Automorphism Groups of Geometrically Represented Graphs

Peter Zeman joint work with Pavel Klavík

Computer Science Institute of Charles University, Faculty of Mathematics and Physics, Charles University in Prague

ATCAGC 2015

Automorphism Groups of Graphs

An automorphism of a graph X is a permutation π of the vertices such that $x y \in E(X)$ if and only if $\pi(x) \pi(y) \in E(X)$.

Automorphism Groups of Graphs

An automorphism of a graph X is a permutation π of the vertices such that $x y \in E(X)$ if and only if $\pi(x) \pi(y) \in E(X)$.

Automorphism Groups of Graphs

An automorphism of a graph X is a permutation π of the vertices such that $x y \in E(X)$ if and only if $\pi(x) \pi(y) \in E(X)$.

Automorphism Groups of Graphs

An automorphism of a graph X is a permutation π of the vertices such that $x y \in E(X)$ if and only if $\pi(x) \pi(y) \in E(X)$.

Theorem (Frucht): For each group G there exits a graph X such that $G \cong \operatorname{Aut}(X)$.

Geometric Intersection Graphs

If \mathcal{C} is a class of graphs, then $\operatorname{Aut}(\mathcal{C})=\{\operatorname{Aut}(X): X \in \mathcal{C}\}$.

Geometric Intersection Graphs

If \mathcal{C} is a class of graphs, then $\operatorname{Aut}(\mathcal{C})=\{\operatorname{Aut}(X): X \in \mathcal{C}\}$.

Our Result:
(i) $\operatorname{Aut}($ INT $)=\operatorname{Aut}($ TREE $)$
(ii) Aut(connected PINT) $=$ Aut(CATERPILLAR)
(iii) $\operatorname{Aut}($ CIRCLE $)=\operatorname{Aut}($ PSEUDOFOREST $)$

Geometric Intersection Graphs

If \mathcal{C} is a class of graphs, then $\operatorname{Aut}(\mathcal{C})=\{\operatorname{Aut}(X): X \in \mathcal{C}\}$.

Our Result:
(i) $\operatorname{Aut}($ INT $)=\operatorname{Aut}($ TREE $) \quad$ (Hanlon; Colbourn and Booth)
(ii) Aut(connected PINT) $=\operatorname{Aut}($ CATERPILLAR)
(iii) $\operatorname{Aut}($ CIRCLE $)=\operatorname{Aut}($ PSEUDOFOREST $)$

Interval Graphs

Interval Graphs

- Interval representation of a graph X is a set $\left\{I_{x}: x \in V(X)\right\}$ such that each I_{x} is an interval on the real line and $x y \in E(X)$ if and only if $I_{x} \cap I_{y} \neq \emptyset$.
- A graph X is an interval graph if and only if it has an interval representation.

Interval Graphs

- Interval representation of a graph X is a set $\left\{I_{x}: x \in V(X)\right\}$ such that each I_{x} is an interval on the real line and $x y \in E(X)$ if and only if $I_{x} \cap I_{y} \neq \emptyset$.
- A graph X is an interval graph if and only if it has an interval representation.

Interval Graphs

- Interval representation of a graph X is a set $\left\{I_{x}: x \in V(X)\right\}$ such that each I_{x} is an interval on the real line and $x y \in E(X)$ if and only if $I_{x} \cap I_{y} \neq \emptyset$.
- A graph X is an interval graph if and only if it has an interval representation.

Characterization of Interval Graphs

Theorem (Fulkerson and Gross): A graph X is an interval graph if and only if there exists ordering of the maximal cliques such that for every $x \in V(X)$ the maximal cliques containing x appear consecutively.

Characterization of Interval Graphs

Theorem (Fulkerson and Gross): A graph X is an interval graph if and only if there exists ordering of the maximal cliques such that for every $x \in V(X)$ the maximal cliques containing x appear consecutively.

Characterization of Interval Graphs

Theorem (Fulkerson and Gross): A graph X is an interval graph if and only if there exists ordering of the maximal cliques such that for every $x \in V(X)$ the maximal cliques containing x appear consecutively.

Characterization of Interval Graphs

Theorem (Fulkerson and Gross): A graph X is an interval graph if and only if there exists ordering of the maximal cliques such that for every $x \in V(X)$ the maximal cliques containing x appear consecutively.

