
Sorting Units

Overview

Simple sorting algorithms,

Units,

Pointers.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Sorting – the motivation

We have read the data,

we want to process it in a monotone ordering.

How to do that? Sort, process.

Let us assume that the data has been read into an array.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

The problem of sorting – simple sorting algorithms

BubbleSort,

InsertSort,

SelectSort,

QuickSort.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Bubblesort

Geometric interpretation:
Bubbles in a liquid tend to ascend.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Bubblesort

Geometric interpretation:
Bubbles in a liquid tend to ascend.

The idea: We are comparing pairs of consecutive numbers
from the first pair to the last one. If they are incorrectly
ordered, we swap their positions.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Bubblesort

Geometric interpretation:
Bubbles in a liquid tend to ascend.

The idea: We are comparing pairs of consecutive numbers
from the first pair to the last one. If they are incorrectly
ordered, we swap their positions.

Individual elements are ”bubbling” in the right direction.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Bubblesort

Geometric interpretation:
Bubbles in a liquid tend to ascend.

The idea: We are comparing pairs of consecutive numbers
from the first pair to the last one. If they are incorrectly
ordered, we swap their positions.

Individual elements are ”bubbling” in the right direction.

We iterate this process until no swap takes place.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Bubblesort in pseudocode

weswapped:=true;

while weswapped do
begin

for i:=1 to length - 1 do
begin

weswapped:=false;

if numbers[i]>numbers[i+1] then

begin swap(numbers[i],numbers[i+1]);

weswapped:=true;

end;

end;

end;

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Complexity of bubble-sort

How many times we have to iterate the outer (while-)cycle?

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Complexity of bubble-sort

How many times we have to iterate the outer (while-)cycle?

In the i -th iteration the i -th largest element reaches its
position!

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Complexity of bubble-sort

How many times we have to iterate the outer (while-)cycle?

In the i -th iteration the i -th largest element reaches its
position!

Thus it suffices to perform at most n iterations. Complexity of
one iteration is also linear (O(n)).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Complexity of bubble-sort

How many times we have to iterate the outer (while-)cycle?

In the i -th iteration the i -th largest element reaches its
position!

Thus it suffices to perform at most n iterations. Complexity of
one iteration is also linear (O(n)).

Thus altogether O(n2).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Complexity of bubble-sort

How many times we have to iterate the outer (while-)cycle?

In the i -th iteration the i -th largest element reaches its
position!

Thus it suffices to perform at most n iterations. Complexity of
one iteration is also linear (O(n)).

Thus altogether O(n2).

We can also implement the algorithm so that in odd iterations
we bubble from left to right and in even iterations from right
to left. This is called Shakesort. