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Nazev prace: Geometrické a algebraické vlastnosti diskrétnich struktur
Autor: Pavel Rytit
Katedra: Katedra aplikované matematiky
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Abstrakt: V praci se zabyvame dvou-dimenzionalnimi simplicidlnimi komplexy a
linedrnimi kédy. Rekneme, Ze linedrni kéd C nad télesem F je trojdhelnikové
reprezentovatelny, pokud existuje dvou-dimenzionalni simplicidlni komplex A
takovy, ze kéd C je propichnutym kédem jadra ker A incidencni matice sim-
plicidlntho komplexu A nad F a dimC = dimker A. Tento simplicialni komplex
nazveme geometrickou reprezentaci koédu C.

Dokazeme, ze kazdy linearni kéd nad prvotélesem je trojihelnikové reprezento-
vatelny. Pro konec¢na prvotélesa sestrojime geometrickou reprezentaci takovou, ze
vahovy polynom kédu C je dan jednoduchou formuli vahového polynomu pros-
toru cyklu simplicidlniho komplexu A. Tedy geometricka reprezentace kédu C
urcuje jeho vahovy polynom.

Nage motivace pochazi z teorie pfaffianovskych orientaci grafu, ktera poskytuje
polynomialni algoritmus pro vypocet vahového polynomu prostoru fezu grafu s
omezenym rodem. Tento algoritmus vyuziva geometrickych vlastnosti nakresleni
grafu na orientovatelnou riemannovskou plochu. Prostor fezu je linearni kéd a
odpovidajici graf je jeho uzitecnou geometrickou reprezentaci.

Daéle studujeme vnotitelnost geometrickych reprezentaci do euklidovskych pros-
torti. Ukdzeme, 7e kazdy bindrni linedrni kéd mé geometrickou reprezentaci v R*.
Charakterizujeme binarni linearni kédy, které maji geometrickou reprezentaci v
R3.

Ukazeme, ze vahovy polynom kazdého binarniho linearniho koédu je polynomialné
preveditelny na permanent troj-rozmérné nezaporné matice. Daéle studujeme
Pfaffianovské troj-rozmérné matice a ukédzeme aplikaci nasich vysledku ve stati-
stické fyzice.

Klicova slova: simplicialni komplex, linearni kod, vahovy polynom, geometrické
reprezentace
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Abstract: In the thesis we study two dimensional simplicial complexes and linear
codes. We say that a linear code C over a field I is triangular representable if there
exists a two dimensional simplicial complex A such that C is a punctured code of
the kernel ker A of the incidence matrix of A over F and dimC = dimker A. We
call this simplicial complex a geometric representation of C.

We show that every linear code C over a primefield is triangular representable.
In the case of finite primefields we construct a geometric representation such
that the weight enumerator of C is obtained by a simple formula from the weight
enumerator of the cycle space of A. Thus the geometric representation of C carries
its weight enumerator.

Our motivation comes from the theory of Pfaffian orientations of graphs which
provides a polynomial algorithm for weight enumerator of the cut space of a graph
of bounded genus. This algorithm uses geometric properties of an embedding of
the graph into an orientable Riemann surface. Viewing the cut space of a graph
as a linear code, the graph is thus a useful geometric representation of this linear
code.

We study embeddability of the geometric representations into Euclidean spaces.
We show that every binary linear code has a geometric representation that can
be embedded into R*. We characterize binary linear codes that have a geometric
representation embeddable into R3.

We further show that the weight enumerator of any binary linear code is poly-
nomial reducible to the permanent of a non-negative three dimensional matrix.
We give some applications of our results to statistical physics, by studying the
Pfaffian three dimensional matrices.

Keywords: simplicial complex, linear code, weight enumerator, geometric repre-
sentations
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Introduction

In this thesis we study relations between geometric and algebraic properties of
discrete structures. We mainly study two discrete structures: linear codes and
simplicial complexes.

A simplex X is the convex hull of an affine independent set V' in R%. The
convex hull of any non-empty subset of V' that defines a simplex is called a
face of the simplex. A simplicial complex [I0] A is a set of simplices fulfilling
the following conditions: Every face of a simplex from A belongs to A and the
intersection of every two simplices of A is a face of both.

Figure 1: A simplicial complex

Figure 2: This set of simplices is not simplicial complex

A linear code [33] C of length n over a field F is a linear subspace of the vector
space F". Let C C F™ be a linear code over a field F and let S be a subset of

{1,...,n}. Puncturing a code C along S means deleting the entries indexed by
the elements of S from each codeword of C. The resulting code is denoted by
C/S.

An important function associated with a linear code C over a finite field is its
weight enumerator. It is defined by the formula

We(z) := wa(c),

ceC

where w(c) denotes the weight (the number of non-zero coordinates) of c¢. This
polynomial encodes many interesting properties of the linear code.

A graph [4] is an ordered pair G = (V, F) consisting of a set of vertices V and
a set of edges E, which are two elements subsets of V. A matching M in G is a
set of pairwise non-adjacent edges. A perfect matching in GG is a matching in G
that covers all vertices of G. The problem of finding a perfect matching in G is
polynomially solvable by Edmonds’s algorithm [, 27]. On the other hand, there



is no known polynomial algorithm for the number of perfect matchings even in
bipartite graphs. The number of perfect matchings in a bipartite graph is equal
to the permanent of the biadjacency matrix of the graph. The permanent of a
matrix B = (b;;) is defined according to the formula

per(B) = Y [ bioco-

oeS, =1

Valiant [31] showed that the computation of the permanent is #P-complete. By
a result of Jerrum et al. [I1], the permanent of a matrix B with all entries non-
negative can be computed approximately in probabilistic polynomial time.

Our motivation for studying linear codes and simplicial complexes comes from
the theory of Pfaffian orientations of graphs.

This theory provides a polynomial algorithm for the number of perfect match-
ings in planar graphs. This algorithm is due to Fisher, Kasteleyn and Temper-
ley [12, [13] 14, [6]. It was extended by Gallucio and Loebl [7] to graphs of bounded
genus. This algorithm uses geometric properties of the embedding of the input
graph into an orientable Riemann surface. Viewing the cut space of a graph as
a linear code, graphs are useful geometric representations of the cut space. For
detailed survey of theory of Pfaffian orientations see Thomas [30].

There is an interesting question posed by M. Loebl whether the theory of
Pfaffian orientations can be extended to general linear codes. We study this
question in this thesis.

We say that a linear code C over a field F is triangular representable if there
exists a two dimensional simplicial complex (geometric representation) A such
that C is a punctured code of the kernel ker A of the incidence matrix of A over
F and dim C = dim ker A.

We start with study of geometric representations of binary linear codes. We
show that every linear binary code is triangular representable. For every linear
binary code C, we construct a two dimensional simplicial complex A so that the
weight enumerator of C is obtained by a simple formula from the weight enu-
merator of the cycle space of A. The triangular configuration A thus provides
a geometric representation of C which carries its weight enumerator. This is the
first step in the research program suggested by M. Loebl to extend the Pfaffian
theory. Then we carry out also the second step by constructing, for every trian-
gular configuration A, a triangular configuration A’ and a bijection between the
cycle space of A and the set of the perfect matchings of A’. These results are
presented in Chapter[I] they extend a result from the author’s master’s thesis [23]
and they were published in Rytit [24].

Next, we show that the weight enumerator of any binary linear code is poly-
nomial reducible to the permanent of a 3-dimensional matrix (3-matrix).

This accomplishes a generalization of the first cornerstone of the Kasteleyn
method: rewriting the Ising partition function as the dimer partition function,
that is, the generating function of the perfect matchings. The second cornerstone
is expressing the dimer partition function of planar graphs as a determinant.

In analogy to the standard (2-dimensional) matrices we say that a 3-matrix
A is Kasteleyn if signs of its entries may be changed so that, denoting by A’
the resulting 3-matrix, we have per(A) = det(A’). It was proved in a seminal
paper Robertson et al. [22] that 2-dimensional Kasteleyn matrices are essentially
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biadjacency matrices of planar bipartite graphs and thus they form a restrictive
class. We show that in contrast with the 2-dimensional case the class of Kasteleyn
3-matrices is rich; namely, for each matrix M there is a Kasteleyn 3-matrix A so
that per(M) = per(A) = det(A’).

In particular, the dimer partition function of a finite 3-dimensional cubic
lattice may be written as the determinant of the vertex-adjacency 3-matrix of a
2-dimensional simplicial complex which preserves the natural embedding of the
cubic lattice. This result accomplishes the second step of the Pfaffian method
for the binary linear codes. These results are presented in Chapter 21 and they
were submitted for publication [I7]. Results in Chapter 2 are based on a common
work with my advisor Martin Loebl.

Next, we study geometric properties of the geometric representations. An
interesting geometric property of simplicial complexes is its embedding into a
Euclidean space. We study embeddings of simplicial complexes in Chapter [3l
See Matousek et al. [19] for a survey of embeddings of simplicial complexes. We
show that every binary linear code has a geometric representation that can be
embedded into R*. Moreover, we show that a binary linear code C has a geometric
representation in R? if and only if there exists a graph G such that C equals the cut
space of G. This is a polynomially testable property and hence we can conclude
that there is a polynomial algorithm that decides the minimal dimension of a
geometric representation of a binary linear code. These results are presented in
Chapter Bl and they were submitted for publication [26].

Finally, we generalize our results from binary linear codes to linear codes over
primefields. We show that the linear codes over rationals and over GF'(p), where
p is a prime, are triangular representable. In case of linear codes over GF(p), we
show that this representation determines the weight enumerator of C. We present
one application of this result to the partition function of the Potts model.

On the other hand, we show that there exist linear codes over any field different
from rationals and GF(p), p prime, that are not triangular representable. We
show that every construction of a triangular representation for these codes fails
on a very weak condition that a linear code and its triangular representation have
to have the same dimension. These results are presented in Chapter 4l and they
were submitted for publication [25].



1. Geometric representations of
binary codes

1.1 Introduction

A seminal result of Galluccio and Loebl [7] asserts that the weight enumerator
of the cut space C of a graph G may be written as a linear combination of
49(G) Pfaffians, where g(G) is the minimal genus of a surface in which G can
be embedded. Recently, a topological interpretation of this result was given by
Cimasoni and Reshetikhin [2]. Viewing the cut space C as a binary linear code,
a graph G may be considered as a useful geometric representation of C' which
provides an important structure for the weight enumerator of C.

This motivated Martin Loebl to ask, about 15 years ago, the following ques-
tion: Which binary codes are cycle spaces of simplicial complexes? In general,
for the binary codes with a geometric representation, one may hope to obtain
a formula analogous to that of Galluccio and Loebl [7]. This question remains
open. We construct geometric representations which carry over only the weight
enumerator. We note that this construction is still sufficient for the extension of
the theory of Pfaffian orientations.

We present a construction which shows that a useful geometric representation
exists for all binary codes. The first main result is as follows:

Theorem 1.1.1. For each binary linear code C of length n, one can construct a
triangular configuration A and a positive integer e linear in n, so that if the weight
enumerator of the cycle space of A equals Y, a;x’ then the weight enumerator

of C satisfies

m
We(x) = Z a;zlimede)/2,
i=0
The second main result of this chapter is to construct, for every triangular
configuration A, a triangular configuration A’ and a bijection between the cycle
space of A and the set of the perfect matchings of A’. This carries over the second
step in the Loebl’s suggestion to extend the theory of Pfaffian orientations to the
general binary linear codes.

1.2 Preliminaries

We begin with definitions of the basic concepts. Let n be a positive integer. A
binary linear code C of length n is a subspace of GF(2)", and each vector in
C is called a codeword. The weight of a codeword c¢ is the number of non-zero
coordinates, denoted by w(c). A binary linear code C is even if all codewords have

an even weight. We define a partial order on C as follows: Let ¢ = (c¢!,...,c"),d =
(d',...,d") be codewords of C. Then ¢ =X d if ¢/ = 1 implies d° = 1 for all
1=1,...,n. A codeword d is minimal if ¢ < d implies ¢ = d for all ¢. The weight

enumerator of the code C is defined according to the formula

We(z) := wa(c).

ceC



An abstract simplicial complex on a finite set V is a family A of subsets of V
closed under taking subsets. Let X be an element of A. The dimension of X is
| X|—1, denoted by dim X. The dimension of A is max {dim X|X € A}, denoted
by dim A.

A simplez in R" is the convex hull of an affine independent set V' in R%. The
dimension of the simplex is |[V| — 1. The convex hull of any non-empty subset of
V' that defines a simplex is called a face of the simplex. A simplicial complex A
is a set of simplices fulfilling the following conditions:

e Every face of a simplex from A belongs to A.
e The intersection of every two simplices of A is a face of both.

We denote the subset of d-dimensional simplices of A by A?. Every simplicial
complex defines an abstract simplicial complex on the set of vertices V', namely
the family of sets of vertices of simplexes of A. We denote this abstract simplicial
complex by A(A).

The geometric realization of an abstract simplicial complex A is a simplicial
complex A’ such that A = A(A’). It is well known that every finite d-dimensional
abstract simplicial complex can be realized as a simplicial complex in R?¢*!, We
choose a geometric realization of an abstract simplicial complex A and denote
it by G(A). This chapter studies 2-dimensional simplicial complexes where each
maximal simplex is a triangle. We call them triangular configurations. The
number of triangles in an (abstract) simplicial complex A is denoted by |A|. A
subconfiguration of a triangular configuration A is a triangular configuration A’
such that A" C A. A cycle of a triangular configuration is a subconfiguration
such that every edge is incident with an even number of triangles. A circuit is a
minimal non-empty cycle under inclusion.

Let Aq, As be subconfigurations of a triangular configuration A. The differ-
ence of Ay and A,, denoted by Ay — A, is defined to be the triangular configu-
ration obtained from AU Al UA?\ A2 by removing the edges and vertices that
are not contained in any triangle in A2\ A2. The symmetric difference of A; and
Ay, denoted by A; A A, is defined to be Ay A Ay := (A1 UAs) — (A1 NA,).
Let Ay, As be triangular configurations. The union of Aj, A, is defined to be
A UAy = G(A(A) UA(AY)).

Let A be a d-dimensional simplicial complex. We define the incidence matrizx
A = (A;j) as follows: the rows are indexed by (d — 1)-dimensional simplices and
the columns by d-dimensional simplices. We set

1 if (d — 1)-simplex i belongs to d-simplex 7,
Q;q =
! 0 otherwise.

The cycle space C of A is the kernel ker A of the incidence matrix of A over
GF(2), and C = ker A is said to be represented by A. For a subconfiguration
C of A, we let x(C) = (x(C), ..., x(C)121) € {0,1}2 denote its incidence
vector, where x(C)! = 1 if C' contains the triangle ¢, and x(C)! = 0 otherwise.
It is well known that the kernel of A is the set of incidence vectors of cycles of
A. Let C C {0,1}" be a binary linear code and let S be a subset of {1,...,n}.
Puncturing a code C along S means deleting the entries indexed by the elements
of S from each codeword of C. The resulting code is denoted by C/S.
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1.3 Triangular representation of binary codes
First, we define three basic triangular configurations.

1.3.1 Triangular configuration B"

The triangular configuration B™ consists of n disjoint triangles as is depicted in
Figure [LIl We denote the triangles of B" by B}, ..., B}

B

n n
BZ n-1 Bn

1

Figure 1.1: Triangular configuration B".

1.3.2 Triangular sphere &™

The triangular sphere 8™, depicted in Figure [L2] is a triangulation of a 2-
dimensional sphere by m triangles. This triangulation exists for every even m > 4.
We denote the triangles of S™ by S7*,..., S

Figure 1.2: Triangular sphere S™.

1.3.3 Triangular tunnel T

The triangular tunnel 7 is depicted in Figure[[L.3l In particular, triangles {1,2, 3}
and {a, b, c} are not elements of 7.

1.3.4 Joining triangles by tunnels

Let A be a triangular configuration. Let t; and 5 € A be two disjoint triangles of
A. The join of t; and ¢, in A is the triangular configuration A’ defined as follows.
Let T be a triangular tunnel as in Figure [[3l Let t1,¢2 3 and £, 2,3 be edges
of t; and t,, respectively. We relabel edges of T such that {a,b,c} = {t}, 12,3}
and {1,2,3} = {t3,13,¢3}. Then A’ is defined to be AUT.

8



Figure 1.3: Triangular tunnel 7'

1.3.5 Construction

Let C be a binary code of length n and dimension d. Let B = {by,...,bs}
be a basis of C. We construct its triangular representation A% as follows. For
every basis vector b; we construct a triangular configuration AI(;:_. The triangular
configuration Agi is obtained from B™ US™, where m is even and m > n, m > 4.
Let J? be the set of indices of non-zero entries of b;. For each j € J* we join the
triangle 87" of 8™ with the triangle B}. Then we remove the triangle S from
S™. Finally, we remove the triangles of B™ that are not joined with the sphere.
An example of A{ for b; = (1,0,...,1,0) is depicted in Figure T4l Thus, the

Figure 1.4: Agi represents a basis vector (1,0,...,1,0) of C.

triangular configuration Agi contains B if and only if j € J . We note that

Proposition 1.3.1. The number |Af | is always even. O
Triangular configurations Agi, 1 =1,...,d, share triangles of B™ and do not

share spheres S™. Hence, A(A§) N A(Agj) C A(B,) holds for i < j, i,j €
{1,...,d}.

Finally, the triangular representation A% of C is the union of Agi, 1=1,...,d.
An example of a triangular representation A, of C is depicted in Figure A

triangular representation A% of C is balanced if there is an integer e such that
‘Agl‘ —w(b;) =eforalli=1,...,d. This e is denoted by e(A%). We denote the

2 2
addition modulo 2 by +2 or Z . Let ¢ be a codeword of C and let ¢ = Z b;

iel



be the unique expression of ¢, where b; € B. The degree of ¢ with respect to a
basis B is defined to be the cardinality |I| of the index set. The degree is denoted

by d(c).

Figure 1.5: An example of triangular representation A% of C.

