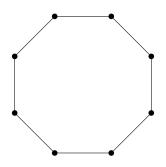
Automorphism Groups of Geometrically Represented Graphs

Peter Zeman joint work with Pavel Klavík

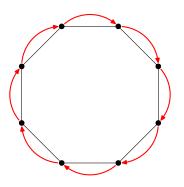
Computer Science Institute of Charles University, Faculty of Mathematics and Physics, Charles University in Prague

Bordeaux Graph Workshop 2014

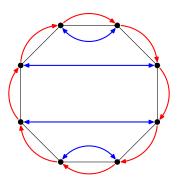
An automorphism of a graph X is a permutation π of the vertices such that $xy \in E(X)$ if and only if $\pi(x)\pi(y) \in E(X)$.



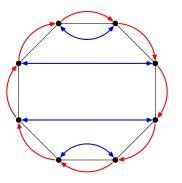
An automorphism of a graph X is a permutation π of the vertices such that $xy \in E(X)$ if and only if $\pi(x)\pi(y) \in E(X)$.



An automorphism of a graph X is a permutation π of the vertices such that $xy \in E(X)$ if and only if $\pi(x)\pi(y) \in E(X)$.



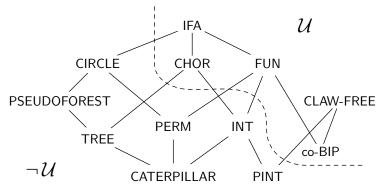
An automorphism of a graph X is a permutation π of the vertices such that $xy \in E(X)$ if and only if $\pi(x)\pi(y) \in E(X)$.



Theorem (Frucht): For each group G there exits a graph X such that $G \cong \operatorname{Aut}(X)$.

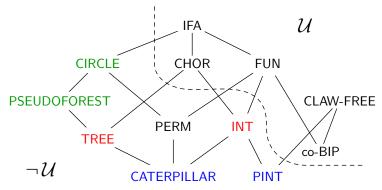
Geometric Intersection Graphs

If C is a class of graphs, then $Aut(C) = \{Aut(X) : X \in C\}$.



Geometric Intersection Graphs

If C is a class of graphs, then $Aut(C) = \{Aut(X) : X \in C\}$.

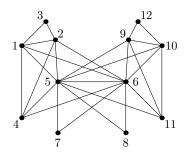


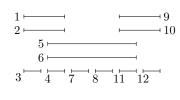
Our Result:

- (i) Aut(INT) = Aut(TREE)
- (ii) Aut(connected PINT) = Aut(CATERPILLAR)
- (iii) Aut(CIRCLE) = Aut(PSEUDOFOREST)

Interval Graphs

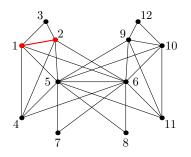
- ▶ Interval representation of a graph X is a set $\{I_x : x \in V(X)\}$ such that each I_x is an interval on the real line and $xy \in E(X)$ if and only if $I_x \cap I_y \neq \emptyset$.
- ▶ A graph *X* is an interval graph if and only if it has an interval representation.

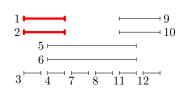




Interval Graphs

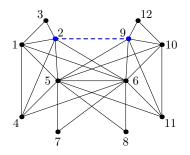
- ▶ Interval representation of a graph X is a set $\{I_x : x \in V(X)\}$ such that each I_x is an interval on the real line and $xy \in E(X)$ if and only if $I_x \cap I_y \neq \emptyset$.
- ▶ A graph *X* is an interval graph if and only if it has an interval representation.

