Automorphism Groups of Geometrically Represented Graphs

Peter Zeman joint work with Pavel Klavík

Computer Science Institute of Charles University, Prague, Czech Republic

Symposium on Theoretical Aspects of Computer Science 2015

An automorphism of a graph X is a permutation π of the vertices such that $xy \in E(X)$ if and only if $\pi(x)\pi(y) \in E(X)$.

An automorphism of a graph X is a permutation π of the vertices such that $xy \in E(X)$ if and only if $\pi(x)\pi(y) \in E(X)$.

An automorphism of a graph X is a permutation π of the vertices such that $xy \in E(X)$ if and only if $\pi(x)\pi(y) \in E(X)$.

An automorphism of a graph X is a permutation π of the vertices such that $xy \in E(X)$ if and only if $\pi(x)\pi(y) \in E(X)$.

Theorem (Frucht): For each group G there exits a graph X such that $G \cong Aut(X)$.

Trees (TREE)

Probably, the first class of graphs, whose automorphism groups were studied are trees. Jordan (1869) gave a characterization of Aut(TREE) in terms of group products (we will see later).

 $\operatorname{Aut}(\mathcal{C}) = {\operatorname{Aut}(X) \colon X \in \mathcal{C}}$

Interval (INT) and Proper (PINT) Graphs

Interval graph is an intersection graph of intervals of the real line.

A proper interval graph is an interval graph that has an intersection representation with no interval properly containing another.

Interval (INT) and Proper (PINT) Graphs

Interval graph is an intersection graph of intervals of the real line.

A proper interval graph is an interval graph that has an intersection representation with no interval properly containing another.

Interval (INT) and Proper (PINT) Graphs

Interval graph is an intersection graph of intervals of the real line.

A proper interval graph is an interval graph that has an intersection representation with no interval properly containing another.

Caterpillars (CATERPILLAR)

Caterpillars are trees with leaves attached to one central path.

It is known that CATERPILLAR = TREE \cap INT.

Caterpillars (CATERPILLAR)

Caterpillars are trees with leaves attached to one central path.

```
It is known that CATERPILLAR = TREE \cap INT.
```

Circle Graphs (CIRCLE)

Circle graphs are intersection graphs of chords of a circle.

Pseudoforests (PSEUDOFOREST)

Each connected component contains at most one cycle.

It is easy to see that PSEUDOFOREST \subsetneq CIRCLE.

Pseudoforests (PSEUDOFOREST)

Each connected component contains at most one cycle.

It is easy to see that PSEUDOFOREST \subsetneq CIRCLE.

Function (FUN) and Permutation (PERM) Graphs

Function graphs are intersection graphs of continuous real-valued functions on the interval [0, 1].

We get the permutation graphs by considering only linear functions.

Inclusions of the Relevant Graph Classes

Inclusions of the Relevant Graph Classes

Our Results:

- (i) Aut(INT) = Aut(TREE) = Aut(PERM)
 (Hanlon 1982; Booth and Colbourn 1981)
- (ii) Aut(connected PINT) = Aut(CATERPILLAR)
- (iii) Aut(CIRCLE) = Aut(PSEUDOFOREST)
- (iv) We present a general approach for working with $Aut(\mathcal{C})$.

Inclusions of the Relevant Graph Classes

Our Results:

- (i) Aut(INT) = Aut(TREE) = Aut(PERM)
 (Hanlon 1982; Booth and Colbourn 1981)
- (ii) Aut(connected PINT) = Aut(CATERPILLAR)
- (iii) Aut(CIRCLE) = Aut(PSEUDOFOREST)
- (iv) We present a general approach for working with $Aut(\mathcal{C})$.

$\operatorname{Aut}(\mathsf{INT})$

Morphisms Induced by an Automorphism $\pi \in Aut(X)$

We can use $\operatorname{Aut}(\mathcal{R})$ and $\operatorname{Aut}(\mathcal{X})/\operatorname{Aut}(\mathcal{R})$ to determine $\operatorname{Aut}(\mathcal{X})$.

We can use $\operatorname{Aut}(\mathcal{R})$ and $\operatorname{Aut}(\mathcal{X})/\operatorname{Aut}(\mathcal{R})$ to determine $\operatorname{Aut}(\mathcal{X})$.

We can use $\operatorname{Aut}(\mathcal{R})$ and $\operatorname{Aut}(\mathcal{X})/\operatorname{Aut}(\mathcal{R})$ to determine $\operatorname{Aut}(\mathcal{X})$.

We can use $\operatorname{Aut}(\mathcal{R})$ and $\operatorname{Aut}(\mathcal{X})/\operatorname{Aut}(\mathcal{R})$ to determine $\operatorname{Aut}(\mathcal{X})$.
Action of Aut(X) on \mathfrak{Rep} (part 2)

In this case, the action of Aut(X) on $\Re ep$ is transitive.

Two types of internal nodes: P-nodes, Q-nodes. The leaves correspond to the maximal cliques of an interval graph.

- Two types of internal nodes: P-nodes, Q-nodes. The leaves correspond to the maximal cliques of an interval graph.
- Two equivalence transformations: arbitrary permutation of the children of a P-node, reversal of the children of a Q-node.