We denote by ker A% the cycle space of the triangular configuration A%. We
define a linear mapping f: C + ker A in the following way: Let ¢ be a codeword

2
of C and let ¢ = Z o b; be the unique expression of ¢, where b; € B. We define

f(c) = x(LicrAf). The entries of f(c) are indexed by the triangles of AG. We
have f(c)?/ =1 if and only if NierAf contains the triangle Bj.

Proposition 1.3.2. Denote |AG| by m. Let c = (',...,c") and

fle) = (f(0)F, ... fOPr flo o fle)™)
Then f(c)% = ¢ forallj=1,...,n and all ¢ € C.

Proof. We show the proposition by induction on the degree d(c) of ¢. The code-
2

word c is equal to Z A Ibi. If d(c) = 0, then ¢ = 0 and f(¢) = 0. Thus, f(c)
1€

is the incidence vector of the empty triangular configuration. Hence, the propo-

sition holds for vectors of degree 0. If d(c) is greater than 0, then |I| > 1. We

choose some k from I. The codeword c 42 b, has a degree less than c¢. By the

induction assumption, the proposition holds for c +2 by, Let by = (b, ..., b0).

From the definition of Af , the equality b, = X(Agk)B;f holds for all j =1,...,n.

Therefore,

n

= (& +2b) +2 b, = X(DienmA5) T +2 x(A5)% = f(e)”
forall j=1,...,n.

Corollary 1.3.1. The mapping f is injective.
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Lemma 1.3.1. Every non-empty cycle of AS, contains Agi — B" as a subconfig-
uration for some i € {1,...,d}.

Proof. Every cycle of A contains either all triangles or no triangle of Agi — B™,
since Ag N Agj C B™ for all distinct ,7 € {1,...,d}. The configuration B" does
not contain non-empty cycles, since the triangles of B" are disjoint. Therefore,

every non-empty cycle contains a triangle of Agi — B" for some i € {1,...,d}.
Hence, every non-empty cycle contains Agi — B" for some i € {1,...,d}. O

Theorem 1.3.1 (Rytii [23]). Let C be a binary code and let AS, be its triangular
representation with respect to a basis B. The mapping f defined above is a bijec-
tion of the binary linear codes C and ker AG which maps minimal codewords to
minimal codewords.

Proof. By Corollary [L3.1l the mapping f is injective. It remains to be proven
that dim C = dim ker A%. Suppose on the contrary that some codeword of ker A%
is not in the span of {f(b1),..., f(ba)}. Let ¢ be such a codeword with the
minimal possible weight w(c). Let K be a cycle of A% such that y(K) = c.
By Lemma [L.3.1] the cycle K contains Ag — B™ for some i € {1,...,d}. Since
|AY — B"| > |B"|, the inequality |K A A§| < |K| holds. Therefore, w(c) >
w(x(K A Af)). This is a contradiction.

Finally, we show that f maps minimal codewords to minimal codewords. Let
d be a minimal codeword. Suppose on the contrary that f(d) is not a minimal
codeword of ker AG. Then f(c) < f(d) for some codeword c¢. However, ¢! =
f(c)" = 1 implies that d° = f(d)® = 1. Therefore, ¢ < d. This contradicts the
minimality of d. ]

Let t be a triangle of a triangular configuration A. The subdivision of the
triangle ¢ is the triangular configuration obtained from A by exchanging the
triangle ¢ by triangles t, to, t3 in the way depicted in Figure [LL6l

t \—>
L

Figure 1.6: Triangle subdivision

Proposition 1.3.3. Fvery even binary code C of length n and dimension d has
a balanced triangular representation A% such that e(A%) > n, where B is an
arbitrary basis of C.

Proof. Let A be an arbitrary triangular representation of C with respect to a
basis B = {by,...,bs}. We denote by k; the number Agl‘ — w(b;). By Proposi-
tion [L.3.1], Agﬁ} is even. Since C is an even binary code, every k; is even. Let n’ be
the smallest even number greater than n and let k£ denote max {n', k;|i = 1,...,d}.
For each i € {1,...,d} such that k; # k, the following step is applied. We choose
a triangle ¢ from Agi — B"™ and subdivide it. The number k; is increased by 2. If
k; still does not equal to k, then we repeat this step. After this procedure, the
configuration A% is balanced and e(A%) > n. O

11



Proposition 1.3.4. Let C be an even binary linear code and let A be its balanced
triangular representation with respect to a basis B. Then w(f(c)) = w(c) +

d(c)e(A%) for every codeword ¢ € C.

2
Proof. Write ¢ as Z - b;, where b; € B. Then f(c) = x(AiesAf). Now,
the configuration A;¢ IA& contains all triangles of Ag — B™ for all i € I. The
number of these triangles is d(c)e(Ag), since |AY — B"| = ¢(A§) and |I| = d(c).
By Proposition [[L3.2] the configuration A;¢ IAgi contains the triangle B} if and

only if ¢, = 1. The number of these triangles is w(c). Therefore, w(f(c)) =
w(c) + d(c)e(AS). O

1.4 Weight enumerator

In this section, we state the connection between the weight enumerator of a code
and the weight enumerator of its triangular representation. This provides a proof

of Theorem [LTIl The double code, denoted by C?, of a binary linear code C of
length n is the code {(¢1,...,¢n,¢1,...,¢,) : c€ C}.

Proposition 1.4.1. Let C be a binary linear code and let C* be the double code
of C. Then C? is an even binary linear code and

Wc(l’z) = WCQ (:L’)
U

We define the extended weight enumerator (with respect to a fixed basis) by

WE(z) = Z (),
ceC
d(c)=k

If a code C has dimension d, then

We(a) =) We(x).

k=0

Proposition 1.4.2 (Rytit [23]). Let C be an even binary code and let AS be its
balanced triangular representation AS, with respect to the fized basis B. Then

err A%(ZL‘) = Wé“(x)xke(ACB).

Proof. Let f be the mapping defined in Section [L3l For every codeword ¢ of
degree k of C there is codeword f(c) of degree k of ker AS. By Proposition [L3.4]
w(f(c)) = w(c) + ke(A%). Therefore,

Wié, ae (@) = > eV =y g (O The(AG) — Yk (1) phe(A5),

f(c)€ker AC ceC
d(f(©)=k d(e)=k

12



Proposition 1.4.3. Let C be an even binary code of length n and let AS be
a balanced triangular representation of C. The inequality ke(AS) < w(c) <
ke(AS) +n holds for every codeword ¢ of degree k of ker AS.

Proof. By Proposition L34, w(c) = w(f~(c)) +ke(A%). Since 0 < w(f~(c)) <

n for every c € ker AG, the inequality ke(A%) < w(c) < ke(A%) +n holds. O

Corollary 1.4.1. Let C be an even binary code of dimension d and length n and
let A be a balanced triangular representation of C such that n < e(AS). Denote

e(AS) by e. Let Y0 a.at be the weight enumerator of ker AS,. Then

ke+n

i=ke

Proof. By Proposition [LZ3], w(c) < (k — 1)e +n for all codewords ¢ € ker AG of
a degree less than k. Since n < e, the inequality w(c) < ke — e +n < ke holds.
By Proposition [L43, (j + 1)e < w(c) for all codewords ¢ € ker A of a degree
greater than k. Since n < e, the inequality ke + e < ke +n < w(c) holds. Hence,

the enumerator Wlfer Ac () is the sum over all codewords of a weight between ke
B

and ke + n. O

Theorem 1.4.1. Let C be an even binary code of dimension d and length n and
let A be a balanced triangular representation of C such that n < e(A%). Denote
e(AS) by e. Let %" aat be the weight polynomial of ker AG. Then

de+n

We(x) = Z a;xtmede,

i=0
Proof. The inequality w(c) < n holds for every codeword ¢ € C. Let f be the

mapping defined in Section [[3l By Proposition L34, w(f(c)) = w(c)+ d(c)e for
every codeword c of C. Since n < e, the following equality holds.

w(f(c)) mod e = (w(c) + d(c)e) mod e = w(c).

Hence,
de+n

We(x) = Z a;xtmede,

1=0

Now, we prove Theorem [[L.T.Tl

Proof. Proof of Theorem [LTIl Let C be a linear binary code of length n and
dimension d. Let C? be the double code of C of length 2n and dimension d.
The double code C? is even. By Proposition [[L3.3], we can construct a balanced
triangular representation A of C? such that e(A) > 2n. Denote e(A) by e. Let
Wa(z) = 35" a2t be the weight enumerator of A. By Theorem [LZT] the
following equality holds.

de+2n

Wee () = Z a;xtmede,
i=0
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By Proposition [L41] we have

de+2n

We(x) = Wea(2'?) = > aamed o,
=0

1.5 Matching

In this section we reduce the computation of the weight enumerator of the even
subconfigurations to the computation of the weight enumerator of the perfect
matchings.

Let A be a triangular configuration. A matching of A is a subconfiguration M
of A such that ¢;Nty does not contain an edge for every distinct ¢1,to € T(M). Let
A be a triangular configuration. Let M be a matching of A. Then the defect of M
is the set E(T') \ E(M). We denote the matching with this defect by Mg\ gr)-
The perfect matching of A is a matching with empty defect. We denote the set of
all perfect matchings of A by P(A). The weight enumerator of perfect matchings
in A is defined to be Pa(z) = - pepa) 2P where w(P) ==Y, p wy.

Now, we define some basic triangular configurations.

1.5.1 Triangular configuration P

X LY

top bottom

Figure 1.7: Triangular configuration P

The triangular configuration P is depicted in Figure [.7]
Proposition 1.5.1. The triangular configuration P has exactly two perfect match-

ings {t17t37t57t7}7 {t27t47t67t8}' |:|

1.5.2 Closed triangular tunnel T’

The closed triangular tunnel 7' is depicted in Figure [L8. We call triangles
{a,b,c} =ty and {1,2,3} = t; ending triangles.

Proposition 1.5.2. A closed triangular tunnel T has two perfect matchings
MI;J; = {t1784785786}7 Mg;: {t2781782783}- |:|

14



Figure 1.8: Closed triangular tunnel 7.

1.5.3 Triangular configuration £,

The matching triangular edge is the triangular configuration which is obtained
from the triangular configuration P and two closed triangular tunnels 7" in the
following way: Let Ty and T be closed triangular tunnels. Let t1*, p™ and ¢12, ™2
be the ending triangles of T} and T, respectively. We identify tlT1 with ¢I and
t1T2 with t?]f . The configuration £, is defined to be Ty A P A'T5. The triangular

configuration E,, is depicted in Figure

Proposition 1.5.3. A matching triangular edge has two perfect matchings.

Figure 1.9: Matching triangular edge

Proof. There are two matchings. The first matching is Nz?q = MtTl1 U MtTf U
{tf,tf'}. The second matching is N), := M UM U {t] t{ t§ t§}.

Any perfect matching of E,, contains {t’, tI'} or {¢tI' ¢ t¥ tF'}. This deter-
mines remaining triangles in a perfect matching. Hence, there are just two perfect
matchings. O

We denote the matching N}, by M, and the matching NJ \ p,q by M.

1.5.4 Triangular configuration 7,

The matching triangular triangle is the triangular configuration which is obtained
from the triangular configuration P and three closed triangular tunnels 7" in the
following way: Let T}, Ty and Tj be closed triangular tunnels. Let t11, p™t; 112, ™2
and 7%, 7" be the ending triangles of Ty, T, and Ty, respectively. We identify
1 with ¢7; 1> with ¢§ and #]* with ¢£. The configuration T}, is defined to be

Ty A P ATy, ATy The triangular configuration T, is depicted in Figure [L10l

15



Proposition 1.5.4. A matching triangular triangle has two perfect matchings.

Proof. There are two matchings. The first matching is N]()]qr = ]\@Tl1 U Mtj;? U
T o

M;? U{tF'}. The second matching is Nz}gr =MD UMPUMPB U] L] tg, t}.
Any perfect matching of T, contains {t£' tZ} or {tF ¢ tF ¢}, This de-

termines remaining triangles in a perfect matching. Hence, there are just two

perfect matchings. O

Figure 1.10: Matching triangle

We denote the matching N! by M! and the matching N]z())qr \p,q,r by M]z())qr'

pgr pgr

1.5.5 Triangular configuration Cy, ;,

This part of the reduction is analogous to the reduction for graphs described in
Galluccio et al. [9]. Let t1,t] be empty disjoint triangles. Let to, ..., tn,th, ...t}
be disjoint triangles. Then Cy,4, 4, is defined to be

(AL ) A (AL ) A (AL ) A (A?:zEtit;_1> A (A?;fEt;t;H) :

The configuration is depicted in Figure [LTIL

Figure 1.11: Triangular configuration C,y, 4,

Proposition 1.5.5. Let M} denote the perfect matching containing triangles
t;;1 € I. Then there exists exactly one perfect matching Mé of Ci iyt if and
only if |I| is even.

Proof. We construct the perfect matching M by the following algorithm. The

first step is defined as follows. If t; € I then we set M; to M tol o U {t1} otherwise
we set M, to Mtllt,l.
Let ¢ > 2. In the i-th step, we extend the matching M;_; in the following way.

16



(a) Ift;_, is covered by M;  and t; € I then M; := M; 4 UMt%_lti u{t;:} UMgt; U
My

(b) If ¢;_, is not covered by M;_; and t; € I then M; := M; ;1 U Mtg_lti u{t;} U
M, UM, .

4!
tlti i—1%

(c) Ift,_, is covered by M;_; and ¢; ¢ I then M; := M;_1 UM} 1tiU]thit,_UM)S_ s

(d) If ;_, is not covered by M; 1 and t; ¢ I then M; := M; ;U Mtl;,lti U Mﬂt; U
MO

tho

i—171

Let ¢ > 1. We say that the i-th step is even if ¢ is covered by M, otherwise it
is odd. Every step is determined by the previous steps and the set I. Therefore,
the perfect matching exists if and only if the algorithm succeeds. The algorithm
succeeds if and only if the last step is even. The parity of the i-th step is different
from the previous step if ¢; € I. Hence, the algorithm succeeds if and only if the
cardinality |/] is even. The desired matching M is M,,. O

1.5.6 Reduction

Let A be a triangular configuration. We construct the triangular configuration A’
such that every even subconfiguration of A uniquely corresponds to one perfect
matching of A’ and a natural weight-preserving bijection between the set of the
even subconfiguration of A and the set of the perfect matchings of A’. We put
into A’ empty disjoint triangles t. for every tuple (¢,e), where e € F(A) and
t € T(A). We add to A’ matching triangles T}, for every triangle ¢t € T'(A),
where a, b, ¢ are edges of t. We assign weight 1 to one arbitrary triangle in the
matching M, and weight 0 to all remaining triangles of T} ;.. We add to A’
triangular configurations Cy s for every edge e € E(A), where t! ... t" are
triangles incident with e in A. We assign weight 0 to all triangles of Ci1_ 4n.

Theorem 1.5.1. Let A be a triangular configuration and let A" be a matching
reduction of A and let C' be an even subconfiguration of A. Then there exists
exactly one perfect matching Mc in ', and A" does not contain any others perfect
matchings.

Proof. Let C be an even subconfiguration of A. We construct a perfect matching
Mc in A’. We denote matchings Mtlatbtc and Mtoatbtc of Ti,t,e. by M} and M},
respectively. We denote the set {ile € T'(¢;),t; € C} by I, and define

Mo = {M}!Nt e CYU{M |t ¢ C,t € T(A)}U{M!|e € E(A)}.

The matching M is perfect.

We show that there is no other perfect matching. Every matching triangle T;
is covered by M} or MP. Thus C, is covered by M! for some even I. Therefore,
every perfect matching in A’ defines an even subset in A. O

Proposition 1.5.6. Let A be a triangular configuration and let A" be its match-
ing representation and let C' be an even subconfiguration and let My be the cor-
responding perfect matching. Then |C| = w(Mc).

17



Proof.

wMe) =S w)+ 3 w() Y w(afieer e

teC t¢CteT (A) e€E(A)
D IEID VR ED Y

teC t¢CteT(A) e€E(A)
= |C]

The following theorem is a consequence of Proposition [LL5.6l

Theorem 1.5.2. Let A be a triangular configuration and let A’ be its matching
representation. Then Wa(x) = Par(x). O
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2. Kasteleyn 3-matrices

2.1 Introduction

The Kasteleyn method is a way how to calculate the Ising partition function on
a finite graph G. It goes as follows. We first realize that the Ising partition
function is equivalent to a multivariable weight enumerator of the cut space of G.
We modify G to graph G’ so that this weight enumerator is equal to the generat-
ing function of the perfect matchings of G’, perhaps better known as the dimer
partition function on G’. Such generating functions are hard to calculate. In
particular, if G’ is bipartite then the generating function of the perfect matchings
of G’ is equal to the permanent of the biadjacency matrix of G’. If however this
permanent may be turned into the determinant of a modified matrix then the
calculation can be successfully carried over since the determinants may be calcu-
lated efficiently. Already in 1913 Polya [21] asked for which non-negative matrix
M we can change signs of its entries so that, denoting by M’ the resulting matrix,
we have per(M) = det(M’). We call these matrices Kasteleyn after the physicist
Kasteleyn who invented the Kasteleyn method [12] 13, 14, [6]. Kasteleyn [14]
proved in 1960’s that all biadjacency matrices of the planar bipartite graphs are
Kasteleyn. We say that a bipartite graph is Pfaffian if its biadjacency matrix is
Kasteleyn. The problem to characterize the Kasteleyn matrices (or equivalently
Pfaffian bipartite graphs) was open until 1993, when Robertson, Seymour and
Thomas [22] found a polynomial recognition method and a structural description
of the Kasteleyn matrices. They showed that the class of the Kasteleyn matrices
is rather restricted and extends only moderately beyond the biadjacency matrices
of the planar bipartite graphs.

