
Programming II

Martin Pergel, perm@kam.mff.cuni.cz

9. března 2014

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Overhead information

Programming II extends Programming I,

Language-change – C# instead of Pascal,

C# gets educated further by Pavel Ježek (2nd year),

Technical programming, algorithms, data structures.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Obligations Credit + Exam

Credit-requirements:

1 Active participants at the assignments (as in winter-term),
2 Practical test (write and debug specified program within 90

minutes not in Pascal),
3 Semester project (as in winter term).

Exam – normal exam without computers, Within 2 or 3 hours
design a program that cannot be written within 3 hours –
focus on principal problems.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Towards C#

Bad news:

Learning a new language,
Language essentially uses object,
C# is relatively complicated language,
Error-messages not always make a good sense to you
(complicated).

Good news:

Leaving 20 years old environment,
There exist multiplatform implementation for C#,
You may use it for fulfilling pending obligations from winter
term.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Step aside – object programming

World consists of objects (pen, black-board, lecturer).

Objects are mutually interacting (lecture lectures the
students),

objects are living their own life,

there may be many objects of a particular type (say, of type
student).

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Objects and classes

Objects are individual items around us.

Each item has an underlying data-type ⇒ class.

Class reflects a collection of objects of the same type [e.g.,
student].

We may view it as the underlying data-type [student].

Also possible: Platon had a world of ideals (where ideal
instance of each object can be found). Class refers to this
world of ideals (e.g., ideal student).

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Technical point of view

An object (e.g., car) has some properties (attributes), say,
color, brand, weight, sizes,...

Thus we may observe it as something similar to structures
(records from Pascal).

But also objects have some abilities called methods.

E.g., car ⇒ start up, stop the motor,...

... so objects can be imagines as piles of attributes (variables)
and methods (functions).

Object programming gives us much more (inheritance,
encapsulation, polymorphism), but we have to go step by step
(these three paradigms take place in a few weeks).

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Towards C# I/III
general ideas of syntax

C# is a language from the family of C-programming language,

C should be an obfuscated Pascal, thus some ideas hold, some
were changed.

Both language are structures, so program consist of blocks
(where we are using control-structures, define and call
functions, functions are returning values and yet we may work
with variables).

Languages from family of C-language are case sensitive!

Blocks are not delimited by begin and end but by braces ({
and }).

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Towards C# II/III
general ideas of syntax

Variable-definition differs, instead of var a:integer; we
write int a;, i.e., type-name preceeds the variable name,
keyword var is omitted. Types are slightly renamed (char,
int, long, double...)

Function-definition differs: Same modification as for vars, omit
keyword procedure/function, put return-type instead:
function f(a:integer):longint; ⇒ long f(int a)

note the missing semicolon!

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Towards C# III/III
general ideas of syntax

Procedures are functions that return no value ⇒ data-type
void:
procedure f(a:integer); ⇒ void f(int a)

When defining/calling a function, brackets are compulsory:
function f:integer; ⇒ int f()

otherwise we cannot simply distinguish variable- and
function-definition!
x:=f; ⇒ x= f();

not always we want to call the function, maybe we want to
create a reference on it.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Basic operators

+,−, ∗ – similar to Pascal,

/ – also similar, but adaptive. For ints integral division, for at
least one non-integer, non-integral division.

% – modulus (mod),

logical: &&, ||, ˆ, ! – and, or, xor, not,

relational: <,>,<=, >= (the same as in Pascal), but...

==,= – comparison for equality (Pascal =) and assignment
(Pascal :=).

Brackets are the same (priority-forcing). Beware of priorities!

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Basic control-structures

if(condition) expression or block,

while(condition) expression or block,

if and while statements are very similar to Pascal,

difference: Statements are not separated but ended with
semicolon, thus:

if(condition) statement; else other statement

Beware: if(condition) block else statement or block

– block begins with { and ends with }. After } and before
else the semicolon must not be placed!

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

For-cycle

For-cycle is generalized:
for(init; condition; increment) body

init is the initial expression (can be used, e.g., as in Pascal),

condition is a condition as in while-cycle, for-cycle is
being iterated while this condition holds.

increment is an incremental expression – it gets performed
after each iteration (after we perform the body).

There is no automatic incrementation for the cycling

variable! Conversely, there are no specific restrictions on
modifying this variable.

Any part of the for-cycle can be empty: for(;;); (empty
init, cond, inc and body – this cycle never ends).

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Functions return a value...
... in a different way than in Pascal

There is no special variable (with the same name as the
function as in Pascal).

The aim of the function is to return the value, thus when the
value is clear, there is not reason to continue interpretting the
function.

Return-value is operated using keyword return followed by
the expression we want to return (in procedure, i.e., function
returning void this expression is empty).

Example: return 1; or return "something";.

Note that strings are not inside apostrophes but inside
quotation-marks!

Strings shall be educated further in semester due to particular
issues...