Characterization of Interval Graphs

Theorem (Fulkerson and Gross): A graph X is an interval graph if and only if there exists ordering of the maximal cliques such that for every $x \in V(X)$ the maximal cliques containing x appear consecutively.

Characterization of Interval Graphs

Theorem (Fulkerson and Gross): A graph X is an interval graph if and only if there exists ordering of the maximal cliques such that for every $x \in V(X)$ the maximal cliques containing x appear consecutively.

Characterization of Interval Graphs

Theorem (Fulkerson and Gross): A graph X is an interval graph if and only if there exists ordering of the maximal cliques such that for every $x \in V(X)$ the maximal cliques containing x appear consecutively.

Characterization of Interval Graphs

Theorem (Fulkerson and Gross): A graph X is an interval graph if and only if there exists ordering of the maximal cliques such that for every $x \in V(X)$ the maximal cliques containing x appear consecutively.

Characterization of Interval Graphs

Theorem (Fulkerson and Gross): A graph X is an interval graph if and only if there exists ordering of the maximal cliques such that for every $x \in V(X)$ the maximal cliques containing x appear consecutively.

Characterization of Interval Graphs

Theorem (Fulkerson and Gross): A graph X is an interval graph if and only if there exists ordering of the maximal cliques such that for every $x \in V(X)$ the maximal cliques containing x appear consecutively.

The $\operatorname{Action~of~} \operatorname{Aut}(X)$ on $\mathfrak{R e p}$

We can use $\operatorname{Aut}(\mathcal{R})$ and $\operatorname{Aut}(X) / \operatorname{Aut}(\mathcal{R})$ to determine $\operatorname{Aut}(X)$.

PQ-trees (Booth and Lueker)

$$
\begin{aligned}
& \begin{array}{llllll}
C_{1} & C_{2} & C_{3} & C_{4} & C_{5} & C_{6}
\end{array}
\end{aligned}
$$

PQ-trees (Booth and Lueker)

- A PQ-tree has two types of internal nodes: P-nodes and Q-nodes.

PQ-trees (Booth and Lueker)

- A PQ-tree has two types of internal nodes: P-nodes and Q-nodes.
- The leaves of a PQ-tree correspond to the maximal cliques of an interval graph.

PQ-trees (Booth and Lueker)

- A PQ-tree has two types of internal nodes: P-nodes and Q-nodes.
- The leaves of a PQ-tree correspond to the maximal cliques of an interval graph.
- There are two equivalence transformations: arbitrary permutation of the children of a P-node, and a reversal of the children of a Q-node.

PQ-trees (Booth and Lueker)

- A PQ-tree has two types of internal nodes: P-nodes and Q-nodes.
- The leaves of a PQ-tree correspond to the maximal cliques of an interval graph.
- There are two equivalence transformations: arbitrary permutation of the children of a P-node, and a reversal of the children of a Q-node.
- Each interval graph can be represented by a PQ-tree such that all equivalent PQ-trees represent all possible interval representations.

Automorphisms of PQ-trees

Each symmetric equivalence transformation of a PQ-tree T is an automorphism of T. Automorphisms of T form a group.

Automorphisms of PQ-trees

Each symmetric equivalence transformation of a PQ-tree T is an automorphism of T. Automorphisms of T form a group.

Automorphisms of PQ-trees

Each symmetric equivalence transformation of a PQ-tree T is an automorphism of T. Automorphisms of T form a group.

Automorphisms of PQ-trees

Each symmetric equivalence transformation of a PQ-tree T is an automorphism of T. Automorphisms of T form a group.

Automorphisms of PQ-trees

Each symmetric equivalence transformation of a PQ-tree T is an automorphism of T. Automorphisms of T form a group.

Proposition: If T is a $P Q$-tree representing an interval graph X, then $\operatorname{Aut}(T) \cong \operatorname{Aut}(X) / \operatorname{Aut}(\mathcal{R})$.