In this chapter we carry out the Kasteleyn method for general binary linear
codes. We show that the weight enumerator of any binary linear code is polyno-
mial reducible to the permanent of the triadjacency 3-matrix of a 2-dimensional
simplicial complex. In analogy to the standard (2-dimensional) matrices we say
that a 3-dimensional non-negative matrix A is Kasteleyn if signs of its entries
may be changed so that, denoting by A’ the resulting 3-dimensional matrix, we
have per(A) = det(A’). We show that in contrast with the 2-dimensional case the
class of Kasteleyn 3-dimensional matrices is rich; namely, for each 2-dimensional
non-negative matrix M there is a 3-dimensional non-negative Kasteleyn matrix
A so that per(M) = per(A). Finally we conclude with some remarks directed
towards possible application for the 3-dimensional Ising and dimer problems.

2.1.1 Basic definitions

We start with basic definitions. A linear code C of length n and dimension d
over a field I is a linear subspace with dimension d of the vector space F". Each
vector in C is called a codeword. The weight w(c) of a codeword c¢ is the number
of non-zero entries of ¢. The weight enumerator of a finite code C is defined

according to the formula
We(x) = wa(c).

ceC
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A simplex X is the convex hull of an affine independent set V' in R%. The
dimension of X is |V| — 1, denoted by dim X. The convex hull of any non-empty
subset of V' that defines a simplex is called a face of the simplex. A simplicial
complex A is a set of simplices fulfilling the following conditions: Every face of
a simplex from A belongs to A and the intersection of every two simplices of
A is a face of both. The dimension of A is max{dim X|X € A}. Let A be a
d-dimensional simplicial complex. We define the incidence matrix A = (4;;) as
follows: The rows are indexed by (d — 1)-dimensional simplices and the columns
by d-dimensional simplices. We set

w {1 if (d — 1)-simplex 7 belongs to d-simplex 7,
ij =

0 otherwise.

This chapter studies 2-dimensional simplicial complexes where each maximal sim-
plex is a triangle or an edge. We call them triangular configurations. We denote
the set of vertices of A by V(A), the set of edges by F(A) and the set of triangles
by T'(A). The cycle space of A over a field F, denoted ker A, is the kernel of the
incidence matrix A of A over F, that is {z|Az = 0}.

Let A be a triangular configuration. A matching of A is a subconfiguration
M of A such that t; Nty does not contain an edge for every distinct t1, ¢, € T'(M).
Let A be a triangular configuration. Let M be a matching of A. Then the defect
of M is the set E(T) \ E(M). The perfect matching of A is a matching with
empty defect. We denote the set of all perfect matchings of A by P(A). Let
w : T(A) — R be weights of the triangles of A. The generating function of
perfect matchings in A is defined to be Pa(x) = > pcepa) 2P where w(P) =
rep ().

A triangular configuration A is tripartite if the edges of A can be divided into
three disjoint sets Fp, Es, F3 such that every triangle of A contains edges from
all sets Fy, Fo, E3. We call the sets E, Ey, E3 tripartition of A.

The triadjacency 3-matrix A(x) = (a;;x) of a tripartite triangular configura-
tion A with tripartition Ey, Ey, E5 is the | Ey| X | Ey| x | B3| three dimensional array
of numbers, defined as follows: We set

2@ if e; € Fy,e; € Fy, e}, € E3 form a triangle ¢ with weight w(t),
Qijk = .
IH 0 otherwise.
The permanent of a n X n X n 3-matrix A is defined to be

per(A) = Y [Jawwmo-

01,02€8y, =1
The determinant of a n x n X n 3-matrix A is defined to be
det(A) = Z sign (o )sign(os) Hawl(i)@(i).
Jl,UQGSn =1

We recall that biadjacency matrix A(xz) = (a;;) of a bipartite graph G =
(V,W, E) is the |V| x |W| matrix, defined as follows: We set

@@ if v; € V,u; € W form an edge e with weight w(e),
Qi = .
! 0 otherwise.
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2.1.2 Main results

Theorem 2.1.1. Let C be a linear binary code. Then there exists a tripartite
triangular configuration A such that: If per(Aa(z)) = > 1", a;x’, where An(x) is
triadjacency matriz of A, then

Wc<.l’) _ Zazx(z mod e)/27
=0

where e is an integer linear in length of C.
Proof. Follows from Theorems 2.1.2] 2.T.3] and 2.T.4] below. O]

Theorem 2.1.2 (Chapter l). Let C be a linear code over GF(p), where p is a
prime. Then there exists a triangular configuration A such that: if Y iw a;x" is
the weight enumerator of ker A then

Wc<.l’) _ Zazx(z mod e)/2’
=0

where e is an integer linear in length of C.

Theorem 2.1.3 (Chapter [). Let A be a triangular configuration. Then there
exists a triangular configuration A’ and weights w' : T(A’) — R such that

WkerA<SL’) = PA/ (.T)

Theorem 2.1.4. Let A be a triangular configuration with weights w : T(A) —
R. Then there exists a tripartite triangular configuration X' and weights w' :
T(A") — R such that Pa(x) = per(Aa/(z)) where Aa/(x) is the triadjacency
matrixz of A'.

Proof. Follows directly from Proposition 2.2.9 and Proposition 2.2.10 of Sec-
tion 2.2 O

Definition 2.1.5. We say that an n x n x n 3-matrix A is Kasteleyn if there is
3-matrix A’ obtained from A by changing signs of some entries so that per(A) =

det(4).

Theorem 2.1.6. Let M be n X n matriz. Then one can construct m X m X m
Kasteleyn 3-matriz A with m < n? + 2n and per(M) = per(A). Moreover,
Kasteleyn signing is trivial, i.e., per(A) = det(A), and if M is non-negative then
A is non-negative.

Theorem [2.1.6] is proved in Section 2.3l

2.2 Triangular configurations and permanents
In this section we prove Theorem 2.1.4l We use basic building blocks as in

Chapter Il However, the use is novel and we need to stress the tripartitness of
basic blocks. Hence we briefly describe them again.
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Figure 2.2: Tunnel tripartition

2.2.1 Triangular tunnel

Triangular tunnel is depicted in Figure 2.1l An empty triangle is a set of three
edges forming a boundary of a triangle. We call the empty triangles {a, b, ¢} and
{d',V/, '} ending.

Proposition 2.2.1. The triangular tunnel has exactly one matching M* with
defect {a,b,c} and exactly one matching M® with defect {a’,V/,c'}. O

Proposition 2.2.2. The triangular tunnel is tripartite.

Proof. Follows from Figure

2.2.2 Triangular configuration S°

Triangular configuration S° is depicted in Figure 23l Letter ”X” denotes empty
triangles. We call these empty triangles ending.

X LY X

top bottom

Figure 2.3: Triangular configuration S°

Proposition 2.2.3. Triangular configuration S° has one ezactly perfect matching
and exactly one matching with defect on edges of all empty triangles.
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Proof. The unique perfect matching is {t,%s,4,t5}. We denote it by M?*(S?).
The unique matching with defect on edges of all empty triangles is {t3}. We
denote it by M°(S%). O

Proposition 2.2.4. Triangular configuration S° is tripartite.

Proof. Follows from Figure 2.4l

bottom

Figure 2.4: Triangular configuration S° with partitioning

2.2.3 Matching triangular triangle

Figure 2.5: Matching triangular triangle

The matching triangular triangle is obtained from the triangular configuration
S5 and three triangular tunnels in the following way: Let Ti, T and T3 be
triangular tunnels. Let t1 ,pt; t1 q2 an(} tlTS,’ rs be the ending empty triangles
of Ty, Ty and T3, respectively. Let ts5, t5°,t3" be ending empty triangles of S°.
We identify t7* with #5°; t72 with t5° and t7* with t§5. The matching triangular
triangle is defined to be Ty U S® U T, U T3. The matching triangular triangle is
depicted in Figure 2.5

Proposition 2.2.5. The matching triangular triangle has exactly one perfect
matching M*' and exactly one matching M° with defect {1,2,3,a,b,c,a, 3,v}. It
has no matching with defect E, where ) # E C {1,2,3,a,b,¢,«, 3,7}.

Proof. The perfect matching is M*' := M*(S®) U M*(Ty) U M*(Ty) U M*(T3).
The matching M° is M°(S®) U ME(Ty) U M%(Ty) U ME(T3).
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Any matching with defect £ C {1,2,3,a,b,¢,«, 3,7} of the matching trian-
gular triangle contains M'(S%) or MY(S%). This determines remaining triangles
in a matching with defect £ C {1,2,3,a,b,¢,a, 3,7}. Hence, there are just two
matchings M! and M° with defect E C {1,2,3,a,b,c,a, 3,7} O

Proposition 2.2.6. Matching triangular triangle T is tripartite and there is a
tripartition of T' such that a,b,c € F1; 1,2,3 € Ey; o, 8,77 € Es.

Proof. Follows from Figure 2.4 and Figure 2.2 O

2.2.4 Linking three triangles by matching triangular tri-
angle

Let A be a triangular configuration. Let t;,f, and t3 be three edge disjoint
triangles of A.

The link by matching triangular triangle between ti,t5 and t3 in A is the
triangular configuration A’ defined as follows. Let T" be a matching triangular
triangle defined in Section 223l Let {a,b,c}, {1,2,3}, {a, 5,7} be ending empty
triangles of T. Let t1,¢3,13 and t1, 43,3 and t},12,t3 be edges of ¢; and ¢, and t3,
respectively. We relabel edges of T  such that {a,b,c} = {t}, 13,43} and {1,2,3} =
{td, 42 3} and {o, 8,7} = {t},13,t3}. We let A’ :== AUT.

2.2.5 Construction

Let A be a triangular configuration and let w : T'(A) — R be weights of triangles.
We construct a tripartite triangular configuration A’ and weights w' : T(A') — R
in two steps. First step: We start with triangular configuration

A/l IIA1UA2UA3

where Ay, Ay, As are disjoint copies of A. Let t be a triangle of A. We denote
the corresponding copies of ¢ in Ay, Ay, A3 by t1, 1o, t3, respectively.

Second step: For every triangle ¢ of A, we link ¢, 5,¢3 in A} by triangular
matching triangle 7. We denote this triangular matching triangle by 7;. Then we
remove triangles ¢y, ty, t3 from A}. We choose a triangle ¢ from M (T}) and set
w' (') == w(t). We set w'(t') := 0 for t' € T(T;) \ {t}. The resulting configuration
is desired configuration A’.

Proposition 2.2.7. Triangular configuration A is tripartite.

Proof. The triangular configuration A’ is constructed from three disjoint triangu-
lar configurations Ay, Ay, As. From these configurations all triangles are removed.
Hence, we can put edges E(A;) to set E; for i = 1,2,3. The remainder of A’ is
formed by matching triangular triangles. Every matching triangular triangle con-
nects edges of Ay, Ay, As. By Proposition the matching triangular triangle
is tripartite and its ends belong to different partities.

O

We recall 2% denotes the set of all subsets X. We define a mapping f :
27(A) 13 2T(AY) as: Let S be a subset of T(A) then

F(8) ={MY(T})|t € S}U{M (T))[t € T(A) \ S}.

24



Proposition 2.2.8. The mapping f is a bijection between the set of perfect
matchings of A and the set of perfect matchings of A" and w(M) = w'(f(M)) for
every M C T'(A).

Proof. By definition, the mapping f is an injection. By Proposition 2Z.2.5] every
inner edge of T}, t € T(A), is covered by f(S) for any subset S of T'(A). Let M
be a perfect matching of A. We show that f(M) is perfect matching of A’.

F(M) = {MNT)|t € M}U{M"(T;)|t € T(A)\ M}

Let e be an edge of A and let ey, es, e3 be corresponding copies in Ay, Ay, As. Let
t1,ta,...,t; be triangles incident with edge e in A. Let ¢, be the triangle from
perfect matching M incident with e. By definition of A’, the edges e, 9, €3 are
incident only with triangles of T;,, ¢« = 1,...,[. The edges ey, e, e3 are covered
by M*'(t;). The edges of T},, i = 1,...,1, i # k are covered by M°(T},). Hence
f(M) is a perfect matching of A'.
Let M’ be a perfect matching of A’. By Proposition Z2Z5, M’ = {M(T))|t €
S U{M (T,)|t € T(A)\ S} for some set S. The set S is a perfect matching of
A. Thus, the mapping f is a bijection.
O

Corollary 2.2.1. Pa(z) = Pa(x). O

Proposition 2.2.9. Let A be a triangular configuration with weights w : T'(A) —
R. Then there exist a tripartite triangular configuration A’ and weights w'
T(A") — R such that there is a bijection f between the set of perfect matchings
P(A) and the set of perfect matchings of P(A'). Moreover, w(M) = w'(f(M))
for every M € P(A), and Pa(x) = Pas(z).

Proof. Follows directly from Propositions 2.2.7and 2.2.8 and Corollary 221 [

Proposition 2.2.10. Let A be a tripartite triangular configuration with tripar-
tition Ey, By, E5 such that |E1| = |Eq| = |E3| and let Ax(x) be its triadjacency
matriz. Then Pa(z) = per(Aa(x)).

Proof. We have

per(Ana(x Z Hazal(z)Og

01,0268y, i=1

Every perfect triangular matching between partities E7, Es, F3 can be encoded
by two permutations 01,05 and vice versa. If matching M is a subset of T'(A),

then
H azcn (3)o2(t H " wlior Do = xw(M)’

where [ijk] denotes a triangle of A with edges 7, j, k. If M is not a subset of T(A),
then there is ¢ such that ajs, (i)s, ;) = 0. Hence H g in@o2®)) = (. Therefore

Z Hawl(i)oz(i) = PA<SL’)

01,02€8, 1=1
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2.3 Kasteleyn 3-matrices

We first introduce a sufficient condition for a 3-matrix to be Kasteleyn. Let A be a
[Vo| x |V1| x |Va| non-negative 3-matrix, where |V;| = m,i = 1,2,3. We first define
two bipartite graphs G, Gy as follows. We let, fori = 1,2, GA = G; = Vo, Vi, E)
where

E, = {{a,b}a € V,b € V; and A, # 0 for some c},

and

Ey = {{a,c}a € Vy,c € Vo and Ay # 0 for some b} .

Theorem 2.3.1. If A is such that both G{, G4 are Pfaffian bipartite graphs then
A is Kasteleyn.

Proof. Let M; be the biadjacency matrix of G; and let sign, : B(G#) — {—1,1}
be the signing of the entries of M; which defines matrix M/ such that per(M;) =
det(M]). We define 3-matrix A’ by

A:zbc = Signl ({CL, b})signQ({a, C}>Aabc'

We have det(A’) equals
> sign(o1) x Y sign(oz) [ [ signa ({7, 02 ()} sign: ({7: 01 (1)} Ajor 1025
o1 a2 J
By the construction of sign, we have that for each o, and each oy, if
H Ajor()o2() 7 0
J

then

sign(c) ] [ siens ({7, 2()}) = 1.

Hence

det(A’) = Z sign (1) Z H sign; ({7, 01(J) }) Ajor ()02 (7))
= Z ngn (01) HSlgnl({J, o1(7)}) Ajor()o=(5)-
Analogously by the construction of sign; we have that for each ; and each os, if
[T Ajeiro) # 0
J
then
sign(on) | [ sign ({7, 1(j)}) = L.

J

det Z H A_]O'l(_] Joa(j) — per(A)

01,02 J

Hence
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In the introduction we defined the triadjacency 3-matrix of a triangular con-
figuration as the adjacency matrix of the edges of the triangles. We also defined
a matching of a triangular configuration as a set of edge-disjoint triangles. In
this section it is advantageous to consider any 3-matrix with 0,1 entries as the
adjacency matrix of wertices of a triangular configuration. Hence we need the
following notions.

A triangular configuration A is vertex-tripartite if vertices of A can be divided
into three disjoint sets V7, V5, V3 such that every triangle of A contains one vertex
from each set V7, Vs, V3. We call the sets Vi, Vs, V3 vertex-tripartition of A.

The vertez-adjacency 3-matrix A(z) = (a;jx) of a tripartite triangular configu-
ration A with vertex-tripartition V4, V4, V3 is the |V;| x |V3| x| V3| three dimensional
array of numbers, defined as follows: We set

z*® if i € Vi, j € Vo, k € Vs forms a triangle ¢ with weight w(t),
Qijk = .
" 0 otherwise.
We will need the following modification of the notion of a matching. A set of
triangles of a triangular configuration is called strong matching if its triangles are
mutually vertex-disjoint.

Proof of Theorem[21.0. Let M be a n x n matrix and let G = (V, V5, E) be the
adjacency bipartite graph of its non-zero entries. We have |Vi| = |V3| = n. We
order vertices of each V;, i = 1,2 arbitrarily and let V; = {v(i,1),...,v(i,n)}.
Let V! = {v'(i,1),...,v'(i,n)} be disjoint copy of V;, i = 1,2.

We next define three sets of vertices Wy, Wy, Wy and system of triangles
A(G) = A so that each triangle intersects each W in exactly one vertex.

Wy =ViuV/U{w(l,e)le € E},
Wy = Vo UV U{w(2,e)le € E},
Wo = {w(0,0)le € B} U {w(0.i. )i = 1,25 = 1.....n},

A =Ue—aper {(a,b,w(0,¢)), (w(0,e),w(l,e),w(2,e)) U
Ui {(w(0,1,5),0'(2, 5), w(l, e))|v(1, j) € e}
Uiy {(w(0,2,5),0'(1, 5), w(2,e))|v(2,]) € e}.

We let A be the vertex-adjacency 3-matrix of the triangular configuration
T(G) =T = (Wy, Wy, Wa,A). We first observe that both bipartite graphs
G, Gy of this triangular configuration are planar; let us consider only Gy, the
reasoning for G5 is the same. First, vertices v'(1, j) and w(0, 2, j) are connected
only among themselves in (G;. Further, the component of G; containing vertex
v(1,7) contains also vertex w(0, 1, 7) and consists of degs(v(1, 7)) disjoint paths
of length 3 between these two vertices. Here dega(v(1,)) denotes the degree of
v(1,7) in graph G, i.e., the number of edges of G incident with v(1,j). Thus, by
Theorem 2.3.T], A is Kasteleyn.

We next observe that Kasteleyn signing is trivial. Let D; be the orientation
of GG; in which each edge is directed from W, to W;. In each planar drawing of
(G1, each inner face has an odd number of edges directed in D clockwise. This
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means that D; is a Pfaffian orientation of Gy, and per(A) = det(A) (see e.g.
Loebl [I5] for basic facts on Pfaffian orientations and Pfaffian signings).

