
What remains?

Median in linear time,

randomized algorithms (Monte Carlo, Las Vegas),

other programming languages.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Median in linear time
in fact not just median

If we wanted the algorithm finding only median, we fail...

... thus we generalize the problem:

We are looking for kth smallest element (at the beginning
k = n

2
.

This algorithm may be used for improving, e.g., quicksort (for
pivot-choice).

Note that if we pick median in linear time, we may implement
quicksort with complexity Θ(n log n).

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

The algorithm itself

Divide the input into 5-tuples,

find median in each 5-tuple,

find median of medians,

use it as a pivot (divide the input into 2 piles),

look for the element on the appropriate pile.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Details of the algorithm

Details: Let the pile of smaller elements have l elements,

if l > k then look for kth smallest on the pile of smaller
elements,

if l = k − 1, pivot is the appropriate element,

otherwise look for k − l − 1st smallest on the pile of bigger
elements.

How to find the medians of 5-tuples?

by brute force. How about median of medians?

Recursion (we don’t have time for brute force).

How about searching on a smaller pile?

Recursion again!

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Analysis

Let us denote complexity T (n).

We show that each pile has size at most 7n
10

(by picture).

Now we see that:

T (n) ≤ cn + T
(

n

5

)

+ T
(

7n
10

)

.

It suffices to show that there exists k s.t. T (n) ≤ kn.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Randomized algorithms

Not all algorithms are deterministic, some of them are using
randomness.

Randomness (pseudorandomness) gets generated in C# using
instances of class Random. This generator is *not* random, it
is pseudorandom.

Algorithms that use randomness are called randomized.

There are two principal families of these algorithms: Monte
Carlo and Las Vegas.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Monte Carlo algorithms

These algorithms find quickly some candidate for solution
(called incumbent) but they hardly finish.

Example: Determine the area of a unit circle (i.e., estimate π).

We are generating pairs of numbers from a unit square and we
test whether the point lies inside the unit circle (quarter of

circle). Are of the circle is 4 ·
number of successful points

number of attempts
because area of unit square is 1, we picked 1/4 of the circle
and 3 remaining quadrants are symmetric.

We get a bound on π after the first attempt (0 or 4). The
precision should increase with number of attempts.

This algorithm relies on Law of large numbers (average
converges to expected value).

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Monte Carlo Algorithms
...for the second time

Further algorithms from this family are: Simulated annealing
or Genetic algorithms.

Advantage: We may stop whenever we want (and we have an
incumbent). Disadvantage: These algorithms do not finish.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Las Vegas algorithms

This family was originally defined for the algorithms solving
problems to the optimum using randomness to defeat the
worst case.

Example: Randomized quicksort (pick random element as a
pivot).

Later approximation algorithms started being considered also
members of this family – if they use randomness and after
they finish, they may be just started over to get a better
result.

Example (randomized rounding): Considering a problem of
linear integer programming we use (nonintegral) linear
programming and non-integral values get rounded using
”randomized rounding”. Once the rounding is over, we have a
solution.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

More on these algorithms

Matoušek, Valtr,... Probabilistic method,

Sgall: Randomized algorithms, Approximation and
online-algorithms.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Further programming languages
look in a very similar way

C programming language,

C++,

Java,

PHP, Javascript,...

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

C programming language
... at the beginning there was language A, then B and after that C

Designed as a modification of Pascal,

it uses a syntax familiar to us.

It does not implement objects, functions are identified by
names (no function overloading),

there is no type string, pointers have to be used instead.

For dereference a unary (prefix) asterisk operator is used,

memory is allocated calling function malloc and freed by
free. Function malloc takes as a parameter number of
allocated bytes. Data-types can be easily typecasted (pointer
to long int and back...).

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

C programming language
for the second time

Array is just disguised pointer, thus string can be represented
using pointer at char.

Everything is just disguised integer (long), there is no
boolean, use integer instead, thus: if(a=b)...

The entry point of the program is function main.

Arguments are always passed by value (passing by reference
may be worked around using pointers).

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Examples in C

#include <stdio.h>

#include <malloc.h>

int main(int argc, char*argv[])

{ int a=1;

while(a<=argc) printf("%s\n ",argv[a++]);

}

a=malloc(strlen(b)+1);

while(*a++=*b++); //strcpy

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Overall about C programming language

Some people consider the language to be obsolete,

however, everything important is written in C.

Programmer has full control over all resources,

thus it is necessary to be responsible and avoid incompetent
type-casting, shooting into memory and also nobody checks
whether the arguments are matching.

There are no classes, there are structures and unions.

When using structures, part of the data-type-name is also the
word structure and union, respectively.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Overall about C II

There are no generic data-types (and even no templates),
there are macros instead.

