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Automorphism Groups of Graphs

An automorphism of a graph X is a permutation π of the vertices
such that xy ∈ E (X ) if and only if π(x)π(y) ∈ E (X ).
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Automorphism Groups of Graphs

An automorphism of a graph X is a permutation π of the vertices
such that xy ∈ E (X ) if and only if π(x)π(y) ∈ E (X ).

Theorem (Frucht): For each group G there exits a graph X such
that G ∼= Aut(X ).



Trees (TREE)

Probably, the first class of graphs, whose automorphism groups
were studied are trees. Jordan (1869) gave a characterization of
Aut(TREE) in terms of group products (we will see later).

Aut(C) = {Aut(X ) : X ∈ C}



Interval (INT) and Proper (PINT) Graphs

Interval graph is an intersection graph of intervals of the real line.

A proper interval graph is an interval graph that has an intersection
representation with no interval properly containing another.
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Interval graph is an intersection graph of intervals of the real line.
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Interval (INT) and Proper (PINT) Graphs

Interval graph is an intersection graph of intervals of the real line.

A proper interval graph is an interval graph that has an intersection
representation with no interval properly containing another.
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Caterpillars (CATERPILLAR)

Caterpillars are trees with leaves attached to one central path.

It is known that CATERPILLAR = TREE ∩ INT.



Caterpillars (CATERPILLAR)

Caterpillars are trees with leaves attached to one central path.

It is known that CATERPILLAR = TREE ∩ INT.



Circle Graphs (CIRCLE)

Circle graphs are intersection graphs of chords of a circle.

1

2
3

4
5

6

7

8

9

10

12

1
2

3
4

34

5
6

5
6

7 8

7
8

9
10

9 10



Pseudoforests (PSEUDOFOREST)

Each connected component contains at most one cycle.

It is easy to see that PSEUDOFOREST ( CIRCLE.
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Function (FUN) and Permutation (PERM) Graphs

Function graphs are intersection graphs of continuous real-valued
functions on the interval [0, 1].

We get the permutation graphs by considering only linear
functions.
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Inclusions of the Relevant Graph Classes
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Our Results:

(i) Aut(INT) = Aut(TREE) = Aut(PERM)
(Hanlon – 1982; Booth and Colbourn – 1981)

(ii) Aut(connected PINT) = Aut(CATERPILLAR)

(iii) Aut(CIRCLE) = Aut(PSEUDOFOREST)

(iv) We present a general approach for working with Aut(C).
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Aut(INT)



Characterization of Interval Graphs

Theorem (Fulkerson and Gross): A graph X is an interval graph if
and only if there exists ordering of the maximal cliques such that
for every x ∈ V (X ) the maximal cliques containing x appear
consecutively.
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Characterization of Interval Graphs

Theorem (Fulkerson and Gross): A graph X is an interval graph if
and only if there exists ordering of the maximal cliques such that
for every x ∈ V (X ) the maximal cliques containing x appear
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Morphisms Induced by an Automorphism π ∈ Aut(X )
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Action of Aut(X ) on Rep (part 1)
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We can use Aut(R) and Aut(X )/Aut(R) to determine Aut(X ).
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Action of Aut(X ) on Rep (part 2)

C1C2C3C4C5C6
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In this case, the action of Aut(X ) on Rep is transitive.



PQ-trees (Booth and Lueker)
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PQ-trees (Booth and Lueker)
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◮ Two types of internal nodes: P-nodes, Q-nodes. The leaves
correspond to the maximal cliques of an interval graph.
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◮ Two equivalence transformations: arbitrary permutation of the
children of a P-node, reversal of the children of a Q-node.
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◮ A correct consecutive ordering of the maximal cliques is
obtained by taking a left-to-right ordering of the leaves.
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◮ Two types of internal nodes: P-nodes, Q-nodes. The leaves
correspond to the maximal cliques of an interval graph.

◮ Two equivalence transformations: arbitrary permutation of the
children of a P-node, reversal of the children of a Q-node.

◮ A correct consecutive ordering of the maximal cliques is
obtained by taking a left-to-right ordering of the leaves.

◮ All possible consecutive orderings of the maximal are obtained
by applying the equivalence transformations.



Automorphisms of PQ-trees

Each symmetric equivalence transformation of a PQ-tree T is an
automorphism of T . Automorphisms of T form a group.
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Automorphisms of PQ-trees

Each symmetric equivalence transformation of a PQ-tree T is an
automorphism of T . Automorphisms of T form a group.

P

Q

{1, 2, 8} {2, 3, 8} {3, 4, 8}

P

{5, 6, 8} {7, 8}

ε2

Proposition: If T is a PQ-tree representing an interval graph X ,
then Aut(T ) ∼= Aut(X )/Aut(R).



Group Products



Automorphism Groups of Disconnected Graphs
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Automorphism Groups of Disconnected Graphs

X Y

Aut(Y ) = (S2 × S2)⋊ S2 = S2 ≀ S2



Automorphism Groups of Trees (Jordan)

Theorem: If graph X contains ki copies of a graph Xi , then

Aut(X ) = Aut(X1) ≀ Sk1 × · · · ×Aut(Xkn) ≀ Skn .

Theorem (Jordan, 1869): The class Aut(TREE) can be described
inductively:

(a) {1} ∈ Aut(TREE).

(b) If G1,G2 ∈ Aut(TREE), then G1 × G2 ∈ Aut(TREE).

(c) If G ∈ Aut(TREE) and n ≥ 2, then G ≀ Sn ∈ Aut(TREE).
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Automorphism Groups of Interval Graphs

Theorem: The class Aut(INT) can be described inductively:

(a) {1} ∈ Aut(INT).

(b) If G1,G2 ∈ Aut(INT), then G1 × G2 ∈ Aut(INT).

(c) If G ∈ Aut(INT) and n ≥ 2, then G ≀ Sn ∈ Aut(INT).

(d) If G1,G2,G3 ∈ Aut(INT) and G1 ∼= G3, then

(G1 × G2 × G3)⋊ Z2 ∈ Aut(INT).
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Aut(CIRCLE)



Split Decomposition
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Automorphism Groups of Circle Graphs

It is clear that Aut(PSEUDOFOREST) ⊂ Aut(CIRCLE) since each
pseudoforest is a circle graph.

We prove that Aut(PSEUDOTREE) =

⋃

n≥1

Aut(TREE)⋊Dn ∪Aut(TREE)⋊ Zn.

Finally, we prove that each connected circle graph X has
Aut(X ) ∈ Aut(PSEUDOTREE); we use the split decomposition.



Open Problems

What are the automorphism groups of circular-arc graphs?
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What is the precise relationship between universal graph classes
and GI-complete graph classes?



Thank you!

D8 ≀ S∞