Group Products

Automorphism Groups of Disconnected Graphs

Automorphism Groups of Disconnected Graphs

Automorphism Groups of Disconnected Graphs

Automorphism Groups of Disconnected Graphs

$\operatorname{Aut}(Y)=\left(\mathbb{S}_{2} \times \mathbb{S}_{2}\right) \rtimes \mathbb{S}_{2}=\mathbb{S}_{2} \imath \mathbb{S}_{2}$

Automorphism Groups of Trees (Jordan)

Theorem: If graph X contains k_{i} copies of a graph X_{i}, then

$$
\operatorname{Aut}(X)=\operatorname{Aut}\left(X_{1}\right) \imath \mathbb{S}_{k_{1}} \times \cdots \times \operatorname{Aut}\left(X_{k_{n}}\right) \imath \mathbb{S}_{k_{n}}
$$

Theorem (Jordan, 1869): A group $G \in$ Aut(TREE) if and only if $G \in \mathcal{T}$, where \mathcal{T} is defined inductively as follows:
(a) $\{1\} \in \mathcal{T}$.
(b) If $G_{1}, G_{2} \in \mathcal{T}$, then $G_{1} \times G_{2} \in \mathcal{T}$.
(c) If $G \in \mathcal{T}$ and $n \geq 2$, then $G \imath \mathbb{S}_{n} \in \mathcal{T}$.

Automorphism Groups of Trees (Jordan)

Theorem: If graph X contains k_{i} copies of a graph X_{i}, then

$$
\operatorname{Aut}(X)=\operatorname{Aut}\left(X_{1}\right) \imath \mathbb{S}_{k_{1}} \times \cdots \times \operatorname{Aut}\left(X_{k_{n}}\right) \imath \mathbb{S}_{k_{n}}
$$

Theorem (Jordan, 1869): A group $G \in$ Aut(TREE) if and only if $G \in \mathcal{T}$, where \mathcal{T} is defined inductively as follows:
(a) $\{1\} \in \mathcal{T}$.
(b) If $G_{1}, G_{2} \in \mathcal{T}$, then $G_{1} \times G_{2} \in \mathcal{T}$.
(c) If $G \in \mathcal{T}$ and $n \geq 2$, then $G \imath \mathbb{S}_{n} \in \mathcal{T}$.

Automorphism Groups of Trees (Jordan)

Theorem: If graph X contains k_{i} copies of a graph X_{i}, then

$$
\operatorname{Aut}(X)=\operatorname{Aut}\left(X_{1}\right) \imath \mathbb{S}_{k_{1}} \times \cdots \times \operatorname{Aut}\left(X_{k_{n}}\right) \imath \mathbb{S}_{k_{n}}
$$

Theorem (Jordan, 1869): A group $G \in$ Aut(TREE) if and only if $G \in \mathcal{T}$, where \mathcal{T} is defined inductively as follows:
(a) $\{1\} \in \mathcal{T}$.
(b) If $G_{1}, G_{2} \in \mathcal{T}$, then $G_{1} \times G_{2} \in \mathcal{T}$.
(c) If $G \in \mathcal{T}$ and $n \geq 2$, then $G \imath \mathbb{S}_{n} \in \mathcal{T}$.

Automorphism Groups of Trees (Jordan)

Theorem: If graph X contains k_{i} copies of a graph X_{i}, then

$$
\operatorname{Aut}(X)=\operatorname{Aut}\left(X_{1}\right) \imath \mathbb{S}_{k_{1}} \times \cdots \times \operatorname{Aut}\left(X_{k_{n}}\right) \imath \mathbb{S}_{k_{n}}
$$

Theorem (Jordan, 1869): A group $G \in$ Aut(TREE) if and only if $G \in \mathcal{T}$, where \mathcal{T} is defined inductively as follows:
(a) $\{1\} \in \mathcal{T}$.
(b) If $G_{1}, G_{2} \in \mathcal{T}$, then $G_{1} \times G_{2} \in \mathcal{T}$.
(c) If $G \in \mathcal{T}$ and $n \geq 2$, then $G \imath \mathbb{S}_{n} \in \mathcal{T}$.

