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Intersection Graphs

Theorem (Frucht): For every group G there exists a graph X such
that G ∼= Aut(X ).

Let C be a class of graphs. We investigate

Aut(C) =
{

G ∼= Aut(X ) : ∃X ∈ C
}

.

Trees (TREE) are probably the first class of graphs whose
automorphism groups were studied. Jordan characterized
Aut(TREE) in 1869.

An intersection representation of a graph X assigns a set Rx to
every vertex x ∈ V (X ) such that Rx ∩Ry 6= ∅ if and only if
xy ∈ E (X ).

Many interesting and important classes of intersection graphs are
obtained by restricting the sets Rx to some geometric objects.
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A mapM is an embedding of a graph X into a surface (for
simplicity let us assume that it is orientable) such that every face is
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◮ π is an automorphism of the mapM,

◮ π is an morphism of the mapM into a mapM′.
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A mapM is an embedding of a graph X into a surface (for
simplicity let us assume that it is orientable) such that every face is
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For every automorphism π ∈ Aut(X ), one of the following holds:

◮ π is an automorphism of the mapM,

◮ π is an morphism of the mapM into a mapM′.

Typically, the automorphism group of the map Aut(M) is not
complicated and it is a subgroup of Aut(X ).
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Action of the Group Aut(X ) on Rep(X )

For every X ∈ C, the group Aut(X ) acts on the set of its
geometric intersection representations Rep(X ).

R R′

The stabilizer of a representation R is denoted by Aut(R) and it
contains the automorphisms of the representation R.

To understand the morphisms between the individual
representations, we need to understand the structure of all
geometric representations.

If this structure is strong enough, we can understand the
morphisms between representations and determine Aut(X ).
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Interval (INT) and unit interval graphs (UNIT INT)

Interval graphs are intersection graphs of intervals of the real line.

Unit interval graphs are interval graphs which have a
representation with every interval of length one.
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A Characterization of Interval Graphs

Theorem (Fulkerson a Gross): A graph X is an interval graph if
and only if there exists an ordering of its maximal cliques such that
for each vertex x ∈ V (X ), the maximal cliques containing x appear
consecutively.
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Morphisms Induced by an Automorphism π ∈ Aut(X )
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The Action of Aut(X ) on Rep(X )
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From Aut(R) and Aut(X )/Aut(R), we can determine Aut(X ).
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PQ-trees (Booth and Lueker)

3 4 7 8 11 12

6
5

2
1

10
9

C1 C2 C3 C4 C5 C6

Q

P
C1 C2 C5 C6

C3 C4

Theorem:

Aut(INT) = Aut(TREE)

Aut(UNIT INT) = Aut(CATERPILLAR)



Comparability graphs



Comparability graphs

Comparability graphs (COMP) are graphs whose edges can be
transitively oriented (x → y a y → z =⇒ x → z).
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Comparability graphs

Comparability graphs (COMP) are graphs whose edges can be
transitively oriented (x → y a y → z =⇒ x → z).

1 2 3

4 5 6

L1 L2 L3

2

3

4

1

5

6

1

3

5

2

4

6

1

2

6

3

4

5

We denote the class of comparability graphs of dimension at most
k by k-DIM. We obtain an infinite hierarchy of graph classes:

1-DIM ( 2-DIM ( · · · ( k-DIM ( · · · ( COMP.



Function and Permutation Graphs

Function graphs (FUN) are intersection graphs of continuous
real-valued functions defined on the interval [0, 1].

We get the permutation graphs (PERM) as intersection graphs of
linear functions.
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Function and Permutation Graphs

Function graphs (FUN) are intersection graphs of continuous
real-valued functions defined on the interval [0, 1].

We get the permutation graphs (PERM) as intersection graphs of
linear functions.
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The following relations are well-known:

FUN = co-COMP,

PERM = 2-DIM = COMP ∩ co-COMP.
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Modular Decomposition and the Modular Tree

A set of vertices M ⊆ V (X ) is called a module of X if every vertex
x /∈ M is either adjacent to all the vertices in M, or none of them.

The decomposition stops on prime graphs (graphs having only
trivial modules) and degenerate graphs (a clique or an independent
set). Gallai proved that the resulting modular tree is unique.
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Automorphism of a modular tree are automorphisms of the graph
preserving the types of vertices and edges.
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Lemma: If T is a modular tree of X , then Aut(T ) ∼= Aut(X ).