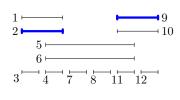


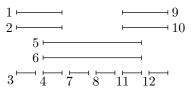


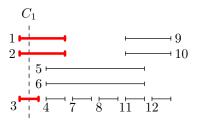
Interval Graphs

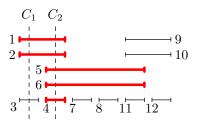
- ▶ Interval representation of a graph X is a set $\{I_x : x \in V(X)\}$ such that each I_x is an interval on the real line and $xy \in E(X)$ if and only if $I_x \cap I_y \neq \emptyset$.
- ▶ A graph *X* is an interval graph if and only if it has an interval representation.

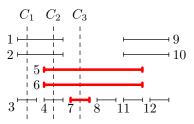


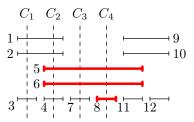


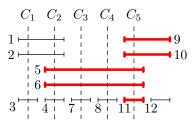


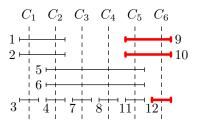


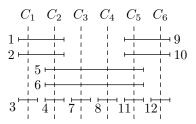


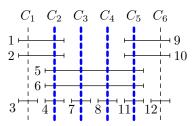


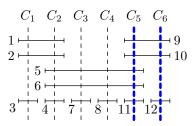




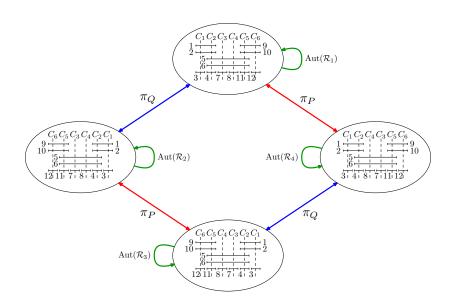


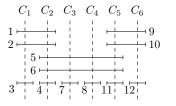


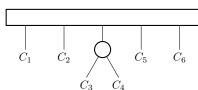


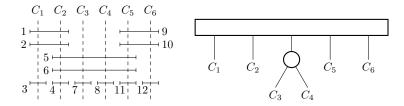


The Action of Aut(X) on \mathfrak{Rep}/\sim

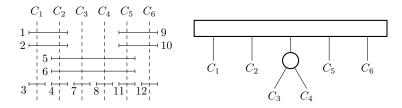




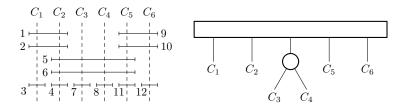




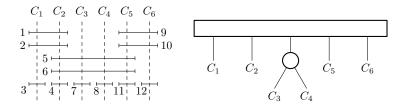
▶ A PQ-tree has two types of internal nodes: P-nodes and Q-nodes.



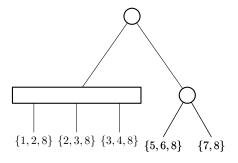
- ▶ A PQ-tree has two types of internal nodes: P-nodes and Q-nodes.
- ► The leaves of a PQ-tree correspond to the maximal cliques of an interval graph.

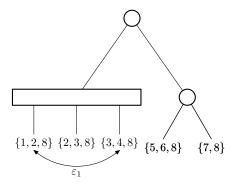


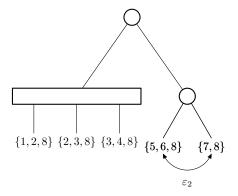
- ► A PQ-tree has two types of internal nodes: P-nodes and Q-nodes.
- ► The leaves of a PQ-tree correspond to the maximal cliques of an interval graph.
- ► There are two equivalence transformations: arbitrary permutation of the children of a P-node, and a reversal of the children of a Q-node.

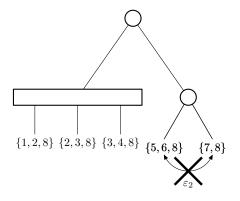


- ▶ A PQ-tree has two types of internal nodes: P-nodes and Q-nodes.
- ► The leaves of a PQ-tree correspond to the maximal cliques of an interval graph.
- ► There are two equivalence transformations: arbitrary permutation of the children of a P-node, and a reversal of the children of a Q-node.
- ► Each interval graph can be represented by a PQ-tree such that all equivalent PQ-trees represent all possible interval representations.

