phase ratio to be at least R, then R is a lower bound on the com-
petitive ratio for CMA on chain networks. To this end, the adversary chooses
a large integer `, and the actual input sequence consist of ` + 1 phases, num-
bered 0, 1, . . . , `. In a phase p, the adversary plays the single-phase game, but
with the weights of the packets multiplied by `p·` and all the time values used
in his strategy divided by `p·`. Intuitively, increased weights cause waiting costs
to accumulate faster, but we compensate for it by “shrinking" the time. With
this rescaling, the adversarial single-phase strategy will also force ratio R in the
single-phase game played in phase p. Clearly, the cost of Alg in the whole CMA
instance is at least the sum of its costs in the individual single-phase games.
(It could be larger if some packets are not transmitted in the phase when they
are issued.) On the other hand, since the time intervals of consecutive phases
decrease so fast, if a packet is injected at the beginning of phase p, and is not
transmitted by the adversary within phase p, then its remaining waiting cost,
in phases p+ 1, p+ 2, . . . , `, is negligible. Finally, all the packets not sent by the
adversary by the end of phase ` can be sent at that time at the cost of at most
bm, and this cost’s contribution is also negligible in comparison to the total cost.
Thus, except for a negligible low-order term, the adversary’s cost is also the sum
of his costs in the individual single-phase games. Therefore the overall cost of
Alg is at least R times the adversary’s cost, minus a low-order term. (A similar
reduction to a single-phase game was used in [3].)

The rest of this section is organized in the following way. In Section 4.1, we
present the strategy of the adversary for a single phase. For the construction,
the adversary has to carefully choose the number of injected packets m, their
injection points b1 < b2 < . . . < bm, and some waiting thresholds w1, ..., wm. We
list the desired properties of these sequences and show that if these properties
are satisfied, then the phase ratio is at least R. Finally, in Section 4.2, we prove
the existence of such sequences.

4.1 Construction of a Single Phase

For the construction, we define the infinite sequences of reals {bi} and {wi},
where b0 = w0 = 0 and b1 = 1. Using notation Bj =

∑j
i=1 bi and Wj =

∑j
i=1 wi

6



(thus, B0 = W0 = 0), the two sequences are defined by:

wj = 1
R− 1 · (Wj−1 +Bj −Rbj−1) for j ≥ 1 , (1)

bj = R · bj−1 + bj−2 −Bj−1 −Wj−2 for j ≥ 2 . (2)

From (2),
Wj−1 = Rbj + bj−1 −Bj+1 for j ≥ 1 . (3)

Plugging this into (1) and rearranging, we obtain the following useful identity:

(R− 1)wj = −bj+1 +Rbj − (R− 1)bj−1 for j ≥ 1 (4)

The crux of our construction lies in the algebraic property that, for R ∈ (2, 2+φ),
the sequence {bi} stops increasing at some point. In particular, in Section 4.2,
we show the following crucial lemma.

Lemma 1. For R ∈ (2, 2 +φ) and the sequences {bj}, {Bj}, {wj}, {Wj} defined
by equations (1) and (2), there exists an integer m ≥ 1, such that the following
properties hold.

(i) 1 = b1 < b2 < . . . < bm and bm+1 ≤ bm.
(ii) wj ≥ 0 for all 0 ≤ j ≤ m.

Note that it may happen that bm+1 < 0, but this does not affect the validity
of our proof, since we do not use bm+1 as a packet injection point in the lower
bound strategy; in the argument below we only need that bm+1 ≤ bm.

The adversary chooses m, whose existence is guaranteed by Lemma 1 and a
very large integer K. At time 0 the adversary injects a packet of weight Km−j

at point bj , for j = 1, 2, . . . ,m. K is chosen to be at least maxj(wj+1/wj), which
guarantees that the time when the waiting cost for the packet in bj reaches
wj is an increasing function of j. Given that no further packets are injected
within the phase, within this phase Alg will execute a sequence of transmissions
from increasing points. Suppose that k is the largest integer such that Alg
transmitted from bk and k < m. Then Alg pays for the waiting cost of the
packets at bk+1, ..., bm. We will not charge Alg for the waiting cost of packets at
bk+2, ..., bm. In fact, in the calculations we will also not charge the adversary for
the waiting cost of these packets. This decreases the adversary cost, but since
the waiting cost of packets at bk+2, ..., bm is negligible, this decrease is negligible
as well. (A rigorous limit argument will appear in the full version of the paper.)
The adversarial strategy. We can assume that Alg transmits each packet if
the phase is long enough, for otherwise the cost of Alg would be unbounded.
With this assumption, the adversarial strategy is this: Suppose that the last
transmission from Alg was from bj−1 and let ω be the waiting cost of the
packets in bj when Alg makes the next transmission, from some bj′ (where
j′ ≥ j). Then, if j′ = j < m and ω ≥ wj , the adversary continues the phase.
Otherwise, the phase ends.