A Recursive Formula:

Aut(T ) ∼=
(

Aut(T1)× · · · ×Aut(Tk)
)

⋊Aut(R).
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The Action of Aut(X ) on the Transitive Orientations

Every automorphism of X induces a permutation of its transitive
orientations.

If X is a permutation graph, then the group Aut(X ) acts on the
pairs (→,→), where → is a transitive orientation of X and → is a
transitive orientation of X .
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The Action of Aut(X ) on the Transitive Orientations

Every automorphism of X induces a permutation of its transitive
orientations.

If X is a permutation graph, then the group Aut(X ) acts on the
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The automorphism group of a prime permutation graph is a
subgroup of Z2 × Z2.



The Action of Aut(X ) on Rep(X )

1 2 3 4 5 6

3 5 1 6 2 4

3 5 1 6 2 4

1 2 3 4 5 6

4 2 6 1 5 3

6 5 4 3 2 1

6 5 4 3 2 1

4 2 6 1 5 3

Lemma: The action of Aut(X ) on the representations of a
permutation graph X has only trivial stabilizers. The structure of
all representations is captured by the modular tree.



A Characterization of Aut(PERM)

Theorem: The groups in Aut(PERM) can be described inductively:

(a) {1} ∈ Aut(PERM).

(b) G1,G2 ∈ Aut(PERM) =⇒ G1 × G2 ∈ Aut(PERM).

(c) G ∈ Aut(PERM) =⇒ G ≀ Sn ∈ Aut(PERM).

(d) G1,G2,G3 ∈ Aut(PERM) =⇒
(

G 41 × G
2
2 × G

2
3

)

⋊ Z22 ∈ Aut(PERM).

X1 X2(b)
Y Y . . . Y

{ n
(c) (d)

X1

X1

X1

X1

X2

X2

X3 X3
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A Construction for Bipartite Graphs

For a bipartite graph X with V = (A,B) we construct a
comparability graph CX of dimension 4 such that we replace the
edges by paths of length 4.

x2 x4

x1

x3

x5

e1e2

e3 e4
e5e6

X CX

p1 p2 p3 p4 p5

q21 q12 q23 q34 q45 q16q51 q22 q33 q44 q55 q46

r1 r2 r3 r4 r5 r6

The linear ordering L1, L2, L3, L4 (the sets PA,PB ,QA,QB depend
on A and B, respectively) are defined as follows:

L1 = 〈pi : pi ∈ PA〉〈rkqik : qik ∈ QA, ↑ k〉〈Ii : pi ∈ PB , ↑ i〉,

L2 = 〈pi : pi ∈ PA〉〈rkqik : qik ∈ QA, ↓ k〉〈Ii : pi ∈ PB , ↓ i〉,

L3 = 〈pj : pj ∈ PB〉〈rkqjk : qjk ∈ QB , ↑ k〉〈Ii : pi ∈ PA, ↑ i〉,

L4 = 〈pj : pj ∈ PB〉〈rkqjk : qjk ∈ QB , ↓ k〉〈Ii : pi ∈ PA, ↓ i〉.
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Circle graphs (CIRCLE)

Circle graphs are intersection graphs of chords of a circle.
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A Characterization of Aut(connected CIRCLE)

Theorem: Let S be a class of group defined as follows:

(a) {1} ∈ S.

(b) G1,G2 ∈ S =⇒ G1 × G2 ∈ S.

(c) G ∈ S =⇒ G ≀ Sn ∈ S.

(d) G1,G2,G3,G4 ∈ S =⇒
(

G 41 × G
2
2 × G

2
3 × G

2
4

)

⋊ Z22 ∈ S.

Then the class Aut(connected CIRCLE) can be defined inductively:

(e) G ∈ S =⇒
Gm ⋊ Zn ∈ Aut(connected CIRCLE), for n 6= 2.

(f) G1,G2 ∈ S =⇒
(

G1 × G
2
2 )⋊Dn ∈ Aut(connected CIRCLE), for n ≥ 3.



Open Problems

Problem: What are the automorphism groups of circular-arc
graphs?
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Conjecture: The automorphism groups of comparability graphs of
dimension 3 are universal.

Problem: We have shown that the automorphism groups of trees
are the same as the automorphism groups of interval graphs. Is this
also true for the endomorphism monoids?



Thank you!


