Automorphism Groups of Interval Graphs

Peter Zeman
joint work with Pavel Klavík

Faculty of Mathematics and Physics, Charles University in Prague

ATCAGC 2014

The Automorphism Group of a Disconnected Graph

- If a graph G has n pairwise nonisomorphic connected components G_{1}, \ldots, G_{n}, then

$$
\operatorname{Aut}(G)=\operatorname{Aut}\left(G_{1}\right) \times \cdots \times \operatorname{Aut}\left(G_{n}\right)
$$

The Automorphism Group of a Disconnected Graph

- If a graph G has n pairwise nonisomorphic connected components G_{1}, \ldots, G_{n}, then

$$
\operatorname{Aut}(G)=\operatorname{Aut}\left(G_{1}\right) \times \cdots \times \operatorname{Aut}\left(G_{n}\right)
$$

- Aut (!) $\quad \neq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$

The Automorphism Group of a Disconnected Graph

- If a graph G has n pairwise nonisomorphic connected components G_{1}, \ldots, G_{n}, then

$$
\operatorname{Aut}(G)=\operatorname{Aut}\left(G_{1}\right) \times \cdots \times \operatorname{Aut}\left(G_{n}\right)
$$

- Aut (!) $\quad \neq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$

Wreath product

- If a graph G contains k copies of H, then the automorphism group of G is isomorphic to $\operatorname{Aut}(H) 乙 \mathbb{S}_{k}$, where
$\operatorname{Aut}(H) \imath \mathbb{S}_{k}=\left\{\left(g_{1}, \ldots, g_{k}, \pi\right): g_{i} \in \operatorname{Aut}(H), \pi \in \mathbb{S}_{k}\right\}$.
$\pi(1)$

g_{2}
$\pi(k)$

g_{k}

Wreath product

- If a graph G contains k copies of H, then the automorphism group of G is isomorphic to $\operatorname{Aut}(H) 乙 \mathbb{S}_{k}$, where
$\operatorname{Aut}(H) \imath \mathbb{S}_{k}=\left\{\left(g_{1}, \ldots, g_{k}, \pi\right): g_{i} \in \operatorname{Aut}(H), \pi \in \mathbb{S}_{k}\right\}$. $\pi(1)$

g_{2}
$\pi(k)$

g_{k}
- If a graph G contains k_{i} copies of G_{i} for $i=1, \ldots, n$, then the automorphism group of G is isomorphic to

$$
\operatorname{Aut}\left(G_{1}\right) \imath \mathbb{S}_{k_{1}} \times \cdots \times \operatorname{Aut}\left(G_{n}\right) \imath \mathbb{S}_{k_{n}} .
$$

Automorphism Groups of Trees

Automorphism Groups of Trees

Automorphism Groups of Trees

$$
\operatorname{Aut}\left(T_{1}\right) \imath \mathbb{S}_{2} \times \operatorname{Aut}\left(T_{2}\right)
$$

Theorem (Jordan, 1869)
The finite group Γ is isomorophic to the automorphism group of a finite tree if and only if $\Gamma \in \mathcal{T}$, where the class \mathcal{T} of finite groups is defined inductively as follows:

$$
\text { (a) }\{1\} \in \mathcal{T}
$$

$$
\text { (b) if } \Gamma_{1}, \Gamma_{2} \in \mathcal{T} \text { then } \Gamma_{1} \times \Gamma_{2} \in \mathcal{T} \text {, }
$$

$$
\text { (c) if } \Gamma \in \mathcal{T} \text { and } n \geq 2 \text { then } \Gamma 2 \mathbb{S}_{n} \in \mathcal{T} \text {. }
$$

For interval graphs we show that we need to add an operation (d).

Interval Graphs

Let I_{1}, \ldots, I_{n} be intervals on a real line. The corresponding interval graph G is the intersection graph of those intervals.

Interval Graphs

Let I_{1}, \ldots, I_{n} be intervals on a real line. The corresponding interval graph G is the intersection graph of those intervals.

- $V(G)=\left\{I_{1}, \ldots, I_{n}\right\}$.
- $\left\{I_{x}, I_{y}\right\} \in E(G)$ if and only if $I_{x} \cap I_{y} \neq \emptyset$.

Interval Graphs

Let I_{1}, \ldots, I_{n} be intervals on a real line. The corresponding interval graph G is the intersection graph of those intervals.

- $V(G)=\left\{I_{1}, \ldots, I_{n}\right\}$.
- $\left\{I_{x}, I_{y}\right\} \in E(G)$ if and only if $I_{x} \cap I_{y} \neq \emptyset$.

Interval Graphs

Let I_{1}, \ldots, I_{n} be intervals on a real line. The corresponding interval graph G is the intersection graph of those intervals.

- $V(G)=\left\{I_{1}, \ldots, I_{n}\right\}$.
- $\left\{I_{x}, I_{y}\right\} \in E(G)$ if and only if $I_{x} \cap I_{y} \neq \emptyset$.