7



The intuition is that the adversary tries to force Alg to transmit from points
b1, b2, ..., one by one. Suppose that the adversary ends the game at step j. The
algorithm paid both the waiting cost and the transmission cost of the packets at
b1, ..., bj−1, while the adversary can perform significantly better by transmitting
from bj−1 at the beginning of the phase and not paying their waiting cost at all.
If Alg skips bj and transmits from bj′ , for j′ > j, then it pays extra transmission
cost. On the other hand, if it transmits from bj before the threshold wj , the phase
will be short, so the adversary can save cost by not transmitting from bj . The
formal argument follows the theorem below.

Theorem 2. Every deterministic algorithm has competitive ratio at least 2 +φ.

Proof. As explained at the beginning of Section 4, it is sufficient to show that
for any R ∈ (2, 2 + φ), the phase ratio is at least R. The adversary uses the
strategy described above.

Suppose that the phase ends at step j. Then, up to this step, Alg made
separate transmissions from b1, b2, ..., bj−1, and for each of these bi the waiting
cost of the packet at bi was at least wi. So the cost of Alg so far is at least
Wj−1 +Bj−1, plus the cost associated with the packet at bj . For determining the
phase ratio, we consider three possibilities of finishing the phase. Notice that, by
Lemma 1, in each case both the enumerator and the denominator are positive.
Recall also that, as explained earlier, we can ignore the waiting costs for packets
at bj+1,...,bm.

Case 1: j′ > j. Note that this implies j < m. Alg’s cost isWj−1 +Bj−1 +ω+bj′ .
We consider two options for the adversary: he can transmit from bj−1 at time 0
and pay ω for waiting, or he can transmit from bj . So the ratio is

Wj−1 +Bj−1 + ω + bj′

min(bj−1 + ω, bj) ≥ Wj−1 +Bj−1 + ω + bj+1

min(bj−1 + ω, bj)

≥ 1
bj

(
Wj−1 +Bj−1 + bj − bj−1 + bj+1

)
= 1
bj

(
Wj−1 +Bj+1 − bj−1

)
= 1
bj

(
bj+1 − bj−1 +Bj +Wj−1

)
= R,

where the last equality follows from (2).

Case 2: j′ = j and ω < wj . Alg’s cost is at least Wj−1 +Bj +ω. The adversary
will transmit from bj−1 at time 0 and pay the cost of waiting at bj , paying
bj−1 + ω. So the ratio is

Wj−1 +Bj + ω

bj−1 + ω
≥ Wj−1 +Bj + wj

bj−1 + wj
= R,

where the last equality follows from (1).

8



Case 3: j′ = j = m and ω ≥ wj . The cost of Alg is Wm−1 + Bm + ω. The
adversary will transmit from bm at time 0, paying bm. Note that, by the choice
of m we have bm+1 ≤ bm. By (4), (R− 1)wm = −bm+1 +Rbm − (R− 1)bm−1 ≥
(R− 1)(bm − bm−1), that is wm ≥ bm − bm−1. So the ratio is

Wm−1 +Bm + ω

bm
≥ Wm−1 +Bm + wm

bm−1 + wm
= R,

where the last equality again follows from (1). ut

4.2 Proof of Lemma 1

Proof of Part (i). We first derive a single recurrence for the sequence {bj}.
Assuming j ≥ 1, plugging (3) into (2) and simplifying, we obtain the recurrence

(R− 1)bj+2 − (R2 −R+ 1)bj+1 + (R2 −R+ 1)bj = 0 for j ≥ 1. (5)

with b0 = 0, b1 = 1 and b2 = R − 1. (Note that an initial condition for j = 2 is
not covered by (5).) The characteristic equation of (5) is (R− 1)x2− (R2−R+
1)x + (R2 − R + 1) = 0 with discriminant ∆ = (R2 − R + 1)(R2 − 5R + 5). In
the interval (2, 2 + φ) the value of ∆ is negative, so the characteristic equation
has two imaginary conjugate roots

β1,2 = R2 −R+ 1±
√
∆

2(R− 1) ,

and consequently
bj = α1 · βj

1 + α2 · βj
2 , j ≥ 1, (6)

for some complex numbers α1, α2 6= 0. From the theory of recurrence equations
of order 2 (the case of conjugate imaginary roots), the sequence of {bj} cannot
increase infinitely (cf. Appendix A), which proves Part (i) of Lemma 1.