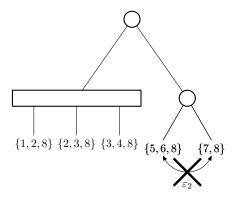






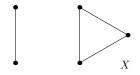


Each symmetric equivalence transformation of a PQ-tree T is an automorphism of T. Automorphisms of T form a group.



Proposition: If T is a PQ-tree representing an interval graph X, then $\operatorname{Aut}(T) \cong \operatorname{Aut}(X)/\operatorname{Aut}(\mathcal{R})$.

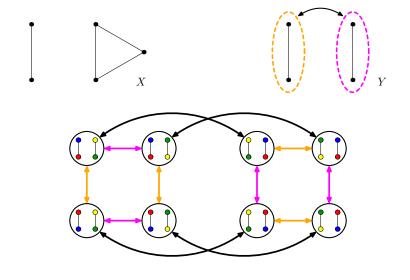
Automorphism Groups of Disconnected Graphs



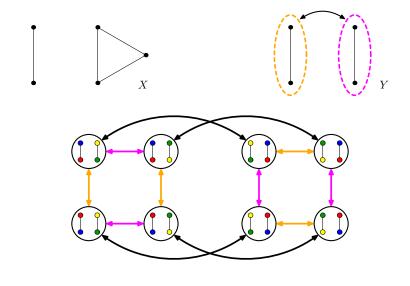
Automorphism Groups of Disconnected Graphs



Automorphism Groups of Disconnected Graphs



Automorphism Groups of Disconnected Graphs

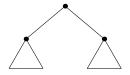


$$\operatorname{Aut}(Y) = (\mathbb{S}_2 \times \mathbb{S}_2) \rtimes \mathbb{S}_2 = \mathbb{S}_2 \wr \mathbb{S}_2$$

Theorem: If graph X contains k_i copies of a graph X_i , then

$$\operatorname{Aut}(X) = \operatorname{Aut}(X_1) \wr \mathbb{S}_{k_1} \times \cdots \times \operatorname{Aut}(X_{k_n}) \wr \mathbb{S}_{k_n}.$$

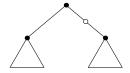
- (a) $\{1\} \in \mathcal{T}$.
- (b) If $G_1, G_2 \in \mathcal{T}$, then $G_1 \times G_2 \in \mathcal{T}$.
- (c) If $G \in \mathcal{T}$ and $n \geq 2$, then $G \wr \mathbb{S}_n \in \mathcal{T}$.



Theorem: If graph X contains k_i copies of a graph X_i , then

$$\operatorname{Aut}(X) = \operatorname{Aut}(X_1) \wr \mathbb{S}_{k_1} \times \cdots \times \operatorname{Aut}(X_{k_n}) \wr \mathbb{S}_{k_n}.$$

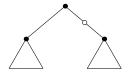
- (a) $\{1\} \in \mathcal{T}$.
- (b) If $G_1, G_2 \in \mathcal{T}$, then $G_1 \times G_2 \in \mathcal{T}$.
- (c) If $G \in \mathcal{T}$ and $n \geq 2$, then $G \wr \mathbb{S}_n \in \mathcal{T}$.

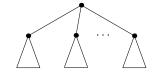


Theorem: If graph X contains k_i copies of a graph X_i , then

$$\operatorname{Aut}(X) = \operatorname{Aut}(X_1) \wr \mathbb{S}_{k_1} \times \cdots \times \operatorname{Aut}(X_{k_n}) \wr \mathbb{S}_{k_n}.$$

- (a) $\{1\} \in \mathcal{T}$.
- (b) If $G_1, G_2 \in \mathcal{T}$, then $G_1 \times G_2 \in \mathcal{T}$.
- (c) If $G \in \mathcal{T}$ and $n \geq 2$, then $G \wr \mathbb{S}_n \in \mathcal{T}$.

