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Automorphism Groups of Graphs

An automorphism of a graph X is a permutation π of the vertices
such that xy ∈ E (X ) if and only if π(x)π(y) ∈ E (X ).
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Automorphism Groups of Graphs

An automorphism of a graph X is a permutation π of the vertices
such that xy ∈ E (X ) if and only if π(x)π(y) ∈ E (X ).

Theorem (Frucht): For each group G there exits a graph X such
that G ∼= Aut(X ).



Geometric Intersection Graphs

If C is a class of graphs, then Aut(C) = {Aut(X ) : X ∈ C}.
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Our Result:

(i) Aut(INT) = Aut(TREE)

(ii) Aut(connected PINT) = Aut(CATERPILLAR)

(iii) Aut(CIRCLE) = Aut(PSEUDOFOREST)
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Our Result:

(i) Aut(INT) = Aut(TREE) (Hanlon; Colbourn and Booth)

(ii) Aut(connected PINT) = Aut(CATERPILLAR)

(iii) Aut(CIRCLE) = Aut(PSEUDOFOREST)
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Interval Graphs

◮ Interval representation of a graph X is a set {Ix : x ∈ V (X )}
such that each Ix is an interval on the real line and xy ∈ E (X )
if and only if Ix ∩ Iy 6= ∅.

◮ A graph X is an interval graph if and only if it has an interval
representation.
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Interval Graphs

◮ Interval representation of a graph X is a set {Ix : x ∈ V (X )}
such that each Ix is an interval on the real line and xy ∈ E (X )
if and only if Ix ∩ Iy 6= ∅.

◮ A graph X is an interval graph if and only if it has an interval
representation.
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Characterization of Interval Graphs

Theorem (Fulkerson and Gross): A graph X is an interval graph if
and only if there exists ordering of the maximal cliques such that
for every x ∈ V (X ) the maximal cliques containing x appear
consecutively.
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Theorem (Fulkerson and Gross): A graph X is an interval graph if
and only if there exists ordering of the maximal cliques such that
for every x ∈ V (X ) the maximal cliques containing x appear
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Characterization of Interval Graphs

Theorem (Fulkerson and Gross): A graph X is an interval graph if
and only if there exists ordering of the maximal cliques such that
for every x ∈ V (X ) the maximal cliques containing x appear
consecutively.

3 4 7 8 11 12

6
5

2
1

10
9

C1 C2 C3 C4



Characterization of Interval Graphs

Theorem (Fulkerson and Gross): A graph X is an interval graph if
and only if there exists ordering of the maximal cliques such that
for every x ∈ V (X ) the maximal cliques containing x appear
consecutively.
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Theorem (Fulkerson and Gross): A graph X is an interval graph if
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Characterization of Interval Graphs

Theorem (Fulkerson and Gross): A graph X is an interval graph if
and only if there exists ordering of the maximal cliques such that
for every x ∈ V (X ) the maximal cliques containing x appear
consecutively.
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The Action of Aut(X ) on Rep
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We can use Aut(R) and Aut(X )/Aut(R) to determine Aut(X ).



PQ-trees (Booth and Lueker)
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PQ-trees (Booth and Lueker)
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◮ A PQ-tree has two types of internal nodes: P-nodes and
Q-nodes.
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◮ A PQ-tree has two types of internal nodes: P-nodes and
Q-nodes.

◮ The leaves of a PQ-tree correspond to the maximal cliques of
an interval graph.
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◮ A PQ-tree has two types of internal nodes: P-nodes and
Q-nodes.

◮ The leaves of a PQ-tree correspond to the maximal cliques of
an interval graph.

◮ There are two equivalence transformations: arbitrary
permutation of the children of a P-node, and a reversal of the
children of a Q-node.
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◮ A PQ-tree has two types of internal nodes: P-nodes and
Q-nodes.

◮ The leaves of a PQ-tree correspond to the maximal cliques of
an interval graph.

◮ There are two equivalence transformations: arbitrary
permutation of the children of a P-node, and a reversal of the
children of a Q-node.

◮ Each interval graph can be represented by a PQ-tree such
that all equivalent PQ-trees represent all possible interval
representations.



Automorphisms of PQ-trees

Each symmetric equivalence transformation of a PQ-tree T is an
automorphism of T . Automorphisms of T form a group.