Finally there is a bijection between the perfect matchings of G and the perfect
strong matchings of 7 if P C F is a perfect matching of G then let

P(T) = {(a,b,w(0,¢e))|e = ab € P}.

We observe that P(7T) can be uniquely extended to a perfect strong matching of
T, namely by the set of triples S; U Sy U S3 where

Sl = UeEE\P{<w(07 6),11](1,6),11}(2, 6))},
Sy = U {(w(0,1,7),v'(2, ), w(l,e))[v(1,)) € e € P},
S = Ui {(w(0,2,5),v'(1, 5), w(2, €))[v(2,) € e € P}.

Set S is inevitable in any perfect strong matching containing P(7) since the
vertices w(0, e); e ¢ P must be covered. This immediately implies that sets Sy, S3
are inevitable as well.

On the other hand, if @ is a perfect strong matching of 7 then @) contains
P(T) for some perfect matching P of G.

O

2.4 Application to 3D dimer problem

Let @ be cubic n x n x n lattice. The dimer partition function of (), which is
equal to the generating function of the perfect matchings of (), can be by Theorem
identified with the permanent of the Kasteleyn vertex-adjacency matrix of
triangular configuration 7(Q). Natural question arises whether this observation
can be used to study the 3D dimer problem.

We first observe that the natural embedding of ) in 3-space can be simply
modified to yield an embedding of 7(Q) in 3-space. This can perhaps best be un-
derstood by figures, see Figure 2.6} this figure depicts configuration 7 (Q) around
vertex v of () with neighbors uq, ..., ug.

Triangular configuration 7 (Q) is obtained by identification of vertices v;,i =
1,...,6 in the left and right parts of Figure 2.6l Now assume that the embedding
of left part of Figure is such that for each vertex v of (), the vertices vy, ..., vg
belong to the same plane and the convex closure of vy, ..., vg intersects the rest
of the configuration only in vy,...,vs. Then we add the embedding of the right
part, for each vertex v of (), so that x; belongs to the plane of the v;’s and x5 is
very near to x; but outside of this plane.

Summarizing, the dimer partition function of a finite 3-dimensional cubic
lattice @) may be written as the determinant of the vertex-adjacency 3-matrix
of triangular configuration 7 (Q)) which preserves the natural embedding of the
cubic lattice. Calculating the determinant of a 3-matrix is hard, but perhaps
formulas for the determinant of the particular vertex-adjacency 3-matrix of 7(Q),
illuminating the 3-dimensional dimer problem, may be found. An example of a
formula valid for the determinant of a 3-matrix is shown in the next subsection.
It is new as far as we know but its proof is basically identical to the proof of
Lemma 3.3 of Barvinok [1].
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U1 T
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Figure 2.6: Configuration 7 ((Q) around vertex v of () with neighbors uy, ..., ug
so that wuq, us, uyg, ug belong to the same plane in the 3-space, usy is ’behind’ this
plane and wus is 'in front of” this plane. Empty vertices belong to Wy, square
vertices belong to W; and full vertices belong to Wj.

2.4.1 Binet-Cauchy formula for determinants of 3-matrices

We recall from the introduction that the permanent of a n x n x n 3-matrix A is

defined to be .
per(A) = Y [ dintenir-

01,0268, 1=1

The determinant of a n x n X n 3-matrix A is defined to be
det(A) = Z sign(oq)sign(os) Ham(i)@(i).
0’1,0’2€Sn =1

The next formula is a generalization of Binet-Cauchy formula (see the proof
of Lemma 3.3 in Barvinok [1]).

Lemma 2.4.1. Let A', A%, A3 be real r x n matrices, r < n. For a subset I C
{1,...,n} of cardinality r we denote by A5 the r X r submatriz of the matriz A®
consisting of the columns of A® indezed by the elements of the set I. Let C' be the
3-matriz defined, for all i1,19,13 by

n
_ 1 42 43
Ciyinis = E A AL AT
j=1

Then
det(C') =) _ per(Aj) det(A?) det(A}),
1

where the sum is over all subsets I C {1,...,n} of cardinality r
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Proof.

det(C) = Z sign(oy)sign(oy I_IZA1 A2 02(2
Ul,O’QESr =1 ] 1
- Y swmlosimion xS T[AL AL,
01,02€S5, 1<j1,..,Jr<n i=1

= Z Z sign(oq)sign(os) x 1_[141 A2 NORE

1<j17 7]7"<n 01702€ST
Now, for all J = (j,...,7,) we have

Z sign(oy )sign(og ><1_[A1 A2 AJQ(Z

01,02€Sr i=1
HA Z&gn o1 HA )i Z&gn 09 HA ’JZ

HA ) det(A?) det(A3),

where A% denotes the  x r matrix whose ith column is the j;th column of matrix
A®.

If sequence J contains a pair of equal numbers then the corresponding sum-
mand is zero, since det(A?) is zero. Moreover, if J is a permutation, and J' is
obtained from J by a transposition, then

det(A?) det(A3) = det(A2,) det(A3).

Therefore Lemma [2.4.1] follows.
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3. Geometric representations in
three dimensions

3.1 Introduction

This chapter extends results from Chapter [Ilwhere it was proven that every binary
linear code has a geometric representation. Here we show that each binary linear
code has a geometric representation that can be embedded into R*. Moreover we
characterize those C which admit a geometric representation in R3.

A linear code C of length n and dimension d over a field F is a linear subspace
with dimension d of the vector space F". Each vector in C is called a codeword.
Let B be a basis of a binary code C. A basis B is k-basis if every entry is non-zero
in at most k vectors of B.

Let C C F" be a linear code over a field F and let S be a subset of {1,...,n}.
Puncturing a code C along S means deleting the entries indexed by the elements
of S from each codeword of C. The resulting code is denoted by C/S.

A simplex X is the convex hull of an affine independent set V' in R%. The
dimension of X is |V| —1, denoted by dim X. The convex hull of any non-empty
subset of V' that defines a simplex is called a face of the simplex. A simplicial
complex A is a set of simplices fulfilling the following conditions: Every face of a
simplex from A belongs to A and the intersection of every two simplices of A is
a face of both.

The dimension of A is max {dim X|X € A}. Let A be a d-dimensional sim-
plicial complex. We define the incidence matric A = (A;;) as follows: The rows
are indexed by (d — 1)-dimensional simplices and the columns by d-dimensional
simplices. We set

o 1 if (d — 1)-simplex i belongs to d-simplex j,
Y710 otherwise.

This chapter studies two dimensional simplicial complexes where each maximal
simplex is a triangle or a segment. We call them triangular configurations. Let A
be a triangular configuration. A subconfiguration of A is a subset of A that is a
triangular configuration. We denote the set of triangles of A by T'(A). The cycle
space of A over a field I, denoted ker A, is the kernel of the incidence matrix
A of A over F, that is {x|Ax = 0}. Let T be a subset of the set of triangles of
A. We denote by K(T') the triangular configuration that is defined by the set of
triangles T'. The even subset or cycle of A is a subset E of the set of triangles of
A such that all edges of the triangular configuration IC(E) have an even degree.

Let {t1,...,ty,} be the set of triangles of A. For a subconfiguration A" of A,
we let x(A") = (x(A)1, ..., x(A)m) € {0,1}™ denote its characteristics vector,
where x(A’); = 1 if A’ contains triangle ¢;, and x(A’); = 0 otherwise. Note that,
the characteristics vectors of even subsets of A forms the cycle space of A.

Let E; and E5 be sets. Then the symmetric difference of E; and Fs, denoted
by E; A Es, is defined to be Ey A Ey := (E1 U E3) \ (E1 N Ey). Note that, the
symmetric difference of two even subsets E; and Esy of A is also even subset of
A and it holds x(K(Ey)) + x(K(Ey)) = x(K(Ey A Ey)) over GF(2).
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A linear code C has a geometric representation if there exists a triangular
configuration A such that C = ker A/S for some set S and dimC = dim ker A.
For such S we write S = S(ker A, C).

Theorem 3.1.1 (Chapterd]). Let C be a linear code over rationals or over GF (p),
where p is a prime. Then C has a geometric representation.

3.1.1 Main Results

A basis B of a binary linear code C C GF'(2)" is 2-basis if every entry ¢ < n is
non-zero in at most two vectors of B.

Theorem 3.1.2. Let A be a triangular configuration embeddable into R® then
ker A has a 2-basis.

Proof. The proof follows from Theorem B3.2.2] in Section [3.2.T] O]

By Whitney’s theorem, the cycle space of a 3-connected graph G determines
G. Tt is therefore natural to ask whether our result can help to answer the
question: Given a 2 dimensional simplicial complex, is it embeddable into R3?
Theorem gives only a necessary condition. For example no triangulation of
the Klein bottle can be embedded into R? and its cycle space has a 2-basis. The
topic of embedding of simplicial complexes is treated in Matousek et al. [19].

The main result of this chapter is that existence of a 2-basis characterize
geometric representations in R3.

Theorem 3.1.3. A binary linear code C has a geometric representation embed-
dable into R? if and only if C has a 2-basis.

The above theorem is an analogy of Mac Lane’s planarity criterion [I8] for
graphs.

Theorem 3.1.4. A binary linear code C has a geometric representation embed-
dable into R? if and only if there exists a graph G such that C equals the cut space
of G.

It is well known that every two dimensional simplicial complex can be em-
bedded into R®. Hence, every binary linear code has a geometric representation
embeddable into R®. We further show:

Theorem 3.1.5. Fvery binary linear code C has a geometric representation em-
beddable into R*.

Theorem B.1.5 extends a main result of Chapter [[lwhere it is shown that every
binary linear code has a geometric representation.

Corollary 3.1.1. There is a polynomial algorithm that decides the minimal di-
mension of a geometric representation of a binary code C.

This positive result complements the results of Matousek et al. [I9] on em-
beddings of simplicial complexes.
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W4

Figure 3.1: An example of strong boundary in R3

Figure 3.2: A polygon, counterpart of strong boundary in R?

3.2 Proof of main results

Proof of Theorem[3.1.3. The necessary condition of the theorem follows from
Theorem B.1.2] The sufficient condition is proven in Section [3.2.2) O

3.2.1 Bases of triangular configurations embedded into R?

In this section we suppose that all triangular configurations are embedded into

R3 with the standard Euclidean metric p(z,y) = \/Ef’zl(xz — ;)% Let x be

an element of R? and let ¢ € R and € > 0. The e-neighborhood of z is the set
N(z) = {y € R®|p(x,y) < €}. If no confusion can arise we let N.(z) = N(x).
Let (x1,...,2,) be a sequence points in a space. A polygonal path along the
sequence (x1,...,T,) is a sequence of line segments connecting the consecutive
points. Let A be a triangular configuration embedded into R®. A cell X of A
is a non-empty maximal subset of R3\ A with respect to inclusion such that
between any two points of X there is a polygonal path that does not intersect A.
A bounded cell is a cell that is contained in some sphere of a finite diameter. A
strong boundary is a triangular configuration C' such that C' has at least two cells
and every subconfiguration C” has fewer cells than C. An example is depicted
in Figure B.Il A one dimensional counterpart of strong boundary is a polygon,
for example see Figure 3.2 Let X be a subset of R3. The closure of X, denoted
by cl(X), is the set cl(X) := {y € R¥|Ve > 0; N(y) N X # 0}. We say that a
triangle ¢ is incident with a cell S if t C cl(S).

Proposition 3.2.1. Let A be a triangular configuration embedded into R3. Then
every triangle t of A is incident with at least one cell of A and at most two cells

of A.

Proof. Let t be a triangle of A. For a contradiction, suppose that ¢ is incident
with three cells X, X5, X3 of A. Let p a point of ¢ that does not belong to
any edge of t. It holds that p € cl(X;), p € cl(X2) and p € cl(X3). Let N(p)

33



be a neighborhood of p such that N(p) does not intersect an edge of A. The
neighborhood N(p) intersects the cells Xj, Xo, X3. Let x1, 22,23 be points of
c(X1) N N(p), c(X2) N N(p), cl(X3) N N(p), respectively. Then, the segments
T1T9, Toy, T w3 intersect triangle t. Let H be a hyperplane of R? that contains
triangle t. Then two points of z1, x5, x3 belong to the same half-space defined
by H. The segment connecting these two points do not intersect ¢. This is the
contraction. Hence, t is incident with at most two cells of A.

Now, we show that t is incident with at least one cell. Let vy, v9, v3 be vertices
of t and let p be a point of ¢ that belongs to no edge of A. Let v be a vector
orthogonal to triangle ¢ and let € > 0. Let P be a convex hull of set {vy, v, v3, p+
ev} and let P~ be a convex hull of set {vy,vs,v3,p — ev}. We choose € > 0
sufficiently small such that AN P =t and AN P~ =t . The sets P+ \ t and
P~ \ t are convex and disjoint with A. Thus, P\ ¢ is a part of one cell of A.
Let X be the cell of A that contains P\ ¢. Clearly ¢t C ¢l(X ). Thus, triangle
t is incident with at least cell X .

O

Corollary 3.2.1. Let C be a strong boundary embedded into R®. Then every
triangle t of C' is incident with two cells of C.

Proof. By Proposition B.2.1] triangle ¢ is incident with one or two cells of C. If ¢
is incident with one cell, we can remove it from C' and the number of cells of C'
does not change. Thus, C'\ {t} is also a strong boundary. This contradict with
the minimality of C'. Hence, t is incident with exactly two cells. O

Lemma 3.2.1. Let A be a triangular configuration embedded into R®. Let t be a
triangle of A incident with two cells of A. Then the number of cells of A\ {t} is
equal to the number of cells of A minus one.

Proof. Let X, and X5 be cells incident with ¢. Let x be a point of t. Then there
are points z; and x9 of X and Xs, respectively, such that N(z1) Nx # @ and
N(z2) Nz # (. Hence, there is a polygonal path between x; and x5 disjoint from
A\ {t}. The set X; UtU Xy is a cell of A\ {t} and the proposition follows. [

Proposition 3.2.2. Let C be a strong boundary embedded into R3. Then C has
exactly two cells.

Proof. For a contradiction suppose that C' has more than two cells. Let t be a
triangle of C'. By Corollary B.2.1] triangle ¢ is incident with exactly two cells. By
Lemma [B.2.1] by removing ¢ from C, we join two cells into one. If C' has more
than two cells, the subconfiguration C'\ {t} has at least two cells. Let C’ be the
minimal subconfiguration (with respect to inclusion) of C'\ {t} that has at least
two cells. Then C” is a smaller strong boundary than C. This is a contradiction
with the minimality of C'. O

Proposition 3.2.3. Let C be a strong boundary embedded into R3. Then one of
the cells of C' is bounded and the second one is unbounded.

Proof. By proposition B.2.2, C has two cells. By definition, every triangular
configuration A is finite. Thus, every strong boundary C' is finite. Hence, C is
contained in a sufficiently large sphere S. The complement of the ball of S is
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Figure 3.3: A contradicting example of an edge e of a strong boundary. The
boundary has two cells ¢, co. The edge e is incident with triangles ¢4, ..., t5 and
it has odd Degree 5. Then the strong boundary has only one cell. This contradict
the definition of strong boundary.

contained in one cell of C, thus this cell is unbounded. The other cell of C' is
inside this ball and thus it is bounded.
U

Let C be a strong boundary. We call the bounded cell of C' inner cell of C
and denote it by int(C'). The unbounded cell of C' we denote by ext(C). We
denote C' U int(C') and C' U ext(C) by int(C) and ext(C'), respectively. So far
we considered strong boundary as a triangular configuration in R3. Now we
consider strong boundaries in a triangular configuration A. We say that a strong
boundary C' is a strong boundary of A if C' is a subconfiguration of A. We say
that a triangular configuration A is connected if every two triangles of A belong
to a common strong boundary of A. The connected component of A is a maximal
connected subconfiguration (under inclusion) of A.

Proposition 3.2.4. Let C be a strong boundary. Then cl(int(C')) = int(C) and
cl(ext(C)) = ext(C).

Proof. By Corollary B.2.1] every triangle of C' is incident exactly with two cells
int(C') and ext(C). By definition of incidence, it holds ¢l(int(C)) = int(C) and
cl(ext(C)) = ext(C). O

Proposition 3.2.5. Let C be a strong boundary embedded into R3. Then the set
of triangles of C 1is an even subset.

Proof. For a contradiction suppose that a strong boundary C' contains an edge e
with an odd degree. By Proposition B.2.2 C' has two cells. By Corollary B.2.]
every triangle of C' is incident with two cells. Let T" be the set of triangles incident
with e. Since edge e has an odd degree and every triangle of 7" is incident with
two cells, we set a contradiction. (see Figure B.3)). O

Elementary strong boundaries

A strong boundary C' of A is elementary if there is no strong boundary C’ of A
such that int(C) Nint(C") # O and int(C) Next(C’) # 0. First, we illustrate this
definition on one dimensional simplicial complexes embedded into R%. One dimen-
sional simplicial complexes embedded into R? correspond to planar embeddings
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2

Figure 3.4: One dimensional complex embedded into R? (a plane graph).
3 3

2 2

Figure 3.5: Two elementary strong boundaries of the complex in Figure [3.4]

of planar graphs. The graphs counterpart of our definition of elementary strong
boundary is a boundary of a face of a 2-connected plane graph. The 2-connected
plane graph depicted in FigureB.4lhas two boundaries of faces (elementary strong
boundaries) depicted in Figure and one circuit (strong boundary) that is not
a boundary of a face (elementary strong boundary) depicted in Figure 3.6

Now, we give example of triangular configuration embedded into R? with two
elementary strong boundaries. The triangular configuration in Figure 3.7 has two
elementary strong boundaries (Figure B.8) and one strong boundary that is not
elementary (Figure B.9]).

Lemma 3.2.2. Let A be a connected triangular configuration embedded into R3.
Let X be a bounded cell of A. Let E be the set of the triangles of A incident with
X. Then K(E) (triangular configuration defined by the set of triangles E) is an
elementary strong boundary of A.