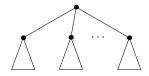




Theorem: If graph X contains k_i copies of a graph X_i , then

$$\operatorname{Aut}(X) = \operatorname{Aut}(X_1) \wr \mathbb{S}_{k_1} \times \cdots \times \operatorname{Aut}(X_{k_n}) \wr \mathbb{S}_{k_n}.$$

- (a) $\{1\} \in \mathcal{T}$.
- (b) If $G_1, G_2 \in \mathcal{T}$, then $G_1 \times G_2 \in \mathcal{T}$.
- (c) If $G \in \mathcal{T}$ and $n \geq 2$, then $G \wr \mathbb{S}_n \in \mathcal{T}$.



Theorem: If graph X contains k_i copies of a graph X_i , then

$$\operatorname{Aut}(X) = \operatorname{Aut}(X_1) \wr \mathbb{S}_{k_1} \times \cdots \times \operatorname{Aut}(X_{k_n}) \wr \mathbb{S}_{k_n}.$$

- (a) $\{1\} \in \mathcal{T}$.
- (b) If $G_1, G_2 \in \mathcal{T}$, then $G_1 \times G_2 \in \mathcal{T}$.
- (c) If $G \in \mathcal{T}$ and $n \geq 2$, then $G \wr \mathbb{S}_n \in \mathcal{T}$.

Automorphism Groups of Interval Graphs

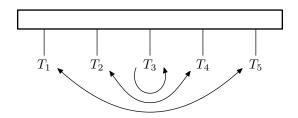
- (a) $\{1\} \in \mathcal{I}$.
- (b) If $G_1, G_2 \in \mathcal{I}$, then $G_1 \times G_2 \in \mathcal{I}$.
- (c) If $G \in \mathcal{I}$ and $n \geq 2$, then $G \wr \mathbb{S}_n \in \mathcal{I}$.
- (d) If $G_1, G_2, G_3 \in \mathcal{I}$ and $G_1 \cong G_3$, then

$$(G_1 \times G_2 \times G_3) \rtimes \mathbb{Z}_2 \in \mathcal{I}.$$

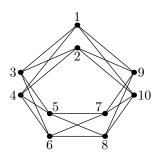
Automorphism Groups of Interval Graphs

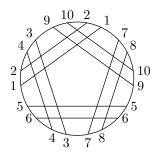
- (a) $\{1\} \in \mathcal{I}$.
- (b) If $G_1, G_2 \in \mathcal{I}$, then $G_1 \times G_2 \in \mathcal{I}$.
- (c) If $G \in \mathcal{I}$ and $n \geq 2$, then $G \wr \mathbb{S}_n \in \mathcal{I}$.
- (d) If $G_1, G_2, G_3 \in \mathcal{I}$ and $G_1 \cong G_3$, then

$$\left(\textit{G}_{1}\times\textit{G}_{2}\times\textit{G}_{3}\right)\rtimes\mathbb{Z}_{2}\in\mathcal{I}.$$

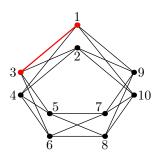


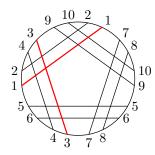
- ▶ Circle representation of a graph X is a set $\{C_x : x \in V(X)\}$ such that each C_x is a chord of a circle and $xy \in E(X)$ if and only if $C_x \cap C_y \neq \emptyset$.
- ▶ A graph X is a circle graph if and only if it has an circle representation.



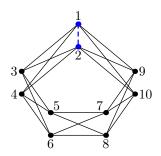


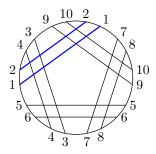
- ▶ Circle representation of a graph X is a set $\{C_x : x \in V(X)\}$ such that each C_x is a chord of a circle and $xy \in E(X)$ if and only if $C_x \cap C_y \neq \emptyset$.
- ▶ A graph X is a circle graph if and only if it has an circle representation.