- Two types of internal nodes: P-nodes, Q-nodes. The leaves correspond to the maximal cliques of an interval graph.
- Two equivalence transformations: arbitrary permutation of the children of a P-node, reversal of the children of a Q-node.
- A correct consecutive ordering of the maximal cliques is obtained by taking a left-to-right ordering of the leaves.

- Two types of internal nodes: P-nodes, Q-nodes. The leaves correspond to the maximal cliques of an interval graph.
- Two equivalence transformations: arbitrary permutation of the children of a P-node, reversal of the children of a Q-node.
- A correct consecutive ordering of the maximal cliques is obtained by taking a left-to-right ordering of the leaves.
- All possible consecutive orderings of the maximal are obtained by applying the equivalence transformations.

Proposition: If T is a PQ-tree representing an interval graph X, then $\operatorname{Aut}(T) \cong \operatorname{Aut}(X)/\operatorname{Aut}(\mathcal{R})$.

Group Products

 $\operatorname{Aut}(Y) = (\mathbb{S}_2 \times \mathbb{S}_2) \rtimes \mathbb{S}_2 = \mathbb{S}_2 \wr \mathbb{S}_2$

Theorem: If graph X contains k_i copies of a graph X_i , then

$$\operatorname{Aut}(X) = \operatorname{Aut}(X_1) \wr \mathbb{S}_{k_1} \times \cdots \times \operatorname{Aut}(X_{k_n}) \wr \mathbb{S}_{k_n}.$$

Theorem (Jordan, 1869): The class Aut(TREE) can be described inductively:

Theorem: If graph X contains k_i copies of a graph X_i , then

$$\operatorname{Aut}(X) = \operatorname{Aut}(X_1) \wr \mathbb{S}_{k_1} \times \cdots \times \operatorname{Aut}(X_{k_n}) \wr \mathbb{S}_{k_n}.$$

Theorem (Jordan, 1869): The class Aut(TREE) can be described inductively:

Theorem: If graph X contains k_i copies of a graph X_i , then

$$\operatorname{Aut}(X) = \operatorname{Aut}(X_1) \wr \mathbb{S}_{k_1} \times \cdots \times \operatorname{Aut}(X_{k_n}) \wr \mathbb{S}_{k_n}.$$

Theorem (Jordan, 1869): The class Aut(TREE) can be described inductively:

Theorem: If graph X contains k_i copies of a graph X_i , then

 $\operatorname{Aut}(X) = \operatorname{Aut}(X_1) \wr \mathbb{S}_{k_1} \times \cdots \times \operatorname{Aut}(X_{k_n}) \wr \mathbb{S}_{k_n}.$

Theorem (Jordan, 1869): The class Aut(TREE) can be described inductively:

Theorem: If graph X contains k_i copies of a graph X_i , then

 $\operatorname{Aut}(X) = \operatorname{Aut}(X_1) \wr \mathbb{S}_{k_1} \times \cdots \times \operatorname{Aut}(X_{k_n}) \wr \mathbb{S}_{k_n}.$

Theorem (Jordan, 1869): The class Aut(TREE) can be described inductively:

Automorphism Groups of Interval Graphs

Theorem: The class Aut(INT) can be described inductively:

(a)
$$\{1\} \in \operatorname{Aut}(\mathsf{INT}).$$

(b) If $G_1, G_2 \in Aut(INT)$, then $G_1 \times G_2 \in Aut(INT)$.

- (c) If $G \in Aut(INT)$ and $n \ge 2$, then $G \wr \mathbb{S}_n \in Aut(INT)$.
- (d) If $G_1, G_2, G_3 \in Aut(INT)$ and $G_1 \cong G_3$, then

 $(G_1 \times G_2 \times G_3) \rtimes \mathbb{Z}_2 \in \operatorname{Aut}(\mathsf{INT}).$

Automorphism Groups of Interval Graphs

Theorem: The class Aut(INT) can be described inductively:

(a)
$$\{1\} \in \operatorname{Aut}(\mathsf{INT}).$$

(b) If $G_1, G_2 \in Aut(INT)$, then $G_1 \times G_2 \in Aut(INT)$.

- (c) If $G \in Aut(INT)$ and $n \ge 2$, then $G \wr \mathbb{S}_n \in Aut(INT)$.
- (d) If $G_1, G_2, G_3 \in Aut(INT)$ and $G_1 \cong G_3$, then

$$(G_1 \times G_2 \times G_3) \rtimes \mathbb{Z}_2 \in \operatorname{Aut}(\mathsf{INT}).$$

Aut(CIRCLE)

It is clear that $Aut(PSEUDOFOREST) \subset Aut(CIRCLE)$ since each pseudoforest is a circle graph.

We prove that Aut(PSEUDOTREE) =

$$\bigcup_{n\geq 1} \operatorname{Aut}(\mathsf{TREE}) \rtimes \mathbb{D}_n \cup \operatorname{Aut}(\mathsf{TREE}) \rtimes \mathbb{Z}_n.$$

Finally, we prove that each connected circle graph X has $Aut(X) \in Aut(PSEUDOTREE)$; we use the split decomposition.
What are the automorphism groups of circular-arc graphs?

What is the precise relationship between universal graph classes and GI-complete graph classes?

Thank you!

 $\mathbb{D}_8\wr\mathbb{S}_\infty$