Proof. Since cell X is bounded, set E is nonempty. Triangular configuration
IC(E) has at least two cells: If K£(E) has only one cell, there is a triangle of £
that belongs to no strong boundary of A. This contradict the connectivity of A.

Now we show that triangular configuration () has at most two cells: For a

3

2

Figure 3.6: This strong boundary of the complex in Figure [3.4]is not elementary.
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6

Figure 3.8: Two elementary strong boundaries of the triangular configuration in
Figure B.1

contradiction suppose that IC(E) has at least three cells X7, Xo, X3. Let ¢; be a
triangle of E incident with X; and X5 and let ¢35 be a triangle of E incident with
X5, X3. Since A is connected, there is a strong boundary D that contains t; and
ty. The cell X is a subset of X5 and the cells X, X, are subsets of int(D). Then
E Cint(D) and X;, X3 C ext(D). Hence, the triangular configuration K(E) does
not have cells X;, X3, the contradiction.

Let t be a triangle of E. We show that triangle ¢ is incident with two cells
Xi, Xy of K(FE). For a contradiction suppose that ¢ is incident only with cell Xj.
It holds X C X;. Then t is incident only with cell X of A. By connectivity,
triangle ¢ belongs to a strong boundary D of A. By Proposition [3.2.2] triangle ¢
is incident with two cells of D. Since D is a subconfiguration of A, triangle ¢ is
incident with two cells XA, X3 of A. This is the contradiction.

By Lemma B2, K(E) \ {t} has only one cell. Hence K(F) is a strong

4

Figure 3.9: This strong boundary of the triangular configuration in Figure [3.7] is
not elementary.
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boundary.

For a contradiction suppose that IC(E) is not an elementary strong boundary
of A. Then there is a strong boundary C' of A such that int((E)) Nint(C) # 0
and int(C(E)) Next(C) # 0. Then there is a triangle ¢ of C' that belongs
to int(IC(F)). If there is not such a triangle ¢, then int(}C(E)) C int(C) and
int(IC(£)) C ext(C). This contradict that ext(C) and int(C') are disjoint. Since
the cell X is a subset of int(K(FE)), triangle ¢ also belongs to E. Since t' €
int(IC(E)), triangle ¢’ is incident only with cell int(IC(E)) of I(FE). This is the
contradiction. Thus, K(F) is an elementary strong boundary of A. O

Lemma 3.2.3. Let A be a connected triangular configuration embedded into R3.
Let t be a triangle of A that belongs to a strong boundary C' of A. Then t belongs
to exactly one elementary strong boundary C' of A such that C' C int(C).

Proof. Let X be a cell of A such that X is incident with ¢ and X C int(C'). Cell X
is bounded. Let C’ be the set of triangles of A incident with X. By lemma 3.2.2]
the triangular configuration /C(C”) is an elementary strong boundary of A. By
Proposition B.2.4] and from X C int(C'), we have C” C int(C).

If there is an elementary strong boundary C” of A different from C’ that
contains ¢ such that C” C int(C). We have int(C") Nint(C") # (). Since C" # C”,
we have ext(C") Nint(C”) # 0 or ext(C”) Nint(C’) # B. This a contradiction
with the definition of elementary strong boundary. Thus, ¢ is contained only in

one elementary strong boundary that is contained in int(C). U

Lemma 3.2.4. Let A be a connected triangular configuration embedded into R3.
Let t be a triangle of A. Then t is incident with two cells of A.

Proof. Since A is connected, there is a strong boundary C' of A that contains t.
By Corollary [3.2.1] ¢ is incident with two cells of C. Since C'is a subconfiguration
of A, t is also incident with two cells of A. O

Lemma 3.2.5. Let A be a connected triangular configuration embedded into R3.
Let t be a triangle of A such that t is contained in int(C') where C' is a strong
boundary of A. Thent belongs to exactly two elementary strong boundaries Cy, Co

of A and Cy C int(C) and Cy C int(C).

Proof. By lemma [3.2.4], triangle ¢ is incident with two cells X; and X5 of A. Let
C: and C5 be the sets of triangles incident with X; and X5, respectively. By
lemma [3.2.2] the sets C and C5 are elementary strong boundaries of A.

Since t € int(C), cells X; and X, are subsets of int(C'). Thus, C; C int(C)
and Cy C int(C).

For a contradiction suppose that there is a third elementary strong boundary
C3 of A that contains ¢. Since t is incident with two cells, we have int(Cj3) N
int(Cy) # 0 or int(C3) Nint(Cy) # . Without loose of generality we can sup-
pose int(C3) Nint(Cy) # . Since C5 # C}, we have ext(C;) Nint(Cs) # O or
ext(Cs) Nint(Cy) # 0. This a contradiction with the definition of elementary
strong boundary. Thus, ¢ is contained in exactly two elementary strong bound-
aries of A. O

Proposition 3.2.6. Let A be a connected triangular configuration embedded into
R3 and let C' be a strong boundary of A and let ESB(C) be the set of elementary
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strong boundaries of A contained in int(C). Then x(C) equals the sum of the
characteristics vectors of the elements of ESB(C') over GF(2). Thus, x(C) =

ZSGESB(C) X(5).

Proof. Each element of ESB(C') is contained in int(C'). Therefore,

ASGESB(C)T<S) g int(C),

where T'(S) denotes the set of triangles of S. Let ¢ be a triangle of A such that
t C int(C'). By Lemma B20] ¢ is incident with two elementary boundaries C4
and Cy such that C1,Cy € ESB(C). Therefore,

AsenspeT(S) C T(C).

Let ¢ be a triangle of C. By Lemma[3.2.3] ¢ belongs to exactly one elementary
strong boundary from ESB(C'). Therefore,

Asepspe)T(S) 2 T(C).

Hence,
ASeESB(C)T(S) = T<C)
and
> x(8) =x(©)
SeESB(C)
over GF(2). O

Non-empty even subsets divide R?

Proposition 3.2.7. Let A be a non-empty triangular configuration embedded
into R3 with all edges of an even degree. Then A has at least two cells.

Proof. This proof is a variation of a proof of Jordan curve theorem for polyg-
onal paths that can be found in Courant et al. [3]. First, we introduce some nota-
tion. Let ¢ be a triangle. We denote by  the interior of ¢, i.e., t := t\ (e; UeyUes)
where eq, e, e3 are the edges of t. Let e be an edge. We denote by é the interior
of e, i.e., € :=e\ (v Uwy) where vy, vy are the vertices of e.

Let r be a vector in R3 that is neither parallel with a triangle nor an edge of A.
Let x be a point of R*\ A. Let R(z) be the ray from x in direction r. Suppose that
R(z) does not intersect any vertex of A. We define the following quantities: Let
Ir(R(x),A) denote the number of intersection of R(x) with interiors of triangles
of A. Let e be an edge of A that is intersected by R(x). Let H be the plane
defined by the edge e and the ray R(z). Let n be the number of triangles incident
with e on one side of H and m number of triangles on the other side of H. Then
we define I.(R(x),A) as the minimum of n and m. Let Ig(R(z),A) be the sum
of I.(R(z),A) over all edges of A that are intersected by R(z) on interiors.

We define the sum I(R(z),A) := Ir(R(z),A) + I[g(R(z),A) and the parity
of v as P(R(z),A) := I(R(x),A) mod 2.

Let P be a polygonal path in R* \ A. We show that all points of P have the
same parity. First, we prove the following lemma.

39



Lemma 3.2.6. Let © and =’ be points in R3 such that

1. the segment xx' does not intersect A,
2. R(2') intersect at least one edge,

3. R(x") does not intersect a verter,
4. R(

y) does not intersect an edge for y € xa'\ z’.
Then P(R(x),A) = P(R(y),A) for all y € xa'.

Proof. All points of xa’ except 2’ have the same parity, since the parity can only
change when the ray hits or leave an edge. A nontrivial case is to show that
x and 2’ have the same parity. Let F(R(2’)) be the set of edges of A that are
intersected by R(z’). Let H(R,e) be the hyperplane defined by R and e. Let n,
be the number of triangles incident with e on the same side of H, as x and let
m. denote the number of triangles incident with e on the other side of H..

By definition,

I(R(x), &) = Ir(R(x), A) + [n(R(x), ),
and

I(R('),A) =Ip(R(z),A) = Y ne+Ip(Rx),A)+ Y min{n,m.}
ecE(R(z")) e€E(R(z"))
(3.1)

Since every edge e of A has an even degree, n. +m, is even. Hence, n, = m, mod
2. Therefore I(R(x),A) = I(R(z'),A) mod 2 and P(R(x),A) = P(R(z'),A).
O

By repeatedly using the above lemma, we get the following corollary.

Corollary 3.2.2. Let P be a polygonal path such that PNA = () and no ray from
any point of P hits a vertex of A. Then all points of P have the same parity. [

Corollary 3.2.3. Let x be a point from R? such that ANz = 0 and R(x) hits
a vertex of A. Then there is a neighborhood U(x) of x such that all points from
U(x) \ x have the same parity.

Proof. Let U(x) be a neighborhood of x such that R(y) does not hit a vertex of
A for y € U(z) \ x. We can connect any two points of U(x) \ « by a polygonal
path and use the previous corollary. O

Let x be a point of R? such that R(z) intersect a vertex of A. We define the
parity of x to be the same as a parity of a sufficiently small neighborhood of x.

Corollary 3.2.4. Let P be a polygonal path such that PNA = (). Then all points
of P have the same parity. U

Finish of the proof of Proposition[3.2.7. Any two points of a connected region of
triangular configuration can be connected by a polygonal path. Hence any two
points of a connected region have the same parity.

Let a and b be two different points of R? such that a and b lie close to a
triangle ¢ of A and the segment from a to b intersects A only on the interior of
t. Then a and b have different parities. Hence, A has at least two cells. O
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Proof of Theorem [3.1.2

Proposition 3.2.8. Let A be a triangular configuration embedded into R3. Then
the set S of characteristics vectors of elementary strong boundaries of A is linear
independent.

Proof. We prove the proposition by the induction along the size of the set S. If
|S| < 1, the proposition is clear. Let |S| > 1 and let x(C) be an element of
S and let C' be the corresponding elementary strong boundary such that C' is
incident with the unbounded cell of A. Let ¢ be a triangle of C' that is incident
with the unbounded cell. Now we show that the triangle ¢ belongs only to one
elementary strong boundary C. For a contradiction suppose that ¢ belongs to
an elementary strong boundary C’ of A different from C. Let X; and X, be
the cell of A incident with ¢. One of the cells is unbounded, suppose that X5 is
unbounded. Then X, C int(C) and X, C int(C’). Thus, int(C) N int(C”") # 0.
Since C' # C’, int(C")Next(C) # (. Hence, C’ is not elementary strong boundary.
The contradiction. Thus, ¢ belongs to only one elementary strong boundary C.
Hence, x(C) is not linear combination of the other elements S\ {x(C)}. By
the induction assumption, the set S\ {x(C)} is linear independent. Hence, the
set S is linear independent. O

Theorem 3.2.1. Let A be a connected triangular configuration embedded into
R3. Let S be the set of characteristics vectors of elementary strong boundaries of
A. Then the set S is a 2-basis of the cycle space ker A of A.

Proof. Let x(Cy) be an element of ker A and let Ey be the subset of triangles of
A such that Cy = KC(Ep). The set Ej is an even subset of A.

By Proposition B.27, the triangular configuration K(Ep) has at least two
cells. Therefore, K(Ey) contains a strong boundary Cy. Let E; be the subset of
triangles of A such that C; = K(FE;). By Proposition 3.2.5, the set F; is an even
subset. The symmetric difference Fy A F is also even subset. Fori=2,... k we
define the sets E; in the following way: Until Eg A --- A E;_; # () we set F; to be
the set of triangles of a strong boundary contained in IC(Ey A -+ A E;_1). The
triangular configuration IC(Fg A - -+ A E;_1) contains a strong boundary, because
Eqg A --- A E;_1is even subset and by Proposition B.2.7] triangular configuration
K(EyA--- A E;_1) has at least two cells. Since A is finite, this sequence of even
subsets is finite.

Thus, the set Ej is the symmetric difference of the even subsets Ei, ..., Ej
and x(Cp) = x(C1) + - - - + x(C) over GF(2). By proposition B:22.6, characteris-
tics vector of each strong boundary x(C;), i = 1,...,k; is a linear combination
of characteristics vectors of elementary strong boundaries over GF'(2). There-
fore, x(C) is a linear combination of characteristics vectors of elementary strong
boundaries S. By Proposition B.2.8, the set S is linear independent. Thus, the
set S is a basis.

Every strong boundary has exactly two cells. By definition of elementary
strong boundary, the inner cell of any elementary strong boundary contains no
triangle of other strong boundary. Hence, every triangle of A is contained in at
most two elementary strong boundaries and at most two characteristics vectors
of elementary strong boundaries are non-zero on the same coordinate. Thus, the
set S is a 2-basis. O
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Figure 3.10: Eight triangles forming triangular sphere S. The picture on the left
is a perspective view, the middle picture is a view from top, the picture on the
right is a view from the right side.

Theorem 3.2.2. Let A be a triangular configuration embedded into R3. Then
the cycle space of A has a 2-basis.

Proof. Let Aq,...,A,, be connected components of the triangular configuration
A. Let Bi,...,B,, be bases of Ay,...,A,,, respectively, provided by Theo-
rem B.2. 1l Since characteristics vectors that corresponds to strong boundaries
from different connected components have no common non-zero coordinate, the
set B:= By U---U B, is a 2-basis of the cycle space of A. O

3.2.2 Proof of Theorem [3.1.3] (Representations in R?)

It remains to prove sufficiency of the condition of Theorem B.1.3] for geometric
representations in R3. We show that the construction from Chapter [ and @ for
binary linear codes with 2-basis can be embedded into R3.

Basic building blocks
We start with definition of basic building blocks.

Triangular configuration S”

First, we define triangular configuration S as a triangulation of a two dimensional
sphere by 8 triangles. It is depicted in Figure 3. 10l The triangle t5 has vertices

v? vy, vy, All triangles of S have the same size. Therefore, the size of S and
position of S in a space is determined by the coordinates of the points vy, v5, v5.

We denote the triangular configuration S with prescribed vertices vy = z,v5 =

y,v5 =z by S(z,y,2).
Proposition 3.2.9. Triangular configuration S can be embedded into R3. U

Let n be a positive integer. We subdivide the triangle tg of S in the way
depicted in figure B. 11l Note that, the resulting object is a triangular configura-
tion. We denote the resulting triangular configuration by S™. Clearly, S™ can be
embedded into R3. We denote the triangle i of S™ by S"(i), for i = 1,...,n.
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Figure 3.11: Subdivision of a triangle, triangles 1,..., n are equilateral.

Figure 3.12: Triangular tunnel 7'(¢y,t2)

Triangular tunnel

Let t; and t5 be two empty triangles. Let x1, xo, x3 be vertices of ¢; and 1, ys, y3
be vertices of t5. The triangular tunnel between ¢; and ¢y denoted by T'(¢1,t5) is
the six triangles that form a tunnel as is depicted in Figure The vertices of
the empty triangle abc lies on the points x1, x5, x3 and the vertices of the empty
triangle 123 lies on the points y1, yo, ys3.

Triangular tunnel bridge

Let t; and t, be empty triangles embedded into R3 such that ¢; and ¢, belong to
the hyperplane given by equation x3 = 0 and one edge of both ¢; and ¢, belongs
to x; axis of R?® and t, is a shifted copy of ¢; in the direction of z; axis of R3?,
ts =t +a(1,0,0), a € R. Let [ be the size of edge of t;. We suppose that a is
greater than [. See Figure [3.13]

Let b > a and ¢ > a. Let alt(t;) and alt(ty) denote the altitude of ¢; and
ty, respectively. Let ¢} and t, be copies of triangle t; and ¢, shifted by (0,b,0)

43



a

Figure 3.13: Empty triangles of bridge

Figure 3.14: Triangular tunnel bridge

with top vertex shifted by (0, —1/2,0), respectively. Let ¢/ be a copy of t| shifted
by (0,0,c¢) with the left vertex shifted by (0,0,alt(t;)) and let ¢5 be a copy of
t}, shifted by (0,0, c) with the right vertex shifted by (0,0, alt(t2)). Then the
triangular tunnel bridge is

The triangular tunnel bridge is depicted in Figure B.14l

Proposition 3.2.10. Let t,,ts, t3,t4 be disjoint triangles embedded into R?® such
that the triangles belong to the hyperplane given by equation xs = 0 and one edge
of each ty,ta, 13,14 belongs to x1 axis of R® and ty,t3,t4 are shifted copies of t; in
the direction of the first coordinate of R3. Let | be the size of the longest edge of
t1. Let a > 1 and b > 2a. Then the triangular tunnel bridges T B(t1,ts,a,a) and
TB(ts, ts4,b,a) are disjoint.

Proof. The proposition follows from Figure [3.15]

Figure 3.15: The proof of Proposition [3.2.T0.
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Construction

Let C be a binary code with a 2-basis B = {by,...,bs}. We construct the following
triangular configuration A% and embed it into R3.

In the first step, we put d identical copies of S™, denoted by ST, ..., S7; into
R3 as is depicted in Figure Formally: Let v{ equals (0,0,0) and vi equals
(2,0,0) and v} equals (1,0,1). The points v;,vs,vs are vertices of the first copy
of S™. Thus S} equals S™(vi,vs,vi). Therefore, the size of every edge of every
triangle of ST is less or equal 2. The triangular configuration S} is shifted by
offset 5i from the origin. Let v} equals (0 + 5¢,0,0) and v} equals (2 + 5i,0,0)
and v} equals (1 + 57,0,1). Then S equals S™(v{, v}, vi), for i =1,...,d. Then

A = SPu---u S

In the second step, we add to Af, the tunnels. We also construct set of triangles
{B},..., B} and triangular configurations A, ,i = 1,...,d. Initially we set
Ay, =S fori=1,...,d. We interconnect the triangular configurations S}, for
1=1,...,d, by tunnels in the following way:

We proceed from the first coordinate 1 to the last coordinate n.

e If the coordinate 7 is zero in all basis vectors, we add an isolated triangle
to A% and denote it by B

e If the coordinate 7 is non-zero only in one basis vector by, we denote the
triangle S}'(i) by B} and we do nothing otherwise.

e If the coordinate 7 is non-zero in two basis vectors b, and b, k < [, we add
triangular tunnel bridge TB(S2(i), S1'(i),54,5) to AS. We also add this
tunnel bridge to the set A;,. We remove the triangle SP*(i) from A§ and
Ay, and we denote the triangle S} (i) by B}

We denote the set of triangles {B}, ..., B}'} by B".