Example: #define MAX(a,b) (a>b?a:b) – macro is
preprocessed before compilation with all unpleasant
consequences:

MAX(f(x),g(x)) calls function returning larger result twice!

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

C++

In general, C++ is an extention of C thus most stuff written
in C works also in C++, just...

C++ has stronger control over type-casting, it tests
parameters of called functions and it implements objects.

Almost anything known in other languages can also be found
in C++ (including multiple inheritance ⇒ no need for
interfaces).

It looks similarly to C# up to particular exceptions:

abstract int f(); ⇒ virtual int f()=NULL;

override void f()... ⇒ virtual void f()...

abstract class c... ⇒ class c (compiler is not as
stupid to miss the fact that the class contains purely virtual
function).

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Overall on C++

C++ does not force us to use the objects, thus there are
member- and friend-functions. After defining a function in the
class-definition we may declare this function to be a
”friend”(and thus it may access private items).

Member-functions are defined using four-dot-operator:
int classname::functionname(int parameters)...

Instead of interfaces we use abstract classes and multiple
inheritance (thus we do not use implements keyword).

Templates (ancestor of generic data-types) do not have to be
parametrized only by data-types (but also, e.g., by a number).

There is no garbage-collector, what gets allocated using new

has to be deallocated using delete keyword (thus it makes
sense to define destructors).

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Java

The language so far the most similar to C# (including the
fact that it is interpreted language).
There are several milliards of devices (usually programmed in
C) around the world that are able to interpret Java.

Syntactially very similar just without namespaces.

Public class can be defined only in the file with the same
name as the class has.
Programs are not always accessed through static method
main,

library-functions are named differently
(System.Console.WriteLine -> System.out.println).
Inheritance is denoted using keyword (extends) instead of
semicolon,

using ⇒ import.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Java application example
doing nothing

class apple{
public static void main(String args[])

{ System.out.println("Nothing!");

}
}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Further use of Java
not only applications can be written in Java

Applet – code written in Java used on web-pages,

MIDlet – code interpretted using mobile-phones (now
obsolete),

Android applications – there are several possibilities.

Common behavior: Always it is necessary to define the
appropriate son of the appropriate class,

enigmatic interface equipped by particular traps (e.g., code of
MIDlet must not exceed 32 kB, there is approximately 2MB
heap, display is redrawn under cryptic circumstances, in
particular implementations of Java virtual machine there used
to be errors).

MIDlets and Android applications usually require a different
compiler (than the applications and applets).

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Applet

import java.applet.*; //Everyone must include

Applet-classdef

import java.awt.*; //Who wants to draw on display?

public class apple extends Applet{
public void init(){}
public void stop(){}
public void paint(Graphics g)

{ g.drawString("Ha!",20,20);

g.drawString("What means your

’Ha!’?",20,40);

}
} //Must be in apple.java (as it is a public class)!
//It is necessary to define init method.
//The paint-method is called when redrawing the window.
//When the program runs, the window is *not* redrawn.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

MIDlet I/II

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import java.util.*;

public class strange game extends MIDlet {
protected void startApp() throws

MIDletStateChangeException {
Display display = Display.getDisplay(this);

display.setCurrent((

new GameMidletScreen(this)));

}
...

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

MIDlet II/II

public class strange game extends MIDlet {
protected void startApp() throws

MIDletStateChangeException {
Display display = Display.getDisplay(this);

display.setCurrent((

new GameMidletScreen(this)));

}
protected void destroyApp(boolean unconditional)

throws MIDletStateChangeException {}
public void exit()

{ try{destroyApp(false);}catch(Exception e){}
notifyDestroyed();

}
protected void pauseApp(){}

}
class GameMidletScreen extends Canvas implements

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Android application

package pytel.com;

import android.app.Activity;

import android.os.Bundle;

public class AnthropoidActivity extends Activity {
/** Called when the activity first created. */

@Override

public void onCreate(Bundle savedInstanceState){
super.onCreate(savedInstanceState);

setContentView(R.layout.main);

}
}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Chalk the following up to experience

When we know general syntax of a family of programming
languages, programming represents:

Algorithm-design (teoretical topic – in fact mathematics).

Interface-design and implementation (rituals with uncertain
restrictions).

Application-kernel implementation (praktical work almost the
same in all languages).

Unpleasant part is represented by input/output programming,
after designing input and output whoever (who is generally
able of programming) must succeed.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Conclusion

Computer-science is not just programming,

however, programming-knowledge is necessary for
understanding particular topics in computer-science

except of this, programming is relatively well (financially)
honoured,

however, it does not need to be the case for too long time.
Thus it is good idea to understand even theory!

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

That’s all from me...
...except of exercises from last lecture!

Thank you for your attention.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

