Probabilistic Methods

Some Useful Formulas collected by Robert Šámal

(This is based on a tex-file I found somewhere on internet and forgot where - thanks to the author anyway!)

1. Estimates of factorials
(a) (Stirling's Formula):

$$
n!=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\left(1+\frac{1}{12 n}+O\left(\frac{1}{n^{2}}\right)\right)
$$

Most often, this is too precise - and also the fact that it is not a bound is slightly inconvenient. So we may use weaker inequalities:
(b) $n!\leq n^{n}$
(c) $e\left(\frac{n}{e}\right)^{n} \leq n!\leq e n\left(\frac{n}{e}\right)^{n}$
(d) $\left(\frac{n}{e}\right)^{n} \leq n!\leq\left(\frac{n+1}{2}\right)^{n}$
2. Let $n \geq k \geq 0$, then we have:
(a) $\binom{n}{k} \leq 2^{n}$
(b) $\binom{n}{k} \leq \frac{n^{k}}{k!}$
(c) $\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq\left(\frac{n e}{k}\right)^{k}$.
3. (middle binomial coefficient)
(a) $\frac{2^{2 n}}{2 \sqrt{n}} \leq\binom{ 2 n}{n} \leq \frac{2^{2 n}}{\sqrt{2 n}}$
(b) More precisely,

$$
\binom{2 n}{n}=\frac{2^{2 n}}{\sqrt{\pi n}} \cdot(1+o(1))
$$

4. $\binom{n}{\alpha n}=2^{n(H(\alpha)+o(1))}$
5. (estimating $1+t$)
(a) (from above) For all $t \in R$ we have $1+t \leq e^{t}$ with equality holding only at $t=0$.
(b) (from below) For all small $t \in R$ we have $1+t \geq e^{c t}$ for appropriate c. E.g., if $p \in[0,1 / 2]$ we have $1-p \geq e^{-2 p}$.
6. For all $t, r \in R$, such that $n \geq 1$ and $|t| \leq n$. (ed: here is a typo - what is the correct form?)

$$
e^{t}\left(1-\frac{t^{2}}{r}\right) \leq\left(1+\frac{t}{r}\right)^{n} \leq e^{t} .
$$

7. For all $t, r \in R^{+}$,

$$
\left(1+\frac{t}{r}\right)^{r} \leq e^{t} \leq\left(1+\frac{t}{r}\right)^{r+t / 2}
$$

8. For any $n \in N$, the n-th Harmonic number is

$$
H_{n}=1+\frac{1}{2}+\ldots+\frac{1}{n}=\ln n+\Theta(1) .
$$

9. Let X be sum of independent Poisson trials, and $E[X]=\mu$.

- For $\delta>0$ we have, $\operatorname{Pr}[X>(1+\delta) \mu]<\left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu}$.
- For $0<\delta \leq 1$ we have, $\operatorname{Pr}[X<(1-\delta) \mu]<e^{-\mu \delta^{2} / 2}$.

10. Let S_{n} denote the distribution

$$
S_{n}=X_{1}+X_{2}+\ldots+X_{n}
$$

where $\operatorname{Pr}\left(X_{i}=1\right)=\operatorname{Pr}\left(X_{i}=-1\right)=1 / 2$ and the X_{i} are mutually independent. Then $\operatorname{Pr}\left(S_{n}>\lambda \sqrt{n}\right)<e^{-\lambda^{2} / 2}$ for all $n, \lambda \geq 0$.
11. Let $C_{u}(G)$ denote the expected length of a walk that starts at u and ends upon visiting every vertex in G at least once. The cover time of G, denoted $C(G)$, is defined by $C(G)=\max C_{u}(G)$. Then $C(G) \leq 2 m(n-1)$.
12. Let $c=X_{0}, X_{1}, \ldots, X_{n}$ be a martingale sequence such that for each $i \leq n-1$,

$$
\left|X_{i+1}-X_{i}\right| \leq 1
$$

Then

$$
\operatorname{Pr}\left(\left|X_{n}-c\right|>\lambda \sqrt{n}\right)<2 e^{-\lambda^{2} / 2}
$$

13. Suppose that $G(x)$ is the generating function of a probability distribution p_{0}, p_{1}, \ldots Then we have

- $\operatorname{Pr}(X \leq r) \leq x^{-r} G(x)$ for $0<x \leq 1$.
- $\operatorname{Pr}(X \geq r) \leq x^{r} G(x)$ for $1 \leq x$.