Proposition 3.2.11. The triangular tunnel bridges added in the last step are
mutually disjoint.

Proof. Let TB(S{ (i1), S} (41), 5i1,5) and TB(S}, (i2), S (i2), 512, 5) be two tri-
angular tunnel bridges from the last step. If there is none or only one, the
proposition follows. Since i; # iy and ky # [ and ke # [, the triangles
S (1), Spt (1), Si, (12), St (i2) are disjoint. The size of each edge of the trian-
gles is at most 2. Since 7; > 1,75 > 1, it holds 5¢; > 2 and 5i, > 2. We can
suppose that i; < iy. Therefore 2(5i;) < 5is. Now, we can use Proposition B.2.10

and the proposition follows. O
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Figure 3.17: Top view on an example of the construction, the triangular tunnel
bridges are depicted by lines connected to dots denoted by 1,...,n.

Corollary 3.2.5. Triangular configuration AS can be embedded into R3. O

An example of construction is depicted in Figure B.I7 To finish proof of
Theorem B.1.3] it remains to show that A% is geometric representation of C. We
prove that A% is indeed geometric representation of C in Subsection B.2.2

Proof of representability

We follow strategy described in Chapter [l with the building blocks constructed
in previous section. Before we state the proofs we introduce some definitions. In
this section all operations are over the field GF(2).

Let C be a binary linear code and let B = {by,...,bs} be a basis of C. Let A,
be the geometric representation of C with respect to the basis B from Section [3.2.2]
or Section B.23l We suppose that A% exists. Let ¢ be a codeword from C.
Then ¢ = ), ; bi. The degree of ¢ with respect to the basis B is defined to be
the cardinality |I| of the index set. The degree is denoted by d(c). Let Af,
1 =1,...,d be triangular configurations defined also in Section B.2.2l We define
a linear mapping f: C — ker A§ in the following way: Let ¢ be a codeword of
C and let ¢ = )., b; be the unique expression of ¢, where b; € B. We define
f(e) :==3,c; X(AY). The entries of f(c) are indexed by the triangles of AG. We
have f(c)?/ =1 if and only if NierT(Af)) contains the triangle BY.

Proposition 3.2.12. Let m be the number of triangles of AS,. Letc = (ct,...,c")

and
fle) = (f(OF .o fOPF flo T fe™) .
Then f(c)B% =¢ forall j=1,...,n and all c € C.

Proof. We show the proposition by the induction on the degree d(c) of ¢. The
codeword cis equal to ), b;. If d(c) = 0, then ¢ = 0 and f(c) = 0. Thus, f(c) is
the characteristics vector of the empty triangular configuration. The proposition
holds for vectors of degree 0. Suppose that d(c) is greater than 0, then |I| > 1.
We choose some k from I. The codeword c + by has a degree less than c. By
the induction assumption, the proposition holds for ¢ + b. Let by = (b, ..., b}).
From the definition of Agk, the equality bi = X(Agk)B? holds for all j =1,...,n.
Therefore,

n

&=+ b)) + b, = X(DiengmA5) %+ x(A5)5 = f()P
forall j=1,...,n. O
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Corollary 3.2.6. The mapping f is injective. U

Lemma 3.2.7. Let E be a non-empty even subset of AS. Then K(E) contains
Ag¢ \ T'(B™) (Agl with triangles of B™ removed) as a subconfiguration for some
ied{l,...,d}.

Proof. Triangular configuration K(E) contains either all triangles or no triangle
of Af \ T(B"), since all edges of A{ incident with no triangle of B™ have degree
equals 2, for ¢ = 1,...,d. The triangular configuration B" have no non-empty
cycle, since the triangles of B™ are disjoint. Hence, C(F) contains a triangle of
AS \ T(B™) for some i € {1,...,d}. Thus, K(E) contains Af \ T'(B") for some
ie{l,...,d}. O

Theorem 3.2.3. The mapping f defined above is a bijection between the binary
linear code C and ker AG.

Proof. By Corollary [3.2.6] the mapping f is injective. It remains to be proven
that dim C = dim ker A%. Suppose on the contrary that some codeword of ker A%
is not in the span of { f(b1), ..., f(bs)}. Let ¢ be such a codeword with the minimal
possible weight w(c). The weight w(c) means the number of non-zero coordinates
of c. Let E be an even subset of A% such that x(K(E)) = c¢. By Lemma B.2.7,
K(E) contains A \ T'(B") for some i € {1,...,d}. By definition of A{ |, it holds
|T(A§, \ T(B")| > |T(B")|. Therefore, the inequality |E A T(A§ )| < |E| holds.
Thus, w(c) > w(x(K(E A T(Af))). This is a contradiction.

U

The entries of the vectors of ker A§ are indexed by triangles and the entries
of vectors of C are indexed by integers, we make a convention that a coordinate
of ker AS indexed by triangle B! corresponds to coordinate of C indexed by i.
Now, we can state the following corollary.

Corollary 3.2.7. C = ker AG/(T(AS \ T(B"))) and dimker A = dimC. O

Thus, the triangular configuration A% is a geometric representation of C.

3.2.3 Proof of Theorem B.1.5] (Representation in R*)

In this section for every binary linear code we construct its geometric represen-
tation that can be embedded into R*.

Let C be a binary linear code of length n and let B = {by,...,bs} be a basis
of C. For every basis vector b; we construct triangular configuration A, in this
way: Let ) be a three dimensional cube of size 1 x 1 x 1. We put in the middle
of this cube the triangular configuration S™ defined in Section We make an
appropriate scaling of S™ such that S™ fits into the cube ) and put S™ into @) in
the way depicted in Figure B.I8 The triangles S™(k), k = 1,...,n of S™ are in
front. Let F' be the front facet of @ (front in the Figure BI8]). We put triangles
{B},...,B"} to F as is depicted in Figure B.I8 Let b; equals (b},...,b"). We
initially set A,, := S™. For every non-zero coordinate b} we add tunnel (See
Section B.2.2) T(S™(k), B}) between triangles S™(k) and B} to A,. Then we
remove triangle S™(k) from Aj,. An example of A, for b; = (1,1,...,0,1) is
depicted in Figure .18 The cube () is not a part of A, , it is important that A,
is embedded into ). We denote this cube by Q(Ab;) and the facet F' by F(Ay,).
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Figure 3.18: An example of A, put into cube @ for b; = (1,1,...,0,1).

Proposition 3.2.13. Let @1, ..., Q4 be three dimensional cubes of the same size.
Then the cubes can be embedded into R* such that all cubes intersect at one facet
and otherwise are disjoint.

Proof. Fix a size [ of the edges of the cubes. Let F' be a square of size [ x [
embedded into R*. Let vy,...,v4 be vectors of R* of length [ orthogonal to the
square F' such that every two vectors of vy, ..., v4 are linear independent. Such
vectors exist in R*. Let Q; be the cube defined as {f + av;|f € F,a € [0,1]}.
The cubes intersect at facet F': for a contradiction suppose that there are two
cubes @; and Q; such that Q; N Q; € F. Let x be a point of (Q; N Q;) \ F.
Then =z = f; + ayu; = f; + ajv;, where fi, f; € F and o;,a; € (0,1]. Since
v; is not a linear combination of v;, the points f;, f; are different. The point
fi + a;v; — av; belongs to F'. Thus, the vector a;v; — ojv; is parallel to F'. Since
fi, f; are different, we have o;v; — ajv; # 0. Since the vector a;v; — ajv; is a
linear combination of two vectors v;, v; orthogonal to F', the vector a;v; — ajv; is
also orthogonal to F'. Thus, the vector o;v; — a;v; is non-zero and orthogonal to
itself. This is impossible in R*, a contradiction. The proposition follows. O

By Proposition B.213] we can embed the cubes Q(Aby),...,Q(Aby) with
Npy. .., Ay, into R such that all cubes Q(Aby),...,Q(Aby) intersect on the
facets F(Ay,), ..., F(Ap,) and otherwise are disjoint and the triangular config-
urations Ay, ..., A, intersects on the triangles B" and otherwise are disjoint.
The resulting triangular configuration is the geometric representation AY of C
embedded into R*. An example of the representation of a binary linear code that
is generated by two basis vectors by, by is depicted in Figure

The proof that A% is indeed geometric representation of C is the same as the
proof in Subsection This completes the proof of Theorem B.1.5.
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Figure 3.19: Top view on an example of the representation of a two dimensional
code in R*

3.2.4 Proof of Theorem [3.1.4]

Proposition 3.2.14. Let C be a binary linear code. Then C has a 2-basis if and
only if there is a graph G such that C is equal to the cut space of G.

Proof. First, we prove that every binary linear code with a 2-basis is a cut space
of a graph possibly with loops and parallel edges. Let C be a binary linear code of
length n with a 2-basis B = {by,...,bs}. We define a graph G = (V, E) possibly
with parallel edges and loops as follows: We define the set of vertices V' as:

V= BU{u}.

For ¢« = 1,...,n; we define edge e; as follows: If all basis codewords of B have
the entry indexed by coordinate i equals to zero, we set e; to be a loop (u,w). If
there is exactly one basis codeword b; € B that has non-zero entry indexed by ¢,
we set e; to be (by,v). If there are exactly two basis codewords b, b, € B that
have non-zero entry indexed by ¢, we set e; to be (b, bg). Then the set of edges
EofGis{eli=1,...,n}.

Let E(v) be the set of edges incident with a vertex v. Let E’ be a subset
of E. We define the incidence vector of E' is x(E') = (X(E')1,. .., X(E")n),
where x(E'); = 1 if ¢; € E' and x(E’); = 0 otherwise. By definition, the set
B = {x(E())|lv € (V\{u})} equals B. It is known fact that the set B’
generates the cut space of G, for a proof see for example Diestel [4].

Now, we prove the reverse implication. Let GG be a graph and let u be a vertex
of G. Then the set B' := {x(E(v))|v € (V \ {u})} is a basis of the cut space of
G. Since every edge of GG is incident at most with two vertices, the set B’ is a
2-basis of the cut space of G. U

Now, we finish the proof of Theorem [B.1.4

Proof of Theorem|[3.1.4) By proposition[3.2.14] a binary linear code C has 2-basis
if and only if C is a cut space of a graph. By Theorem B.1.3] code C has represen-
tation in R? if and only if it has a 2-basis. If code C has no 2-basis. Then from
Theorem follows that C has representation in R*. O

Proof of Corollary[3.1.1. It is a known fact that there is polynomial algorithm
that decide if a given binary linear code is a cut space of a graph (See Sey-
mour [28§]). O
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Proposition 3.2.15. Let G be a non-planar graph. Then the cycle space of G
has no 2-basis.

Proof. Follows from the Mac Lane’s planarity criterion. See Mac Lane [18] or
O’Neil [20]. O
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4. (Geometric representations of
linear codes

4.1 Introduction

The aim of this chapter is to introduce a theory of geometric representations of
general linear codes. A seminal result of Galluccio and Loebl [7] asserts that the
Ising partition function on graph G may be written as a linear combination of
49(G) Pfaffians, where g(G) is the minimal genus of the closed Riemann surface in
which G can be embedded. Recently, a topological interpretation of this result was
given by Cimasoni and Reshetikhin [2]. We explain in Section LTIl that the Ising
partition function on graph G may be described as the weight enumerator of the
cycle space C of G. Viewing the cycle space C as a linear code over GF'(2), a graph
GG may be considered as a useful geometric representation of C which provides an
important structure for the weight enumerator of C, see Theorem E.I.Il This
motivated Martin Loebl to ask, about more than 15 years ago, the following
question: Which binary linear codes are cycle spaces of simplicial complexes? In
general, for the linear codes with a geometric representation, one may hope to
obtain a formula analogous to that of Theorem [4. 1.1l This question remains open.
However, to extend the theory of Pfaffian orientations, it suffices to construct a
geometric representation which carries over the weight enumerator only. This
was achieved in Chapter [l for binary linear codes. In this chapter we present
results for general linear codes. By another result of Galluccio and Loebl [§],
the g-Potts partition function of graph G is determined by the row space of the
oriented incidence matrix Og of graph G over GF'(q). The row space of Og is a
linear code, and so one surprising application of our results is a new formula for
the g-Potts partition function, where q is a prime.

We start with basic definitions. A linear code C of length n and dimension d
over a field F is a linear subspace with dimension d of the vector space F". Each
vector in C is called a codeword. We define a partial order on C as follows: Let
c=(c,...,c"),d=(d',...,d") be codewords of C. Then ¢ < d if ¢ # 0 implies
d#0foralli=1,...,n. A codeword d is minimal if ¢ < d implies ¢ = d for all
c. The weight w(c) of a codeword c¢ is the number of non-zero entries of ¢. The
weight enumerator of a finite code C is defined according to the formula

We(z) == Zazw(c).

ceC

Let C C F™ be a linear code over a field F and let S be a subset of {1,...,n}.
Puncturing a code C along S means deleting the entries indexed by the elements
of S from each codeword of C. The resulting code is denoted by C/S.

A simplex X is the convex hull of an affine independent set V' in RY. The
dimension of X is |V| —1, denoted by dim X. The convex hull of any non-empty
subset of V' that defines a simplex is called a face of the simplex. A simplicial
complex A is a set of simplices fulfilling the following conditions: Every face of
a simplex from A belongs to A and the intersection of every two simplices of
A is a face of both. The dimension of A is max{dim X|X € A}. Let A be a
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d-dimensional simplicial complex. We define the incidence matriz A = (A;;) as
follows: The rows are indexed by (d — 1)-dimensional simplices and the columns
by d-dimensional simplices. We set
{1 if (d — 1)-simplex i belongs to d-simplex j,
Ajj = ]

0 otherwise.
This chapter studies 2-dimensional simplicial complexes where each maximal sim-
plex is a triangle or an edge. We call them triangular configurations. The cycle
space of A over a field F, denoted ker A, is the kernel of the incidence matrix A
of A over F, that is {x|Az = 0}. A linear code C is triangular representable if
there exists a triangular configuration A such that C = ker A/S for some set S

and there is a linear mapping between C and ker A which is a bijection and maps
minimal codewords to minimal codewords. For such S we write S = S(ker A, C).

4.1.1 Motivation

Our motivation to study geometric representations of linear codes lies in the
theory of Pfaffian orientation in the study of the Ising problem on graphs. In this
section we use the notation from Loebl and Masbaum [16]. Let G = (V(G), E(G))
be a finite unoriented graph. We say that £’ C FE(G) is even if the graph
(V(G), E') has even degree at each vertex. Let £(G) denote the set of all even
sets of edges of G. The set of all even sets £(G) is called cycle space of graph G.
Note that, graph G is 1-dimensional simplicial complex. Let Ag be its incidence
matrix, then the set of characteristic vectors of the even sets forms the kernel of
Ag over GF(2).

We assume that a variable z. is associated with each edge e, and define the
generating polynomial for even sets, £¢ , in Z[(Z¢)ecr(c)], as follows:

Ea(r) = Z H Te -
E'eE(G) ecE’

Let C be the kernel of the incidence matrix Ag of graph G. Then there is
the following relation between the weight enumerator of C and the generating
polynomial of even sets of G

We(z) = Ea(2)

ze :=1x Ve € E(G)

Next, we describe the equivalence of Ising partition function and the gener-
ating function of even subgraphs. The Ising partition function on graph G is

defined by

Isin Isin,
zE g(ﬁ) =Z. g(x)‘xe — eBle e € E(G)

where the J. (e € E(G)) are weights (coupling constants) associated with the
edges of the graph GG, the parameter [ is the inverse temperature, and

ZgM () = > 1 ag™w.

o:V(G@)—={1,-1} e={u,v}€E(G)
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The theorem of van der Warden [32] (see [15], Section 6.3] for a proof) states that
Z5"8(z) is the same as Eg(x) up to change of variables and multiplication by a
constant factor:

sin; Te + xe_l
ZIG’ g(ZL‘) — 2\V(G')| | | T gG(z) L po—as )
e€E(G) e

The significance of geometric properties of graph G in studying the Ising
partition function ngg(x) and the generating function of the even subsets of

edges of G, Eg(x), is expressed by the following theorem.

Theorem 4.1.1 (Galluccio and Loebl [7]). If G embeds into an orientable surface
of genus g, then the even subgraph polynomial Eg(x) can be expressed as a linear
combination of 49 Pfaffians of matrices constructed from the embedding of G.

4.1.2 Main results

Theorem 4.1.2. Let C be a linear code over a field F, C C F", and let B be a
basis of C such that for each b € B, each entry of b belongs to a cyclic subgroup
G(b) of the additive group of the field F. Then C is triangular representable.
Moreover, if C is finite, then there exists a triangular representation A such that:
if Yot aixt is the weight enumerator of ker A then

m

Wc(l‘) _ Zazx(l mod e)/2’

i=0
where e = (|S(ker A,C)| —n)/dimC.
Corollary 4.1.1. The conclusion of Theorem holds for the linear codes

over rationals and over GF(p), where p is a prime.

Corollary Tl was proved for GF'(2) in Chapter [l On the other hand, we
have the following negative results for the remaining fields.

Theorem 4.1.3. Let C be a linear code over a field F such that every basis B
of C contains a vector b so that its entries f,p do not belong to the same cyclic
subgroup of the additive group of F. Then code C is not triangular representable.

Corollary 4.1.2. Let F be a field different from rationals and GF(p), where p is a
prime. Then there exists a linear code over F that is not triangular representable.

