Pavel Rytíř

Department of Applied Mathematics Charles University in Prague Advisor: Martin Loebl

November 22, 2011 Discrete Math Seminar - Simon Fraser University

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Linear code

Linear code $\mathcal C$ of length n and dimension d over field $\mathbb F$

• Linear subspace of dimension d of vector space \mathbb{F}^n

Puncturing C along S

- $S \subseteq \{1,\ldots,n\}, \ \mathcal{C}/S = \{(c_i | i \notin S)_{i=1}^n | c \in \mathcal{C}\}$
- The puncturing C along S means deleting the entries indexed by S from C.
- $C/\{1\} = \{(c_2, c_3, \dots, c_n) | (c_1, c_2, \dots, c_n) \in C\}$

Motivation

Incidence matrix $A = (A_{ij})$ of graph G

$$egin{array}{lll} {\mathcal A}_{ij} := egin{cases} 1 & ext{if vertex } v_i ext{ belongs to edge } e_j, \ 0 & ext{otherwise.} \end{array}$$

The cycle space C of a graph G is the kernel of A over GF(2).
 Graph G embedded as one dimensional simplicial complex in R³ may be considered as geometric representation of C.

 $v_i \begin{pmatrix} 1 \end{pmatrix}$

It is useful: For graph G of fixed genus, there exists a polynomial algorithm for computation of W_C(x) by Galluccio and Loebl. This algorithm uses geometric properties of G namely embedding on closed Riemann surfaces.

2D simplicial complexes

Are there geometric representation of linear codes that are not cycle spaces of graphs?

・ロト ・四ト ・ヨト ・ヨー うへぐ

2D simplicial complexes

- Are there geometric representation of linear codes that are not cycle spaces of graphs?
- My representations will be two dimensional simplicial complexes.

2D simplicial complex Δ

- $\Delta = \{ vertices, edges, triangles \}$
- \blacksquare Every face of a simplex from Δ belongs to Δ
- Intersection of every two simplices of Δ is a face of both

2D simplicial complexes

Incidence matrix $A = (A_{ij})$ of Δ

$$A_{ij} := egin{cases} 1 & ext{if edge } e_i ext{ belongs to triangle } t_j, \ 0 & ext{otherwise.} \end{cases}$$

Cycle space ker Δ of Δ over $\mathbb F$

• ker
$$\Delta = \{x | A_{\Delta} x = 0\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

tj

 $e_i \left(\begin{array}{c} 1 \end{array} \right)$

Linear code C is triangular representable if:

• There exists a triangular configuration Δ s. t. $\mathcal{C} = \ker \Delta/S$ for some set S

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 \blacksquare There is a bijection between ${\mathcal C}$ and $\ker\Delta$

Linear code C is triangular representable if:

- There exists a triangular configuration Δ s. t. $C = \ker \Delta/S$ for some set S
- There is a bijection between C and ker Δ

Do we need two dimensional simplicial complexes?

Lets try C is graphic representable if:

- There exists a graph G s. t. $C = \ker G/S$ for some set S
- The class of linear codes that are cycle spaces of graphs is closed under operation of puncturing.
- If $\mathcal C$ is not cycle space of a graph, there is no such graph $\mathcal G$

Geometric representations

My results

Theorem

Let C be a linear code over rationals or over GF(p), where p is a prime. Then C is triangular representable.

Theorem

If C is over GF(p), where p is a prime, then there exists a triangular representation Δ such that: if $\sum_{i=0}^{m} a_i x^i$ is the weight enumerator of ker Δ then

$$\mathcal{W}_{\mathcal{C}}(x) = \sum_{i=0}^{m} a_i x^{(i \mod e)},$$

where e = (number of punctured coordinates) / dim C.

Geometric representations

My results

Theorem

Let \mathbb{F} be a field different from rationals and GF(p), where p is a prime. Then there exists a linear code over \mathbb{F} that is not triangular representable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Geometric representations

Work in progress

My work immediately raises the following questions:

- Which binary codes can be represented by 2D simplicial complex embeddable into R³? (every 2D complex can be embedded into R⁵)
- Relation with permanents and determinants of 3D matrices (tensors).