Proof of Part (ii). It is sufficient to show that the right hand side of (4) is
non-negative, i.e., that

− bj+1 +Rbj − (R− 1)bj−1 ≥ 0 for j ≥ 1. (7)

For j = 1, the left-hand-side of (7) is −b2 + Rb1 − (R − 1)b0 = −(R − 1) + R ·
1− (R− 1) · 0 = 1 ≥ 0. Suppose j ≥ 2 and that the claim holds for j − 1. After
multiplying the left-hand side of (7) by R− 1 and rearranging it, we get

(R− 1)[−bj+1 +Rbj − (R− 1)bj−1 ]
= [−(R− 1)bj+1 + (R2 −R+ 1)bj − (R2 −R+ 1)bj−1 ]

+ [−bj +Rbj−1 − (R− 1)bj−2 ] + (R− 1)bj−2 ≥ 0,

The last inequality follows because the first term is 0 by (5), the second one is
non-negative by the inductive assumption, and the third one is positive by the
choice of m.

9



5 Polynomial-Time Offline Solution

The input is a sequence of packets numbered 1, 2, ..., n, where packet j is specified
as a triple (tj , xj , wj). In this triple, tj is the injection time, xj is the point
of injection, and wj is the weight of packet j. For simplicity, we assume that
t1 < t2 < ... < tn and that all xj are different. Any instance can be modified to
have this form by infinitesimal perturbations on the time and space axes.

Without loss of generality, we can assume that in an optimal solution each
transmission occurs at some time tk and it includes the packet injected at this
time, that is, it transmits from some point xj where xj ≥ xk. We can fur-
ther assume that j ≤ k, since otherwise xj itself does not yet have a packet.
We call a transmission from xj at time tk satisfying these conditions a (j, k)-
transmission.

For i < k and any j we define a sub-instance Ii,j,k that consists of the triples
(ta, xa, wa) such that i < a < k and xa < xj . We consider the quantity Fi,j,k that
represents the minimum cost of sub-instance Ii,j,k accrued in the time window
(ti, tk). To define it formally, we relax the rules to allow some packets in Ii,j,k not
to be transmitted. The cost of transmissions is defined as before. The waiting
cost of each packet is either the cost of waiting until its transmission, if it gets
transmitted, or until time tk, if it’s not. Then Fi,j,k is the minimum cost of Ii,j,k

under these rules.
We now derive the recurrence equation for the Fi,j,k’s. For k = i+1, Ii,j,k = ∅,

so we have Fi,j,k = 0. Let k > i+ 1. For any h, let Gh
i,j,k be the waiting time for

packets from Ii,j,k that are beyond xh, assuming that they are not transmitted
before tk, cf. Figure 2. Thus

Gh
i,j,k =

∑
i<`<k

xh<x`<xj

w`(tk − t`).

Slightly abusing notation, we will allow h = 0 in the above formula, with x0
understood to be 0. Thus G0

i,j,k is the total waiting cost of packets in Ii,j,k if
there are no transmissions. We then claim that

Fi,j,k = min


G0

i,j,k

min
i<h≤g<k
xg≤xh<xj

{
Fi,h,g + xh + wh(tg − th) + Fg,h,k +Gh

i,j,k

}
The recurrence is illustrated in Fig. 2. To show correctness, we argue as

follows. Consider the optimum schedule for Ii,j,k. If no transmissions occur in
this schedule, then Fi,j,k = G0

i,j,k. If there is at least one transmission, choose
the (h, g)-transmission with maximum xh. Then all packets ` in Ii,j,k above xh

pay the waiting cost for the interval [t`, tk]. The total of these waiting costs is
Gh

i,j,k, the last term in the formula. The cost of the (h, g)-transmission is xh and
we need to pay for the waiting cost of xh, which is equal wh(tg − th). These
are the second and third terms in the formula. We then need to add the cost
of serving the packets of Ii,j,k that are below xh. These packets constitute two

10



k

i

g

h

j

h

Fi,h,g
lo
ca
tio
n

time

Gi,j,k

Fg,h,k

Fig. 2. The idea behind the recurrence for Fi,j,k.

sub-instances, Ii,h,g and Ig,h,k, with respective costs Fi,h,g and Fg,h,k, which are
the first and the forth terms in the formula.

It remains to show how to use the recurrence to compute the solution of the
whole instance. To this end, we modify the instance by adding two new packets of
weight 0, injected first and last. Denoting by n the number of packets in this new
instance, the original instance will consist of packets injected into x2, ..., xn−1 at
times t2, ..., tn−1. We set t1 < t2, tn > tn−1 with the difference tn − tn−1 large
enough, so that in the optimum solution no packets from the original instance
will wait until time tn. Also, x1 < xn are both larger than all x2, ..., xn−1. Then,
F1,n,n is the same as the cost of the optimum solution of the original instance.