Automorphism Groups of Trees (Jordan)

Theorem: If graph X contains k_{i} copies of a graph X_{i}, then

$$
\operatorname{Aut}(X)=\operatorname{Aut}\left(X_{1}\right) \imath \mathbb{S}_{k_{1}} \times \cdots \times \operatorname{Aut}\left(X_{k_{n}}\right) \imath \mathbb{S}_{k_{n}}
$$

Theorem (Jordan, 1869): A group $G \in$ Aut(TREE) if and only if $G \in \mathcal{T}$, where \mathcal{T} is defined inductively as follows:
(a) $\{1\} \in \mathcal{T}$.
(b) If $G_{1}, G_{2} \in \mathcal{T}$, then $G_{1} \times G_{2} \in \mathcal{T}$.
(c) If $G \in \mathcal{T}$ and $n \geq 2$, then $G \imath \mathbb{S}_{n} \in \mathcal{T}$.

Automorphism Groups of Interval Graphs

Theorem: A group $G \in \operatorname{Aut}(I N T)$ if and only if $G \in \mathcal{I}$, where \mathcal{I} is defined inductively as follows:
(a) $\{1\} \in \mathcal{I}$.
(b) If $G_{1}, G_{2} \in \mathcal{I}$, then $G_{1} \times G_{2} \in \mathcal{I}$.
(c) If $G \in \mathcal{I}$ and $n \geq 2$, then $G \imath \mathbb{S}_{n} \in \mathcal{I}$.
(d) If $G_{1}, G_{2}, G_{3} \in \mathcal{I}$ and $G_{1} \cong G_{3}$, then

$$
\left(G_{1} \times G_{2} \times G_{3}\right) \rtimes \mathbb{Z}_{2} \in \mathcal{I} .
$$

Automorphism Groups of Interval Graphs

Theorem: A group $G \in \operatorname{Aut}($ INT $)$ if and only if $G \in \mathcal{I}$, where \mathcal{I} is defined inductively as follows:
(a) $\{1\} \in \mathcal{I}$.
(b) If $G_{1}, G_{2} \in \mathcal{I}$, then $G_{1} \times G_{2} \in \mathcal{I}$.
(c) If $G \in \mathcal{I}$ and $n \geq 2$, then $G \imath \mathbb{S}_{n} \in \mathcal{I}$.
(d) If $G_{1}, G_{2}, G_{3} \in \mathcal{I}$ and $G_{1} \cong G_{3}$, then

$$
\left(G_{1} \times G_{2} \times G_{3}\right) \rtimes \mathbb{Z}_{2} \in \mathcal{I} .
$$

Circle Graphs

Circle Graphs

- Circle representation of a graph X is a set $\left\{C_{x}: x \in V(X)\right\}$ such that each C_{x} is a chord of a circle and $x y \in E(X)$ if and only if $C_{x} \cap C_{y} \neq \emptyset$.
- A graph X is a circle graph if and only if it has an circle representation.

Circle Graphs

- Circle representation of a graph X is a set $\left\{C_{x}: x \in V(X)\right\}$ such that each C_{x} is a chord of a circle and $x y \in E(X)$ if and only if $C_{x} \cap C_{y} \neq \emptyset$.
- A graph X is a circle graph if and only if it has an circle representation.

Circle Graphs

- Circle representation of a graph X is a set $\left\{C_{x}: x \in V(X)\right\}$ such that each C_{x} is a chord of a circle and $x y \in E(X)$ if and only if $C_{x} \cap C_{y} \neq \emptyset$.
- A graph X is a circle graph if and only if it has an circle representation.

Split Decomposition

Automorphism Groups of Circle Graphs

It is clear that $\operatorname{Aut}(P S E U D O F O R E S T) \subseteq \operatorname{Aut}(C I R C L E)$ since each pseudoforest is a circle graph.

We prove that $\operatorname{Aut}($ PSEUDOTREE $)=$

$$
\bigcup_{n \geq 1} \operatorname{Aut}(\text { TREE }) \rtimes \mathbb{D}_{n} \cup \operatorname{Aut}(\text { TREE }) \rtimes \mathbb{Z}_{n} .
$$

Finally, we prove that each connected circle graph X has $\operatorname{Aut}(X) \in \operatorname{Aut}($ PSEUDOTREE $)$; we use the split decomposition.

Open Problems

- What are the automorphism groups of permutation graphs?
- What are the automorphism groups of circular-arc graphs?
- What is the precise relationship between universal graph classes and Gl-complete graph classes?

Thank you!

$$
\mathbb{D}_{8} \imath \mathbb{S}_{\infty}
$$

