
Longest increasing subsequence

The recursive algorithm shall ask (for each element) how long
is the longest increasing subsequence ending in this element.

We will be still asking about subsequence consisting of the
first element (at most).

Thus we start caching and for each element we store length of
longest increasing subsequence ending in this element.

Then we sweep through the array and each ”last”element gets
attached after some already explored element.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Matrix multiplication

We should multiply a row of matrices (with compatible ranks).

Matrix multiplication is not commutative but it is associative.

Good bracketing can save us work. Thus how to bracket
matrices for the purpose of multiplication?

Recursively: One multiplication is the last one (we cannot say
that one is the first one(!)).

Thus we branch on all possibilities.

And we will be continuously exploring pairs or individual
matrices (unnecessarily).

Thus we start caching the optimal bracketing for the sequence
Mi . . .Mj .

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Shortest path in a graph
what we know and what not

On Discrete Mathematics you saw at least one algorithm.
What was a crucial assumption?

Dijkstra’s algorithm: non-negative edge-values, Bellman-Ford’s
algorithm: no negative cycle.

Shortest path in generally weighted graph hides the longest
path with non-negative assignment (⇒ NP-hard).

What if we want to find shortest paths between all
vertex-pairs?

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Floyd-Warshall’s algorithm
based on dynamic programming

The algorithm asks (for all pairs) about the shortest path (for
an individual pair) using at most n − 1 edges.

The recursion goes on length of paths.

Recursion is parametrized by 3 values (from, to, length).

Cache will be 3dimensional.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Floyd-Warshall’s algorithm
how to fill the cache?

A cache-element (with coords x , y , z) says the shortest
x , y -path with at most z edges.

The dynamic program’s outer cycle shall be indexed by z ,
inner cycles by x , y .

The most internal cycle takes all vertices w and tries whether
a path with length z + 1 of form x , ...w , y is shorter than the
best so far known path (of length z or through different w ′.

Finding a path of length z + 1 means finding path of length z

and an edge.

The latter is in modified adjacency-matrix, the latter already
in the cache.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Code snippets
are tying your life more strongly to C#!

There are situations we have to solve very often when writing
programs (in C#).

We often create for-cycle, we use to write
Console.WriteLine...,

To avoid work demanding on typewriting, code snippets are
present in Visual Studio.

They get invoked by pressing <TAB> twice.

for, foreach, cw, do, else, forr, if, sim, svm,

switch, while, try, tryf... (altogether at least 38).

Use them on your discretion – restricts typewriting, restricts
you on a particular language (environment).

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Exceptions
we know exceptions as enemies, now we make friends of them

What to do if something goes wrong?

Stop the program (and say what went wrong): Not too good.

Design particular return-values saying that something went
wrong: Restrict the range of a function.

Ignore the problem (the ostrich-algorithm): Causes more harm
than use.

Send the information that something went wrong: OK, but
how?

That is why the Exceptions were designed.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Exception
how to domesticate them

We know that division by zero, incompatible typecast,
null-pointer dereference caused an exception.

Idea is similar to compiler-directives in Pascal, just we have tu
specify where the ”directive”should take effect and we may
invoke the exceptions, too. Also syntactically it looks
differently.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Exceptions

We know that the exceptions (so far) made the program finish.

But we can ”catch”the exceptions (and reflect the fact that
something went wrong).

We may also ”throw”the exceptions.

The exception is passing through the call-stack up to the
block that ”catches”this exception.

There may be different types of exceptions and not all blocks
catch all the exceptions.

If we find no block catching recent exception, the program
terminates (we leave even the method Main.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Exceptions
rules for exceptions

Syntax and semantics:

Keyword try introduces a block with possible
exception-occurence.

catch starts a block with the exception-handler (follows try
block).

There may be more catch blocks depending on types of
exceptions we expect.

finally starts a block that should be performed after the
exception is handled (it may take effect even with the default
handler that usually stops the execution).

throw throws the exception. Syntactically it works like
keyword return.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Exceptions
example

void safedivision(int a, int b)

{ try{
Console.WriteLine(a/b);

}
catch(System.DivideByZeroException e)

{ Console.WriteLine("Impossible!");}
}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Own exception
How to throw our own exception?

class me:System.Exception{}
...

void safedivision(int a, int b)

{ try{
if(b==0) throw new me();

return (a/b);

}
catch(System.Exception e)

{ Console.WriteLine("Aiee, an exception is

here..."); }
finally

{ Console.WriteLine("Anyway...");}
}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Exceptions – remarks

There may be several consecutive catch blocks.