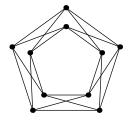


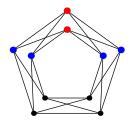


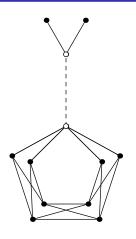
- ▶ Circle representation of a graph X is a set $\{C_x : x \in V(X)\}$ such that each C_x is a chord of a circle and $xy \in E(X)$ if and only if $C_x \cap C_y \neq \emptyset$.
- ▶ A graph X is a circle graph if and only if it has an circle representation.

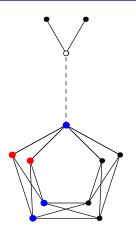


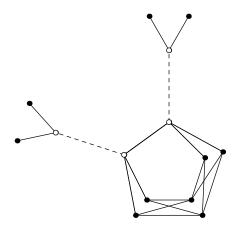


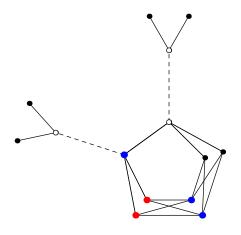


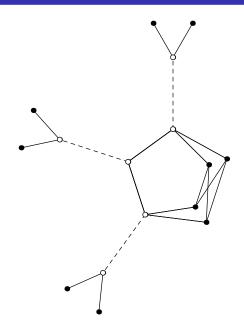


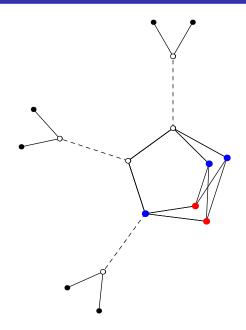


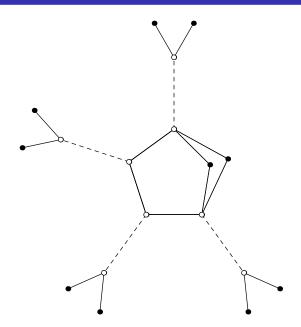


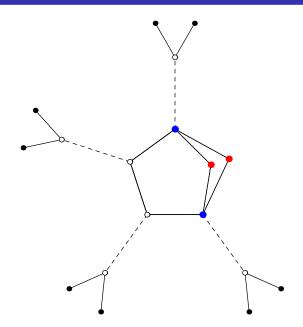


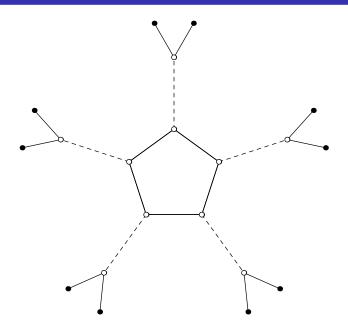












Automorphism Groups of Circle Graphs

It is clear that $\operatorname{Aut}(\mathsf{PSEUDOFOREST}) \subseteq \operatorname{Aut}(\mathsf{CIRCLE})$ since each pseudoforest is a circle graph.

We prove that Aut(PSEUDOTREE) =

$$\bigcup_{n\geq 1} \operatorname{Aut}(\mathsf{TREE}) \rtimes \mathbb{D}_n \cup \operatorname{Aut}(\mathsf{TREE}) \rtimes \mathbb{Z}_n.$$

Finally, we prove that each connected circle graph X has $\operatorname{Aut}(X) \in \operatorname{Aut}(\mathsf{PSEUDOTREE})$; we use the split decomposition.

Open Problems

▶ What are the automorphism groups of circular-arc graphs?

▶ What is the precise relationship between universal graph classes and Gl-complete graph classes?

Thank you!

 $\mathbb{D}_8 \wr \mathbb{S}_\infty$