{1, 2, 8} {2, 3, 8} {3, 4, 8} {5, 6, 8} {7, 8}{5, 6, 8} {7, 8}



Automorphisms of PQ-trees

Each symmetric equivalence transformation of a PQ-tree T is an
automorphism of T . Automorphisms of T form a group.

{1, 2, 8} {2, 3, 8} {3, 4, 8} {5, 6, 8} {7, 8}{5, 6, 8} {7, 8}

ε1



Automorphisms of PQ-trees

Each symmetric equivalence transformation of a PQ-tree T is an
automorphism of T . Automorphisms of T form a group.

{1, 2, 8} {2, 3, 8} {3, 4, 8} {5, 6, 8} {7, 8}{5, 6, 8} {7, 8}

ε2



Automorphisms of PQ-trees

Each symmetric equivalence transformation of a PQ-tree T is an
automorphism of T . Automorphisms of T form a group.

{1, 2, 8} {2, 3, 8} {3, 4, 8} {5, 6, 8} {7, 8}{5, 6, 8} {7, 8}

ε2



Automorphisms of PQ-trees

Each symmetric equivalence transformation of a PQ-tree T is an
automorphism of T . Automorphisms of T form a group.

{1, 2, 8} {2, 3, 8} {3, 4, 8} {5, 6, 8} {7, 8}{5, 6, 8} {7, 8}

ε2

Proposition: If T is a PQ-tree representing an interval graph X ,
then Aut(T ) ∼= Aut(X )/Aut(R).



Group Products



Automorphism Groups of Disconnected Graphs
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Automorphism Groups of Disconnected Graphs

X Y

Aut(Y ) = (S2 × S2)⋊ S2 = S2 ≀ S2



Automorphism Groups of Trees (Jordan)

Theorem: If graph X contains ki copies of a graph Xi , then

Aut(X ) = Aut(X1) ≀ Sk1 × · · · ×Aut(Xkn) ≀ Skn .

Theorem (Jordan, 1869): A group G ∈ Aut(TREE) if and only if
G ∈ T , where T is defined inductively as follows:

(a) {1} ∈ T .

(b) If G1,G2 ∈ T , then G1 × G2 ∈ T .

(c) If G ∈ T and n ≥ 2, then G ≀ Sn ∈ T .
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Automorphism Groups of Interval Graphs

Theorem: A group G ∈ Aut(INT) if and only if G ∈ I, where I is
defined inductively as follows:

(a) {1} ∈ I.

(b) If G1,G2 ∈ I, then G1 × G2 ∈ I.

(c) If G ∈ I and n ≥ 2, then G ≀ Sn ∈ I.

(d) If G1,G2,G3 ∈ I and G1 ∼= G3, then

(G1 × G2 × G3)⋊ Z2 ∈ I.



Automorphism Groups of Interval Graphs

Theorem: A group G ∈ Aut(INT) if and only if G ∈ I, where I is
defined inductively as follows:

(a) {1} ∈ I.

(b) If G1,G2 ∈ I, then G1 × G2 ∈ I.

(c) If G ∈ I and n ≥ 2, then G ≀ Sn ∈ I.

(d) If G1,G2,G3 ∈ I and G1 ∼= G3, then

(G1 × G2 × G3)⋊ Z2 ∈ I.

T1 T2 T3 T4 T5
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Circle Graphs

◮ Circle representation of a graph X is a set {Cx : x ∈ V (X )}
such that each Cx is a chord of a circle and xy ∈ E (X ) if and
only if Cx ∩ Cy 6= ∅.

◮ A graph X is a circle graph if and only if it has an circle
representation.
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◮ Circle representation of a graph X is a set {Cx : x ∈ V (X )}
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Split Decomposition
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Automorphism Groups of Circle Graphs

It is clear that Aut(PSEUDOFOREST) ⊆ Aut(CIRCLE) since each
pseudoforest is a circle graph.

We prove that Aut(PSEUDOTREE) =

⋃

n≥1

Aut(TREE)⋊Dn ∪Aut(TREE)⋊ Zn.

Finally, we prove that each connected circle graph X has
Aut(X ) ∈ Aut(PSEUDOTREE); we use the split decomposition.



Open Problems

◮ What are the automorphism groups of permutation graphs?

◮ What are the automorphism groups of circular-arc graphs?

◮ What is the precise relationship between universal graph
classes and GI-complete graph classes?



Thank you!

D8 ≀ S∞