Summarizing, we proved the following result:

Theorem 3. The optimum solution for message aggregation on chain networks
can be computed in time O(n5).

6 Final Comments

For the online Control Message Aggregation problem on chain networks we
proved that the optimal competitive ratio is between 3.681 and 5. Closing or
tightening this gap remains an open problem, although we showed that to im-
prove the upper bound a new approach is needed. We have not addressed the
case of randomized algorithms and we leave it for future work. It is intuitively
clear that randomization should help to reduce the upper bound. In fact, there
are at least two ways to take advantage of randomization: one, by choosing the
cutoff points (a sequence other than the powers of 2) randomly, and two, by
choosing the transmissions at random.

References

1. Esther Arkin, Dev Joneja, and Robin Roundy. Computational complexity of unca-
pacitated multi-echelon production planning problems. Operations Research Letters,
8(2):61–66, 1989.

2. Carlos Brito, Elias Koutsoupias, and Shailesh Vaya. Competitive analysis of orga-
nization networks or multicast acknowledgement: How much to wait? Algorithmica,
64(4):584–605, 2012.

11



3. Niv Buchbinder, Tracy Kimbrel, Retsef Levi, Konstantin Makarychev, and Maxim
Sviridenko. Online make-to-order joint replenishment model: primal dual compet-
itive algorithms. In Proc. of the 19th ACM-SIAM Symp. on Discrete Algorithms
(SODA), pages 952–961, 2008.

4. Daniel R. Dooly, Sally A. Goldman, and Stephen D. Scott. On-line analysis of the
TCP acknowledgment delay problem. Journal of the ACM, 48(2):243–273, 2001.

5. Anna R. Karlin, Claire Kenyon, and Dana Randall. Dynamic TCP acknowledgement
and other stories about e/(e - 1). Algorithmica, 36(3):209–224, 2003.

6. Sanjeev Khanna, Joseph Naor, and Danny Raz. Control message aggregation in
group communication protocols. In Proc. of the 29th Int. Colloq. on Automata,
Languages and Programming (ICALP), pages 135–146, 2002.

7. Retsef Levi, Robin Roundy, and David B. Shmoys. A constant approximation algo-
rithm for the one-warehouse multi-retailer problem. In Proc. of the 16th ACM-SIAM
Symp. on Discrete Algorithms (SODA), pages 365–374, 2005.

8. Retsef Levi, Robin Roundy, David B. Shmoys, and Maxim Sviridenko. A constant
approximation algorithm for the one-warehouse multiretailer problem. Management
Science, 54(4):763–776, 2008.

9. Retsef Levi and Maxim Sviridenko. Improved approximation algorithm for the one-
warehouse multi-retailer problem. In Proc. of the 9th Int. Workshop on Approxima-
tion Algorithms for Combinatorial Optimization (APPROX), pages 188–199, 2006.

A Order 2 Recurrence Equations with Non-Real Base
Solutions

For completeness, we prove here that for every real-valued sequence {bi} defined
by a recurrence equation of order 2 with non-real base solutions, there exists
n > 1 such that bn ≤ 0. Note that for the sequence from our lower bound
construction, this trivially implies the existence of m.

Let α1, α2, β1, β2 be as defined in (6), and let us assume for convenience
that (6) holds for j = 0 as well. Since β1 and β2 are non-real roots of a quadratic
equation, it follows that β2 = β1, i.e., they are complex conjugates.

In the following, we reason about the imaginary part of (6), which is 0 for
all j ∈ N by our assumption. Laying j = 0, we have

=(α1) + =(α2) = 0 , (8)

and laying j = 1, we have

=(α1) · <(β1) + <(α1) · =(β1) + =(α2) · <(β2) + <(α2) · =(β2) = 0 . (9)

As β2 = β1, we have <(β1) = <(β2). Together with (8) this implies =(α1) ·
<(β1) + =(α2) · <(β2) = 0, which subtracted from (9) yields

<(α1) · =(β1) + <(α2) · =(β2) = 0 .

As =(β1) + =(β2) = 0, this implies <(α1) = <(α2), which together with (8)
means that α2 = α1.

Thus to get bn ≤ 0, it suffices to pick n such that arg(α1 · βn
1 ) ∈ [π/2, 3π/2],

which is equivalent to arg(α1) + n · arg(β1) ∈ [π/2 + 2kπ, 3π/2 + 2kπ] for some
k ∈ N. This is possible, since β1 /∈ R means that arg(β1) is not an integer
multiple of π.

12


	Online Control Message Aggregation in Chain Networks