In Chapter[Il for every triangular configuration A, we constructed a triangular
configuration A’ such that there exists a bijection between the cycle space over
GF(2) of A and the set of the perfect matchings of A’. We conjecture that this
result can be extended to other finite fields. Finally, see Section for the
multivariate versions of the above theorems.
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4.1.3 Potts model

We give an application (suggested by Martin Loebl) of our results to the Potts
partition function. The g-Potts partition function of a graph G is defined accord-
ing to the formula

The Hamiltonian H(s) is defined as ) pw(uv)d(s(u),s(v)) where § is Kro-
necker delta and w(uv) is the weight of edge uv. The Potts partition function
is one of the extensively studied functions in statistical physics; see the book by
Loebl [15]. We note that 2-Potts partition function is equivalent to the Ising par-
tition function and that PI(G, x) is also called the multivariate Tutte polynomial
of G; see the survey by Sokal [29].

Theorem 4.1.4. Let G be a connected graph such that all edges of G have the
same weight w. Let q be a prime. Then there exists triangular configuration A
such that if Y ;v a;x" is the weight enumerator of ker A then

Pq<G, .T) H — Z a;x w((i mod e /2)7
quE

where e is a positive integer linear in the number of edges of G.

The case of different weights is treated in Section 4.3.2

4.2 Triangular representations

In this section all computations are done over a fixed field F. Let A;, Ay be
subconfigurations of a triangular configuration A. We denote the set of vertices
of A by V(A), the set of edges by E(A) and the set of triangles by T'(A). The
difference of Ay and Ay, denoted by A; — A,, is defined to be the triangular
configuration obtained from V(A1) U E(A;) UT (A1) \ T(As) by removing the
edges and vertices that are not contained in any triangle in T (A7) \ T'(Az). An
abstract simplicial complex on a finite set V' is a family A of subsets of V' closed
under taking subsets. Let X be an element of A. The dimension of X is | X|—1,
denoted by dim X. The dimension of A is max {dim X|X € A}. Every simplicial
complex defines an abstract simplicial complex on the set of vertices V', namely
the family of sets of vertices of simplexes of A. We denote this abstract simplicial
complex by A(A). The geometric realization of an abstract simplicial complex
A is a simplicial complex A’ such that A = A(A’). It is well known that every
finite d-dimensional abstract simplicial complex can be realized as a simplicial
complex in R?*!1. We choose a geometric realization of an abstract simplicial
complex A and denote it by G(A). Let Ay, Ay be triangular configurations. The
union of Ay, Ay is defined to be Ay U Ay := G(A(A;) U A(A2)). We start with
construction of basic building blocks.

4.2.1 Triangular configuration B"

The triangular configuration B™ consists of n disjoint triangles as is depicted in
Figure 4.1l We denote the triangles of B” by BY,..., B.
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Figure 4.1: Triangular configuration B".

4.2.2 Orientation

An oriented triangular configuration Ais a triangular configuration A with an
assignment o : T(A) — {4, —} of signs to triangles. We denote the subset of

triangles {t € T(A)[o(t) = +} by [&} _and {t € T(A)|o(t) = ~} by [&} -

4.2.3 Oriented tunnel T

An empty triangle is a set of three edges forming a boundary of a triangle.
The oriented tunnel T is defined by Figure The oriented tunnel has

Figure 4.2: Oriented triangular tunnel T

two empty triangles {a,b,c} and {1,2,3}. The empty triangle {a,b, c} is called
positive end of the tunnel, and the empty triangle {1, 2,3} is called negative end.
A tunnel is obtained from oriented tunnel by deleting the signs.

Proposition 4.2.1. Let T be a tunnel and let v = (vt)teT(T) be a vector whose
entries are indexed by triangles of T satisfying: For each inner edge e, Y ., v" =
0. Then v'* = v = v and v" = v = v, where for f € {a,b,¢,1,2,3}, t;
denotes the triangle of T containing the edge f. Moreover, vie = —p'. O

4.2.4 Linking triangles by oriented tunnel

Let A be an oriented triangular configuration. Let #; and ¢5 be two edge disjoint
triangles of A.

The link from #; to t5 in A is the oriented triangular configuration A defined
as follows. Let T be an oriented triangular tunnel as in Figure @2 Let ¢!, ¢2, t3
and t3, 2,13 be edges of t; and t,, respectively. We relabel edges of T such that
{a,b,c} = {t}, 2,63} and {1,2,3} = {3, 42, 3}. Welet A" := AUT.
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Note that, the link has a direction, the triangle ¢, is incident with the positive
end of T in A/ , and t, is incident with the negative end of T in A.

Analogously, we define linking from t; to ¢, of edge disjoint ¢1,ty where at
least one of 1, t5 is an empty triangle of A.

Further, if A is (non-oriented) triangular configuration and ¢;,t, are edge
disjoint triangles, then link from ¢, to t, is defined as above, but replacing oriented
tunnel by tunnel.

4.2.5 Triangular configuration AS

Let C be a linear code of length n and dimension d over a field F. Let B =
{b1,...,bq} be a basis of C. We say that a basis B is representable if for each
b € B each entry of b belongs to a cyclic subgroup G(b) of the additive group of
the field F. In this section we suppose that the linear code C has a representable
basis B. This is used in the key Proposition bellow. We construct the
triangular configuration A% as follows. First, for every basis vector b we construct
a triangular configuration AY. Then, the triangular configuration A% is the union
of AY, b€ B.

Triangular configuration A¢

Figure 4.3: AY represents a basis vector (b',0,...,6"10) of C.

Proposition 4.2.2. LetF be a field. Let ay,as, ..., ar be a subset of distinct non-
zero elements of a cyclic subgroup G of the additive group of F. Letn be a positive
integer. Then there exists a triangular configuration M such that dim ker M =
1 and there exists a vector v € ker M having ai,as,...,a, among its entries.
Moreover, the vector v contains each entry a; at least n times and v is non-zero
on all entries.

The proof is postponed to Section L.2.7. We recall that b is a basis vector of
a representable basis B and that the length of C is n. Let b = (b, 5%,...,b") and
let aq, as, ..., ax be all different entries of b. Let M(b) and v(b) = (vt)teT(M(b)) (b)
be a triangular configuration and a vector provided by Proposition Next,
we construct AS. We proceed in three steps. In the first step, the construction
starts from B™ U M(b). See Section [£.2.1] for definition of B™.
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In the second step, we make the following tunnels. Let J(b) be the set of
indices of non-zero entries of b. Let g be an injection g : J(b) — T (M(b)) such
that Vj € J(b),v(b)99) = b. We note that g exists since the multiplicity of each
a; in b is at most n. For each j € J(b) we create link by tunnel from the triangle
g(j) to the triangle B

In the third step, we remove the triangles g(j), 7 € J(b), from A§. An example
of AY for b= (b',0,...,b"1,0) is depicted in Figure

Proposition 4.2.3. The dimension of ker A is equal to 1. Moreover, there exists
a generator u(b) of ker AS such that u(b)?’ = b for j =1,...,n and u(b)* # 0
for allt € T(AS — B").

Proof. By Proposition £.2.2] the dimension of ker M(b) is 1. The triangular
configuration A§ is obtained from M (b) U B™ by linking some disjoint triangles
of B" by tunnel to some triangles of M(b) and by removing triangles of Mb)
that are linked by a tunnel. Hence, the dimension of ker A¢ is 1.

Let u be a vector from ker M (b) given by Proposition 2.2l If entry & is non-
zero, in construction of M(b) we link the triangle B} with a triangle ¢ of T (M (b))
such that v’ = b; and then we remove triangle ¢. Therefore by Proposition E2.1]
we can extend vector u to u(b) such that u(b)®’ = &7. If entry V¥ is zero, then
triangle B is isolated. Therefore, u(b)? = 0.

The vector u given by Proposition[4.2.2] is non-zero on all entries. By Proposi-
tion 4.2.], all entries indexed by triangles of tunnels linked to M (b) are non-zero.
Hence, u(b)! # 0 for all t € T(AS — B"). O

Construction of A§

Figure 4.4: An example of a triangular configuration AG, where B = {by,...,bq}.

Triangular configurations A§, b € B, share only triangles of B™. Hence,
A(AS) N A(AS) = A(B,) holds for b # b'; b,V € B.
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The triangular configuration A% is the union of A, b € B. An example of a
triangular configuration A is depicted in Figure 4l

We define the following vectors of ker AG. The vector gen(A¢) is defined as
gen(A§)t := u(b)t for t € T(AY) and gen(A§)t := 0 for t € T(AG — Af). As a
corollary of Proposition [£.2.3] we get:

Corollary 4.2.1. Each entry of vector gen(AS) is non-zero on each entry indexed
by a triangle of A — B™. Moreover, the vectors gen(AY), b € B, are linearly
independent. O

Definition 4.2.1. We define a linear mapping f: C + ker A% in the following
way: Let ¢ be a codeword of C and let ¢ = ), 5 apb be the unique expression
of ¢, where oy, € F. We define f(c) := >, 5 apgen(AY). The entries of f(c) are
indexed by the triangles of AG. Let R = {1,...,n} be the set of coordinates of
C. We define an injection p: R — T(A) as: p(i) = B fori=1,...,n.

Proposition 4.2.4. Denote |T (AG)| by m. Let ¢ = (c!,...,c") and

fle) = (F@™, ... FOP fle" o fO™)
Then f(c)% = ¢ forallj=1,...,n and all ¢ € C.

Proof.
O =3 ay gen(A%) .

beB

By Proposition 2.3 and by definition of gen(A$),

Zab gen(A$)P = ZabbB? =,

beB beB

O
Corollary 4.2.2. The linear mapping f is injective. U

Lemma 4.2.1. For each non-zero vector w of ker A there exists b € B and
vy # 0 such that w' = v, gen(AS$) for all t € T(AS — B™).

Proof. The kernel ker B" is (), since the triangles of B™ are disjoint. Therefore,
every non-zero vector w € ker A® has a non-zero element w! # 0 indexed by a
triangle t € T(A§ — B™) for some b € B.

Let j be an index such that & # 0. Let t;,t5,t3 be three triangles of A¢
touching edges of B}. Then by proposition £2.T], w" = w" = w". By Propo-
sition 2.3 the dimension of A§ is 1. Hence, there is a non-zero scalar -y, such
that w® = v, gen(A§)! for all t € T(A§ — B).

O

Theorem 4.2.2. Let C be a linear code with a representable basis B and let A,
be the triangular configuration from this section. Then C = ker A /S, where S
is a set of indices. Moreover, the linear mapping f defined above is a bijection
between the linear code C and ker AG which maps minimal codewords to minimal
codewords.
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Proof. By Proposition E2.4] the code C equals ker A%/S, where S is the set of
triangles of AG — B™.

By Corollary 4.2.2] the mapping f is injective. It remains to be proven that
dim C = dimker AG. We show that every codeword w of ker A% is in the linear
span of {f(b)|b € B}. Let B(w) be the following set of basis vectors {b € B|3t €
T(AY — B™) such that w' # 0}. By Lemma [£21] the set B(w) is not empty.
By Lemma E2.T] vector w — ), Bw) Wb gen(AY) is non-zero only on coordinates
indexed by triangles of B". Since ker B" = (), vector w — EbeB(w) vy gen(AY) is
0. Hence, the vector w is in the span of {f(b1),..., f(ba)}

Finally, we show that f maps minimal codewords to minimal codewords. Re-
call a partial order on C. Let r = (rl,...,7"),s = (s!,...,s") be codewords
of C. Then r < s if 7* # 0 implies s* # 0 for all « = 1,...,n. A codeword
s is minimal if r < s implies » = s for all r. Let s be a minimal codeword.
Suppose on the contrary that f(s) is not a minimal codeword of ker AS. Then
f(r) < f(s) for some codeword r. Therefore, for all j = 1,...,n; f(r)%" #0
implies that f(s)? # 0. By Proposition £24, 17 = f(r)% and s’ = f(s)?/, for
all j = 1,...,n. Hence, r/ # 0 implies that s/ # 0, for all j = 1,...,n. Thus,
r < s. This is a contradiction. O

4.2.6 Balanced triangular configuration AS,

A triangular configuration A% is balanced if there is an integer e such that
‘T (Ag)‘ —w(b) = e for all b € B. This e is denoted by e(A%). A code C is
even if all codewords have an even weight. The following proposition is straight-
forward.

Proposition 4.2.5. ¢(AS) = |T (A§ — B")| /dimC O

Proposition 4.2.6. Let C' be an even linear code with a representable basis
B = {by,...,bs}. Let n be an integer. Then there exists a balanced triangu-
lar configuration A% such that n < e(A%).

Proof. Let A% be the triangular configuration from Section 25 Let k; =
1T (AS)| — w(by) for i = 1,...,d. We suppose that ky > ko > --- > ky, if
not, we rename the indices. Every k; is even, since C is even.

We expand the parts of AG by the following algorithm. First, we define two
steps. Let A be a triangular configuration. Step A: We choose a triangle of A and
subdivide it in the way depicted in Figure 4.6l This step increases the number
of triangles of A by 6. Step B: We choose two triangles of A connected by an
edge of degree 2 and subdivide them in the way depicted in Figure 4.7l This step
increases the number of triangles of A by 4.

We initialize the set I to {1}, then we apply the following procedure while
the set I # {1,...,d}.

Let 7 be the smallest index not in I. We repeatedly apply step A to Agi - B"
until k; < kiy — 6. Then, if k; = k;_y — 4, we apply step B to Af — B". If
ki = k;_1 — 2, we apply step B to Agj — B" for every j € I, and step A to
Agi — B™. Then, we put the index ¢ to I and repeat these steps.

Note that, we can apply step B to Agj — B™ only if it contains two triangles

connected by an edge of degree 2. If triangular configuration Agj — B" does not
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contain an edge of degree 2, we apply step A to Agi — B" forevery i =1,....,d.
Then, Agj — B" contains two triangles connected by an edge of degree 2.

After this procedure, we have a balanced triangular configuration A%. If
e(A%) < n, we repeatedly apply step A on Agi — B" for every i = 1,...,d unless
e(AS) > n.

O

Let ¢ be a codeword of C and let ¢ = ), apb be the unique expression of
¢, where oy € F. The degree of ¢ with respect to a basis B is defined to be the
number of non-zero «y’s. The degree is denoted by d(c).

Proposition 4.2.7. Let C be an even finite linear code over a field F with a
representable basis B and let A be a balanced triangular configuration provided
by Proposition [[.2.6 and let f : C — ker A be the linear mapping from Defini-
tion[{.2.1. Then w(f(c)) = w(c) + d(c)e(AS) for every codeword c € C.

Proof. Write ¢ as Y, g apb. Then, f(c) = > ,.pargen(Af). Let I be the set
of basis vectors b such that a; # 0. By Corollary 2] vector f(c) has non-
zero elements indexed by triangles of AY — B" for all b € I. The number of
these triangles is d(c)e(A%), since ’T (A — B”)’ = e(A§) for all b € I and
|I| = d(c). By Proposition B2Z4, f(c)% = ¢/ for j = 1,...,n. Hence, the
number of non-zero coordinates indexed by triangles of B™ is w(c). Therefore,
w(f () = w(c) + d(c)e(AR). a

4.2.7 Proof of Proposition [4.2.2]

Oriented triangular sphere Sm

v/

bottom

Figure 4.5: Oriented triangular sphere S8,

In this section we give a proof of Proposition The oriented triangular
sphere S™ is a triangulation of a 2-dimensional sphere by m triangles, such that
there is an assignment of sign '+’ and '—’ to triangles and every edge is incident
with one '+’ triangle and one '—’ triangle. An example is depicted in Figure
for m = 8.

Proposition 4.2.8. Let F be a field and let a be a non-zero element of F. Then
ker 8™ = span({(a, —a, a,—a,...,a,—a)}). O

Proposition 4.2.9. Let k,l be non-negative integers. Then there exists the ori-
ented triangular sphere 8™ with m = 8 4 61 + 4k triangles.
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Figure 4.6: Triangle subdivision

AN
\V4

Figure 4.7: Triangles subdivision

Proof. We construct the desired sphere S™ from the sphere 6?8, depicted in Fig-
ure .5 by sequentially subdividing triangles of &% in the way depicted in Fig-
ure or [L.7 These subdivisions increase the number of triangles by 4 or by
6.

O

M

Oriented triangular multisphere ./\7lm7n2,___,nk

In this subsection we construct the oriented triangular configuration which we
call oriented triangular multisphere. We note that an important property of the
oriented triangular multisphere which we use is that it has an even number of
triangles. In the construction of oriented triangular multisphere we proceed in
four steps.

Step 1. Let ny,no, ..., n; be distinct positive integers and let M be an integer.
We start with oriented triangular configuration

My =81 Uty Uty USy Uty Uthy U+ Uteoiye Uty U S

where Z;(i11), t;(i“l are empty triangles, ¢ = 1,...,k — 1; and ‘S_'; is oriented
triangular sphere 8™ (see Sectiond.2.7)) such that m > 4n; and m > 2M for every
1=1,...,kandevery j =1,..., k. If k equals 1, the triangular multisphere M%

is S;. Recall that an empty triangle is a set of three edges forming a boundary
of a triangle.
Step 2. We make the following links between the triangles of M;. For every

1=1,...,k—1; we choose n;; different triangles of [Zﬂ (for this notation see
Section .2.2)) and create the link by the tunnel from empty triangle ;1) to each

chosen triangle. Then, we choose n; different triangles of [«5?(”1)} and create
Jr
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Figure 4.8: Triangular multisphere M%717___7472

the link by the tunnel from each chosen triangle to empty triangle ¢;;,1). Then,
we delete the triangles of [51] and [@Hl)] that we linked with a tunnel from
Jr

M. We denote the resulting triangular configuration by M,.
Step 3. To achieve the even number of triangles of the multisphere we make
the following links between the triangles of Msy. For every ¢+ = 1,...,k — 1;

we choose n;,; different triangles of [5’;} and create the link by the tunnel

from empty triangle ¢ ) to each chosen triangle. Then, we choose n; different

(i+1
triangles of [gS?(iH)] and create the link by the tunnel from each chosen triangle
+

to empty triangle ¢ Finally, we delete the triangles of [51} and [g(iﬂ)]
Jr

(i+1)
that we linked with a tunnel from Ms. The resulting triangular configuration is

oriented triangular multisphere M} .