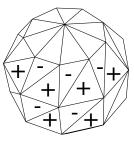
ション ふゆ アメリア メリア しょうくの

Application of the geometric representations to the Ising problem.

└─ Construction

A trivial one dimensional code

The most trivial case is a code generated by a vector that contains only entries a, -a. $C = \text{span}(\{(a, a, -a, ..., a)\})$. This code is represented by the following complex:

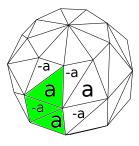


This is a triangulation of a 2-dimensional sphere by triangles such that there is an assignment of + and - to triangles such that every edge is incident with + and - triangle. For every k there exists such triangulation with l triangles, l > k.

└─ Construction

An example of triangular representation Δ of $C = \text{span}(\{(a, -a, a)\})$

I assign to + triangles value a and to - triangles value -a.
Equation given by the row of the incidence matrix indexed by any edge e has form a - a = 0.

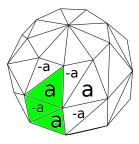


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

└─ C on struction

An example of triangular representation Δ of $C = \text{span}(\{(a, -a, a)\})$

• Let p be the field characteristic. The weight enumerator of ker Δ equals $W_{\Delta}(x) = 1 + (p-1)x^k$, k is the number of triangles of Δ .

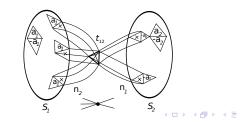


$$W_{\mathcal{C}}(x) = 1 + (p-1)x^{(k \mod (k-3))} = 1 + (p-1)x^3$$

└─ Construction

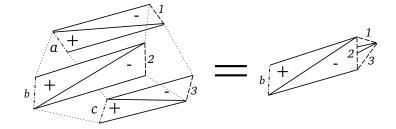
Representation Δ of a code C over primefield generated by a vector of form $(a_1, a_2, -a_1, -a_2, ...)$

- Here I need that the field is a primefield. I use that the additive group of every primefield is cyclic.
- C is generated by a vector that contains only four different elements a₁, a₂, −a₁, −a₂. a₁ = n₁ × g and a₂ = n₂ × g for some generator g of the cyclic group.
- Such a code can be represented by two triangular spheres interconnected by tunnels.



└─ Construction

Triangular tunnel

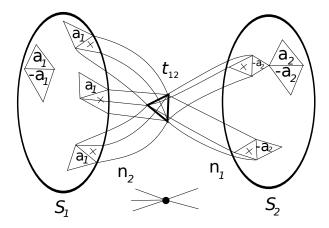


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

└─ Construction

Representation Δ of $\mathcal{C}= ext{span}(\{(a_1,a_2,-a_1,-a_2,\dots)\})$

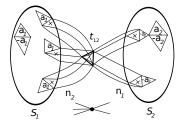
 $a_1 = n_1 \times g$, $a_2 = n_2 \times g$, g generator of the additive group



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

└─ Construction

Representation Δ of $C = \text{span}(\{(a_1, a_2, -a_1, -a_2, \dots)\})$



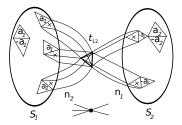
- The equation indexed by the edges different from the middle empty triangle are a₁ a₁ = 0 or a₁ a₁ = 0.
- The equation indexed by the edges of the middle empty triangle are

$$n_2 \times a_1 - n_1 \times a_2 = n_2 \times (n_1 \times g) - n_1 \times (n_2 \times g) = 0.$$

• So the generating vector belongs to ker Δ

└─ Construction

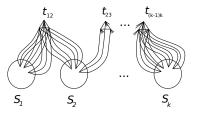
Representation Δ of $C = \text{span}(\{(a_1, a_2, -a_1, -a_2, \dots)\})$



- The equations a₁ = x and a₂ = x have obviously unique solutions a₁ and a₂, respectively.
- The equation $n_2 \times a_1 = n_1 \times x$ has unique solution a_2 , since the additive group has a prime or an infinite order.
- Therefore dim ker $\Delta = \dim \mathcal{C} = 1$.