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Remarkable operators ++ and −−
pars prima

Often we want to increment or decrement a value of a
variable.

In Pascal ... functions inc and dec.

Since C ... unary operators ++ and −−.

They either preceede or succeed a variable:

Example + + a – means increment value of a by one,

−− a similarly decrement. These operators return a value.
Their value is the new value of the given variable, i.e.,
example:

int a,b; a=1;b=++a; – now, both b and a have value 2.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Remarkable operators ++ and −−
pars secunda

Usually we want first use the (original) value and then modify
it.

In such a situation we use postfix versions:
a=1; b=a++; – now, a is two but b is 1.

These operators incur a side-effect. A variable with a
side-effect-operator must not appear more than once in an
expression and it is prohibited to perform more than one
side-effect (for each variable) in one expression:

b=a++++; is not well-defined (two side-effects on a),

b= a++ + ++c; is well-defined,

b= a++ + a; not well-defined (a with side-effect appears
twice).

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Assignment expression VS statement

In Pascal – assignment statement: a:=b;

In languages of C-family – assignment expression, the value of
the assignment expression is the assigned value, thus we may
perform: a=b=c=d=1;

Moreover, since C we may initialize variables when defining
them:

int a=1,b=2,c=3;

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Example
function computing factorial

long factorial(int a)

{ int b=1,c;

for(c=1;c<=a;c++)

b=b*c;

return b;

}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Another example
again a function computing factorial

long factorial(int a)

{ int b=1,c;

for(c=1;c<=a;c++)

b*=c; //operator multiply-by

return b;

}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Yet another example
again a function computing factorial

long factorial(int a)

{ int b,c;

for(b=c=1;c<=a;b*=c++);

//for-cycle with empty body

return b;

}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

And yet another example
again a function computing factorial

long factorial(int a)

{ int b,c;

for(b=c=1;c<=a;)b*=c++;

//for-cycle with empty incremental expr.

return b;

}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Comments
in the program – not those ones to the lecture

We cannot use symbols { and } as in Pascal for comments,

we use the sequences /∗ and ∗/, respectively, instead.

Example: /* Here is a comment... */

Many comments are one-line only, thus:

yet another possibility of comments – starting with //

This comment ends with the end of line:

Example:
int f() // a function named f returning int

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Impression

Languages from family of C-programming language are designed in
an efficient way (unnecessary keywords are removed) but the
program looks more impersonal (than in Pascal).

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Specifics
that made us avoid C# in the winter term...

There are yet several specifics:

Instead of stray code between begin and end (as in Pascal),
the main program is represented by function Main.

And that’s not all, we have to perform the ritual whose
meaning we’ll try to explain before the end of the lecture as
much as possible (and we’ll continue next lecture).

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Ritual
that must be performed before we start writing C# program

namespace x{
class y{

public static void Main()

{ // here the main program takes place

}
}

}
Today we skip modifiers public and static.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Analyzing the ritual I/II

Probably you recognized the definition of function Main which
is the entry-point of the program.

Keyword class define a class the sense we defined it while
talking about object programming, i.e.,

in object-oriented languages, everything is either a class or an
object, thus even a program must be defined as a class (as the
objects are instances of the class [i.e., variables of this
data-type]).

Keyword class is followed by the name of the class we are
currently defining; the definition of the class is inside a block
(surrounded by braces).

Thus even the function Main must be surrounded by some
object.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Analyzing the ritual II/II

The name of the ”surrounding”object is not prescribed, we
may name it almost as we want.

Keyword namespace introduces so called namespace. It is a
pile of classes - at the moment we may imagine it as
something similar to class (just it has a bit different abilities,
as we’ll see later).

In C#, all classes must be defined in some namespace, thus we
have to surround the name of the class by some namespace.

Syntactically, we define namespaces similarly to classes, so the
keyword namespace is followed by the name of the namespace
and the definition is inside a block (inside braces).

As it was for the classes, even the name of the namespace is
not prescribed, thus we may name it arbitrarily.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

First program
doing something...

namespace x{
class y{

public static void Main()

{ System.Console.WriteLine("This is a

program doing something...");

for(;;);

}
}

}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Remarks
to the program

Dot (binary operator) works in a similar way as in Pascal, now
it is the operator of accessing the class, object or a namespace.

There is a namespace System containing static class Console.

Class Console is equipped by a method WriteLine doing
something similar to what you know from Pascal.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Yet one ritual
related to the program

When defining functions, we are defining them in the same
class (as method Main) and we have to define them as
static, too (until we start understanding what static really
means.

If we want to define something like global variables, we define
them also in the class and also as static:
static int a,b,c;.

We do not have to define them asi public (but we do not
lose anything when doing so).

Beware: Local variables are not defined as static (or public).

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Short practical presentation
of Visual Studio .NET 2013 Express

... and that will be all for today.

Thank you for your attention.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