Step 4. Forevery 1 =1,..., k—1, we denote by fl the triangular configuration
consisting of all the tunnels linked to oriented triangular sphere S; in steps 2,3.

We denote the set of triangles [5’;} U [T;} by [Man - nk} and the set of
+ + R +i
triangles [51} U [ﬁ] B by [M%m _____ m| An example of M is depicted

in Figure 4.8
Proof of Proposition[4.2.3. Let g be a generator of G and let n; be such that

a; =n; X g =¢g+g+---+g. We show that the desired configuration M is
oriented triangular multisphere M2/ na....my,> Where M = n. First, we need to show
that there is a vector v € ker M with entries containing the elements ay, as, . . ., ax.

We construct such vector v by setting coordinates indexed by the triangles of

[./\71] (recall step 4 above) to a; and coordinates indexed by the triangles of
+i
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[./\71] to —a; fori=1,... k.

Now, we show that the vector v belongs to ker M. Let e be an edge different
from the edges of empty triangles #;;1) and t;(i 1) Then the edge e is incident
with two triangles and the equation indexed by e is a; —a; = 0. Let e be an edge

of an empty triangle #;;;1) or t;(i 1) Then the edge e is incident with n; triangles

—

from [M and n;,; triangles from [/\71] . S0, the equation indexed by e is

} —(i+1) +i

Niy1 X @ — Ny X Qi1 = Nyjgp1 X (nl X g) —n; X (niH X g) =0.

Hence, the vector v belongs to ker M.
A triangle path is a sequence of triangles ty, ..., ¢, such that ¢; and ¢;,; have
a common edge, for every i = 1,...,k — 1. Next, we prove a claim.

Claim 4.2.3. Let e be an edge of M. Let t1,...,tq be triangles incident with e
in any order. Let v be a vector from ker M. Then the entries of v indezed by
ta, ..., tq are determined by the entry indexed by t;.

Proof of Claim [4.2.3l If e is neither an edge of an empty triangle #;;1) nor
t;(i 1) then the edge e has degree 2 and the lemma follows.

Suppose that e is an edge of an empty triangle #;;4.1) or t;( The entries

i+1)°
indexed by the triangles that belong to [/\7(} have the same value, since they

are connected by a triangle path such that ez;clh inner edge of the triangle path
has degree 2 in M. The same holds for the entries indexed by the triangles of

[/\71] ' Without loss of generality we can suppose that ¢; belongs to [,/\71]
+(i+1

and let ¢; be an element of {ts,...,%;} that belongs to [./\71} i) Let v; be the
entry of v indexed by ¢; and let v; be an entry indexed by ¢;. If v; ¢ G, we
choose an appropriate scalar o € I such that av; € G and set v := av. Then the
following equation holds
Nit1 X V1 = n; X U. (4.1)
We show that there is only one solution v;. We use the fact that every cyclic
subgroup G of the additive group of the field ' has a prime or an infinite order.
In the case of an infinite order, Equation [4.1] has only one solution v;. In the case
of a prime order, since the integers n; and n;,; do not divide the group order and
by Lagrange’s theorem, Equation [4.1] has only one solution v;. End of proof of
Claim [4.2.3|.
Finally, we prove the proposition. Since there is a triangle path between any
two triangles of M and by the above lemma, the dimension of the kernel ker M
is 1. From the definition of the vector v, all entries of v are non-zero. O

4.3 Weight enumerator

In this section, we state the connection between the weight enumerators of finite
linear codes and the weight enumerators of their triangular representations.
We define the extended weight enumerator (with respect to a fixed basis) by

WE(z) = Z 2.
ceC
d(c)=k
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If a code C has dimension d, then

Recall that a basis B is representable if for each b € B each entry of b belongs
to a cyclic subgroup G(b) of the additive group of the field F. A code C is even
if all codewords have an even weight.

Proposition 4.3.1. Let C be an even finite linear code with a representable basis
B and let AS, be a balanced triangular configuration provided by Proposition[7.2.0.
Then .
k _ ik ke(AS,)
Wi, A%(90) We (x)z"\ 28,

Proof. Let f be the mapping from Definition 2.1l For every codeword ¢ of
degree k of C there is codeword f(c) of degree k of ker AS. By Proposition E2.7],
w(f(c)) = w(c) + ke(AS). Therefore,

Wik ag (%) = PR FUEHhe(AG) — Yk () ke(AF).
f(c)e€ker AC ceC
d(f(e)=k d(c)=k

O

Proposition 4.3.2. Let C be an even finite linear code of length n with a rep-
resentable basis B and let A be a balanced triangular configuration provided by
Proposition [{.2.6. Then the inequality ke(AS) < w(d) < ke(A) +n holds for
every codeword d of degree k of ker AG,.

Proof. Let f be the mapping from Definition @21l By Proposition L2.7, w(d) =
w(f~1(d)) + ke(A%). Since 0 < w(f~1(d)) < n for every d € ker AG, the inequal-
ity ke(A%) < w(d) < ke(A%) 4 n holds. 0O

Corollary 4.3.1. Let C be an even finite linear code of dimension d and length
n with a representable basis B and let A be a balanced triangular configuration
provided by Proposition [[.2.0 such that n < e(AS). Denote e(AS) by e. Let
Z?SOL" a;z’ be the weight enumerator of ker AG. Then

ke+n
k _ i
Wier ag, (x) = g a;x'. O

i=ke

Theorem 4.3.1. Let C be an even finite linear code of dimension d and length
n with a representable basis B and let AG be a balanced triangular configuration
provided by Proposition [{.2.6 such that n < e(A$). Denote e(A$) by e. Let
Zf:orn a;z" be the weight polynomial of ker AG. Then

de+n
Wc(ﬂf) _ Z a; " mod e
1=0
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Proof. The inequality w(c) < n holds for every codeword ¢ € C. Let f be the
mapping from Definition 211 By Proposition 27 w(f(c)) = w(c) + d(c)e for
every codeword c of C. Since n < e, the following equality holds.

w(f(c)) mod e = (w(c) + d(c)e) mod e = w(c).

Hence,
de+n

We(x) = Z a;xtmede,

1=0

4.3.1 Proof of Theorem [4.1.2
The double code, denoted by C?, of a linear code C of length n is the code

62:{(cl,...,c”,cl,...,c") :CEC’}.

Proposition 4.3.3. Let C be a linear code and let C* be its double code. Then,
the double code C? is even and the code C is a punctured code of its double code
C? and there is a linear bijection between C and C? that maps minimal codewords
to minimal codewords and We(x) = Wea (27). O

Proof of Theorem[[.1.3 Let C? be the double code of C. The code C? is even.
Let B? be the basis {(b',...,b",b',...,b")|b € B} of C®. The basis B? is repre-
sentable. Let A%Z be a balanced triangular configuration provided by Proposi-
tion such that e(A%,) > ny, where ny = 2n is the length of C2. We denote
e(A%QQ) by e. By Theorem £2.2] the code C? is equal to ker A%Z/S’ for some set of
indices S’ and there exists a linear bijection f’: C? — ker A%QQ which maps mini-
mal codewords to minimal codewords. By Proposition £.3.3], the code C is equal
to C?/S” where S” = {n +1,...,2n} and there is a linear bijection f”:C s C?
which maps minimal codewords to minimal codewords. Therefore, the code C is
equal to ker A%QQ /(S"U S") and there is a linear bijection f : C + ker A%QQ which
maps minimal codewords to minimal codewords. Hence, the code C is triangular
representable and A%QQ is its triangular representation. We denote A%QQ by A.

By Proposition 2.5 e = |S’|/ dimC?. Let S(ker A,C) = S’ U S”. The cardi-
nality |S”| is equal to n. Hence, e = (|S(ker A,C)| —n)/dim C? = (|S(ker A,C)| —
n)/dimC.

If the code C is finite, the formula for the weight enumerator follows from
Theorem 4.3.1] and from Proposition [£.3.3

O

Proof of Corollary[{.1.1 The additive group of GF(p), where p is a prime, is
cyclic. In the case of rationals, we multiply the basis vectors by a sufficiently
large integer, so that all vectors are integral. Hence, all elements of all basis
vectors belong to the cyclic group of integers. Then, we use Theorem AT1.2. [
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4.3.2 Multivariate weight enumerator

Let C be a linear code of length n. Let R be the set of coordinates of C. The
assignment of variables to coordinates is a mapping A from R to the set of indices

of variables {1, ..., k}. The multivariate weight enumerator of C is
W(g\(xla s 7:L‘k) - Z H Tx@)-
ceC i=1
¢ #0

Theorem 4.3.2. Let C be a finite linear code over a field F, C C F™. Let \ be
an assignment of variables. If C is triangular representable, then there exists a
triangular configuration A and an injection p : {1,...,2n} — T(A) such that: if

§ : 11 .12 ik
Aiig..iy L1 Ty -+ o - Ty,

t1t+ig+-+ip<m

1120,i22>0,...,1, 20

is the multivariate weight enumerator WX A(x1,...,x1) of ker A with the as-
signment of variables N defined: N(t) = Mp=(t)) if t € pu({1,...,n}) and
N(@t) = XMu (t)—n) ift € p({n+1,...,2n}) and N (t) .=k of t & p({1,...,2n}).
Then

A _ (11/2)  (i2/2) (ir—1/2) ((ix mod e)/2)
Wiz, ..., zx) = E Qiig. iy Ty Ty T M g )
iy gt i <m
1120,i22>0,...,i, >0

where e = (|S(ker A,C)| —n)/dimC.

Proof. By Theorem 1.3, the code C has a representable basis B. Let C? be
the double code of C. Let B? be the basis {(b',... 0", b',...,b")|b € B} of C*.
The code C? is even and the basis B? is representable. Let ACB22 be a balanced
triangular configuration provided by Proposition such that e(A%QQ) > ng,
where ny, = 2n is the length of C2. The desired configuration A is ACB22. We
denote e(A) by e. By Theorem 2.2 the code C? is equal to ker A/S’ for some
set of indices S’. By Proposition 3.3, the code C is equal to C*/S” where
S" = {n+1,...,2n}. Therefore, the code C is equal to ker A/(S" U S”). By
Proposition 2.5, e = |S’|/ dim C?. Let S(ker A,C) = S’US”. The cardinality |S”|
is equal to n. Hence, e = (|S(ker A,C)| —n)/dimC? = (|S(ker A,C)| —n)/ dim C.

We define an assignment of variables of C? in the following way: \’(i) :=
N'(n+1) == A3@) for i = 1,...,n. Let p: {1,...,2n} — T(A) be the injection
from Definition 21l Then, S" = T(A) \ u({1,...,2n}).

The weight of the variable indexed by j in a codeword ¢ with respect to an
assignment of variables A is the number of nonzero coordinates of ¢ assigned
to variable j. We denote this weight by wj»‘(c). Let f : C? — ker A be the
mapping from Definition EEZI By Proposition 24 f(c)! = ¢*'® for t e
pt({1,...,2n}) and ¢ € C®. For j = 1,...,k — 1 we have w]’\'(f(c)) = wj»‘”(c),
since N(t) =k #jforallt € S =T(A)\ p({1,...,2n}) and N (t) = N (u=1(t))
for t € u71({1,...,2n}). The Hamming weight of ¢ satisfies w(c) = Z?Zl w(c)
for arbitrary A. By Proposition 2.7 w(f(c)) = w(c) 4 d(c)e for every codeword
c of C®. From this equation we subtract equations w]’\/(f(c)) = wj)»‘”(c) for j =
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1,...,k—1. Hence, w} (f(c)) = wy (¢) + d(c)e. The inequality w(c) < 2n holds
for every codeword ¢ € C2. Since 2n < e, the following equality holds.

wy (f(e)) mod e = (w} (¢) +d(c)e) mod e = w; (c).

The weights of codewords of a code and its double code satisfy

Qw;\((cl, o dh)) = w;‘,,((cl, et d)
for every j =1,..., k. Hence,
Wy, ... o) = Z iy, 0D 2D i1/ (G mod ©/2)

i1+igtFip<m
1120,222>0,...,3, >0

]
Theorem 4.3.3. Let G be a connected graph and let n be the number of edges of
G. Let E ={ey,...,e,} be the set of edges of G and let w : E v {wy, ..., wi} be

weights of edges of G. Let q be a prime. Then there exists triangular configuration
A and an ingection p: {1,...,2n} — T(A) such that if

. . i1 Zk: 1 Zk
E Qiyig.ipy Ly -+ - Lp_q Ty,
iy +igte i <m
1120,i22>0,...,i, >0

is the multivariate weight enumerator WX A (x1,...,x1) of ker A over GF(q)
with the assignment of variables X' defined: N(t) := i if t € p({1,...,n}) and
wle,1y) = w; ort € p({n+1,...,2n}) and w(e,—1)—n) = w;, and N(t) ==k if
t¢ u({l,...,2n}), then P1(G,x) equals

)

q Z iy g 10172 gk o1 /2) pmwi (i mod €)/2)

T (uv)
HUUGE i1tiot-+ipg<m
1120,i220,...,3,20

where e is a positive integer linear in number of edges of G.

Proof. The proof follows from the following calculations.

H xfw(uv)Pq(G’ ZL‘) _ Z H x(g(s(u),s(v))w(uv)fw(uv)

ekl 5:V—={0,...,q—1} wveE

Let cut(s) be the set of edges uv of G such that s(u) # s(v). Then

Z H T d(s(u),s(v))w(uv)—w(uv) _ Z H —w(uv

5:V—{0,...,q—1} wveFE 5:V—{0,...,q—1} uvecut(s)

The following part of this proof is taken from Galluccio and Loebl [§] and modified
for the multivariate enumerator. Let z be a vector from GF(q)!V(®)! defined as
2y = $(v). Let O¢ be an oriented incidence matrix of G. Then, e € cut(s) if and
only if (O] z). # 0. Hence,

I P S | e

5:V—={0,...,q—1} uvecut(s 2€GF(q)IV (@] (0T 2)yu0
weE(G)
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Let C equals {O%z|z € GF(q)}. Let us define an equivalence on GF(q)!V(©) by
w = z if Ofw = OF%z. Observe that each equivalence class consists of ¢ elements
since OLw = OLz if and only if z — w is a constant vector. Hence,

Z H x—w(uv) _ qz H :L,—w(uv) — qz H 2T WA(uv)

2€GF(q)V(E! (0T 2)4,#0 ceC  cuv#0 ceC  cup#0
weE(Q) wEE(G) weE(G)

= qWe(z™™, . ),

where A is the assignment of variables defined: A(uv) := i if w(uv) = w;, for
i =1,...,k By Corollary &1l C is triangular representable. By Theorem .3.2]
gWa (z=1, ... x~") equals

)

q Z ail’ig...’ikx_wl(il/Q) o x—wk_l(ik_l/Q)x—wk((ik mod e)/2)

i1 +igt+ip<m
1120,i22>0,...,i, >0

where e = (|S(ker A,C)| — |E(G)|)/ dimC.
Theorem M. 1.4] follows from the above theorem.

4.4 Triangular non-representability

In this section we prove a sufficient condition for triangular non-representabi-
lity. We will show that for non-prime fields every construction of triangular
representation fails on very weak condition that a linear code and its triangular
representation have to have the same dimension.

Proof of Theorem[4.1.3 First, we observe that the field F contains a proper sub-
field P. We use the fact that every field contains a prime subfield P isomorphic
to rationals or GF'(q), where ¢ is a prime, and the fact that every two elements
of a prime field belong to a common cyclic subgroup of the additive group of the
prime field.

We can view the field F as a vector space over P. This space can have an
infinite dimension. An element f of F is equal to (f!, f2,...), where fs are
elements of P. We identify the vectors (f*,0,0,...) that have only first non-zero
coordinate with the subfield P. Let f = (f!, f2, f3,...) be an element of F. We
define two projections on the vector space F over P:

M= (f1,0,0,...)

and
> = (0,f2,f3, . ) .

Note that, [f]' € P for all f € F, and [f]*" =0 or [f]*" € F\ P for all f € F.

For a contradiction suppose that the linear code C is triangular representable.
We say that a vector of C is bad if it has two entries which belong to no common
cyclic subgroup. Let A be a triangular representation of C. Let B be a basis of C
with the minimum number of bad vectors. Let b € B be a bad vector. We recall
that each basis B has a bad vector by assumptions of the theorem.
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The bad vector b contains two entries p, f which belong to no common cyclic
subgroup. We can suppose that p belongs to P, otherwise we choose a non-zero
scalar v such that ap € P and replace b by ab in basis B. Then, the entry f
belongs to F \ P.

Let v be a vector from ker A. We define two projections:

and
] = (W', [P, ).

Since every element of the incidence matrix of A is 0 or 1, the projections [v]
and [v]*T of every vector v € ker A belong to ker A.

Since the linear code C is a punctured code of ker A and the codes C and ker A
have the same number of codewords, we can define mapping g from C to ker A
such that ¢ is a punctured codeword of g(c) for every ¢ € C. The mapping g is
linear and bijective.

The set Ba := {g(b)|b € B} is a basis of ker A. The equation g(b) = [g(b)]' +
[g(b)]** holds. Since g(b) contains both entries p and f, both vectors [g(b)]' and
[g(b)]** are non-zero. The vectors [g(b)]! and g[(b)]*" are linear independent.
Hence, one of the vectors [g(b)]! or [¢(b)]** does not belong to span(Ba \ {g(b)}).
We denote this vector by g(b').

Hence, the set {g(b')} U Ba \ {g(b)} is a basis of ker A and the set B’ :=
{V'} U B\ {b} is a basis of C. Now, basis B’ has smaller number of bad vectors
than B, a contradiction with the minimality of B.

1

O

Proof of Corollary[{.1.9. We know that the field IF contains a proper subfield P.
Let p be an element of P and let f be an element of F \ P. By Theorem [£T1.3]
the linear code C' = span({(f,p)}) over F is not triangular representable. O
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