First matching block is executed (first block describing a
compatible data-type).

In C# it is necessary to define son-typed handlers before
parent-typed handlers:

catch(System.Exception e){...}
catch(System.DivideByZeroException e){...}
... we will be unable to compile this source!

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Exceptions – remarks

How we should NOT write programs:
bool already=false;

while(!already)

{ try{function that sometimes crash();

already=true;}
catch(System.Exception e)

{ Console.WriteLine("once more,

please...");}
}

Exception is a good servant but a bad master!

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Generic data-types
how to define them

We know that there exist generic data-types (e.g., List). But
how to define them?

Remark: These data-types are light-version of templates in
C++, those can be indexed by anything (e.g., by number).

They can be used if we want to create several instances with
different underlying data-type.

It is also a replacement of preprocessor-macros in C.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Generics II

When using generics, we proceeded as with normal data-type,
just we added a parameter into angle-brackets [chevrons].

When defining generic data-type we do almost the same, i.e.,
we just name the parameter and behave with that as with a
data-type.

There does not have to be only one parameter, more
parameters are separated by commas.

public class gen cl <T> {public T variable;}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Generic class example

public class my list <T>

{ public T data;

public my list<T> next;

}
...

my list<int> x=new my list<int>();

x.data=new my list<int>();

//This would not work:

// x.next=new my list<double>();

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Generic methods
not only classes may be generic

In the function-body the parameter behaves as when defining
generic class.

This time we put chevrons containing the data-types between
function-name and parameters.

void gen met<T,U>(T a, U b){
Console.WriteLine("Parameters are

{0},{1}.",Convert.ToString(a),Convert.ToString(b));}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Generic method example

static void swapit<T>(ref T a, ref T b)

{ T tmp=a;

a=b;

b=tmp;

}
static void Main()

{ int a=1,b=2;

swapit<int>(ref a, ref b);

Console.WriteLine("a is {0}, b is {1}",a,b);
}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Restricting data-types
in newer versions of .NET Framework

We may restrict the parameter using keyword where.

When defining the class, we put where behind the chevrons,

when defining the methods, it stands after the header.

class gen<T> where T:IComparable{...}
//T implements function CompareTo

void gener<T>(out T a) where T:new(){a=new T();}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Operator overloading
is the same as function overloading

We know that a function is defined by its name and
argument-structure.

Several functions with the same name may exist.

Also there are, e.g., many types of numbers: integers, longint,
double, rational numbers...

... and we want to add, subtract, multiply or divide them...

without calling obscure functions like add two rationals.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Complex numbers
and operations on them, a. k. a. operator overloading

We want to create a class representing complex numbers,...

whose elements can be added like c=a+b;

thus we overload operator +.

When overloading an operator, it looks like function
overloading just the name of the function is fixed (e.g.,
”operator +") and number of arguments, too

(follows from grammar of C#).

We may overload an operator in a class identical with at least
one of its parameters (we cannot overload an operator in
completely different class).

And the functions must be static!

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Example
Gaussian integers

class compl

{ public int re, im;

public compl(int re, int im)

{ this.re=re; this.im=im;’}
public static compl operator +(compl a,compl b)

{ return new compl(a.re+b.re,a.im+b.im);}
public static compl operator *(compl a,compl b)

{ return new compl(a.re*b.im-a.im*b.im,

a.re*b.im+a.im*b.re);

}
}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Example – continued

To make the class compl demonstrable, we override her a method
ToString, too:
public override string ToString()

{ return ""+re+"+ "+im+"i";}
And let’s go:
kompl a=new compl(1,0), b=new compl(0,1),c;

c=a+b;

Console.WriteLine(c);

Console.WriteLine(a*b);

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Overloadable operators

We may overload the operators:
unary !, ~, ++, --

binary +, -, *, /, %, &, |, ^, <<,>>

WE CANNOT overload mainly &&, ||, [], (type)x ,+ =,− =...

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

That’s all for today...

...thank you for your attention.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