└─ Construction

Representation Δ of a code C over primefield generated by a vector of form $(a_1, a_2, \ldots, a_k, -a_1, \ldots)$

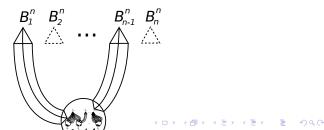


- This code can be represented by k triangular spheres interconnected by tunnels analogously as in the previous case.
- I supposed that all $a_i \neq 0$. If the generator of the code contains zeros, I add to the representation one isolated triangle for each zero entry.
 - I can represent all one dimensional codes over primefields.

└─ C on struction

More dimensional codes

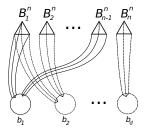
- Let C be a code over a primefield and let B = {b₁,..., b_d} be a basis of C.
- For every b_i | construct a representation Δ_{b_i} that represents the code span($\{b_i\}$), as in the previous steps.
- Let $B^n = \{B_1^n, \dots, B_n^n\}$ be the triangles of Δ_{b_i} that correspond to the entries of b_i . span $(\{b_i\}) = \ker \Delta_{b_i} / (\operatorname{non} - B^n \operatorname{triangles}).$
- I deform every Δ_{b_i} so that the triangles B^n are in this position.



└─ C on struction

More dimensional codes

The representation of C with respect to B is $\Delta_B^C = \bigcup_{i=1}^d \Delta_{b_i}$.



The solutions of equations indexd by edges of B^n triangles are all linear combinations of solutions of each part Δ_{b_i} , i = 1, ..., d.

Theorem

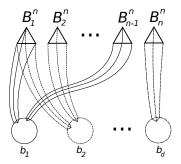
• ker
$$\Delta_B^{\mathcal{C}}/(\mathsf{non}{-}B^n$$
 triangles) $=\mathcal{C}$

• dim ker
$$\Delta_B^{\mathcal{C}} = \mathsf{dim}\,\mathcal{C}$$

└─ Construction

Weight enumerator, balanced representations

I can make the representation such that $|\Delta_{b_i}| - w(b_i) = e$ for all i = 1, ..., d and e is greater than the length of C. Such representation is called balanced.

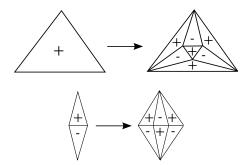


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

└─ Construction

Balanced representation exists

I can apply the following subdivisions, the first increase the number of triangles by 6 and the second by 4.



・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

ж

└─ Construction

Weight enumerator, balanced representations

- Let C be a code and Δ_B^C be its balanced representation with respect to a basis B
- Let $c = \sum_{b \in B} \alpha_b b$. I define a mapping $f : C \mapsto \ker \Delta_B^C$ as $f(c) := \sum_{b \in B} \alpha_b \Delta_b$
- Combination degree of c is the number of non-zero \(\alpha_b\)'s (deg(c))

- Let $b \in B$, then w(f(b)) = w(b) + e
- Let $c \in \mathcal{C}$, then w(f(c)) = w(c) + deg(c)e
- $w(f(c)) \mod e = (w(c) + deg(c)e) \mod e = w(c)$
- Note that, w(c) < e for every c

└─ C on struction

Weight enumerator, balanced representations

if $\sum_{i=0}^{m} a_i x^i$ is the weight enumerator of $\Delta_B^{\mathcal{C}}$ then

$$W_{\mathcal{C}}(x) = \sum_{i=0}^{m} a_i x^{(i \mod e)},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

where $e = (number of non-B^n triangles) / dim C$

└─ Triangular non-representability

My results

Theorem

Let \mathbb{F} be a field different from rationals and GF(p), where p is a prime. Then there exists a linear code over \mathbb{F} that is not triangular representable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

└─ Triangular non-representability

Non-representable code

- Let $GF(4) = \{0, 1, x, 1+x\}.$
- The linear code over GF(4) generated by vector (1,x) is not triangular representable.
- By an algebraic argument there is no 0, 1 matrix with the dimension of kernel equals one and having a vector of form (1, x, *, *, ..., *) in the kernel.

うして ふゆう ふほう ふほう うらう

└─ Triangular non-representability

Thank you for your attention

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?