Colbourn and Kellogg found (1981) a linear time algorithm for finding a set of generators of the automorphism group of an interval graph.

Characterization of interval graphs

Theorem (Fulkerson and Gross)
A graph G is an interval graph if and only if there exists and ordering of the maximal cliques such that for every vertex $v \in V(G)$, the cliques containing v appear in it consequtively.

Characterization of interval graphs

Theorem (Fulkerson and Gross)
A graph G is an interval graph if and only if there exists and ordering of the maximal cliques such that for every vertex $v \in V(G)$, the cliques containing v appear in it consequtively.

Restricting conditions for the ordering are $\{1,2\},\{5,6\}$ and $\{2,3,4,5\}$.

Booth and Lueker (1976) invented PQ-trees for a more general purpose and used them to design a linear time algorithm for recognizing interval graphs.

PQ-trees

Booth and Lueker (1976) invented PQ-trees for a more general purpose and used them to design a linear time algorithm for recognizing interval graphs.

Automorphisms of PQ-trees

Two PQ-trees T and T^{\prime} are equivalent if one can be obtained from the other by applying the following two equivalence transformations:

- Arbitrarily permute the children of a P-node.
- Reverse the children of a Q-node.

Automorphisms of PQ-trees

Two PQ-trees T and T^{\prime} are equivalent if one can be obtained from the other by applying the following two equivalence transformations:

- Arbitrarily permute the children of a P-node.
- Reverse the children of a Q-node.

If ε represents a sequence of equivalence transformations, $\varepsilon \in \operatorname{Aut}(T)$ if there exists $\alpha \in \operatorname{Aut}(G)$ such that $\alpha\left(T_{\varepsilon}\right)$ is T.

Automorphism groups of PQ-trees

If we consider only PQ-trees with no Q-node, we get the same automorphism groups as for trees.

If T_{1} is isomorphic to T_{5} and T_{2} is isomorphic to T_{4}, then reversing the ordering of T_{1}, \ldots, T_{5} is an automorphism of T.

$$
\begin{aligned}
\operatorname{Aut}(T) & =\left(\operatorname{Aut}\left(T_{1}\right) \times \cdots \times \operatorname{Aut}\left(T_{5}\right)\right) \rtimes \mathbb{Z}_{2} \\
& =\left\{\left(t_{1}, \ldots, t_{5}, z\right): t_{i} \in \operatorname{Aut}\left(T_{i}\right), z \in \mathbb{Z}_{2}\right\}
\end{aligned}
$$

MPQ-trees

Korte and Möhring used MPQ-trees (1989) to desing a more simple recognition algorithm for interval graphs.

MPQ-trees

Korte and Möhring used MPQ-trees (1989) to desing a more simple recognition algorithm for interval graphs.

Automorphisms of MPQ-trees

Two MPQ-trees T and T^{\prime} are equivalent if one can be obtained from the other by applying the equivalence transformations and reordering the sections with a node preserving permutation.

If ε represents a sequence of equivalence transformations and ν is a node preserving permutation, then $(\varepsilon, \nu) \in \operatorname{Aut}(T)$ if there exists $\alpha \in \operatorname{Aut}(G)$ such that $\alpha\left(T_{\varepsilon, \nu}\right)$ is T.

Automorphism groups of MPQ-trees

- If T is a MPQ-tree for an interval graph G, then

$$
\operatorname{Aut}(T) \cong \operatorname{Aut}(G)
$$

- $\operatorname{Aut}(T)=E \times N$, where E is the automorphism group of the corresponding PQ-tree and N is a direct product of symmetric groups.

Automorphism Groups of Interval Graphs

Theorem

The finite group Γ is isomorophic to the automorphism group of a finite interval graph if and only if $\Gamma \in \mathcal{I}$, where the class \mathcal{I} of finite groups is defined inductively as follows:
(a) $\{1\} \in \mathcal{I}$,
(b) if $\Gamma_{1}, \Gamma_{2} \in \mathcal{I}$ then $\Gamma_{1} \times \Gamma_{2} \in \mathcal{I}$,
(c) if $\Gamma \in \mathcal{I}$ and $n \geq 2$ then $\Gamma 2 \mathbb{S}_{n} \in \mathcal{I}$.
(d) if $\Gamma_{1}, \ldots, \Gamma_{n} \in \mathcal{I}, n \geq 3$ and G_{i} is the graph for which $\operatorname{Aut}\left(G_{i}\right)=\Gamma_{i}$, then $\left(\Gamma_{1} \times \cdots \times \Gamma_{n}\right) \rtimes \mathbb{Z}_{2} \in \mathcal{I}$ if $G_{1} \cong G_{n}, G_{2} \cong G_{n-1}$, and so on.

Further research

- Circle graphs
- Circular-arc graphs
- Intersection graphs in general

Thank you!

$$
\operatorname{Aut}(G) \cong\left(\mathbb{Z}_{2} \rtimes \mathbb{Z}_{2}\right) \times \mathbb{Z}_{2}
$$

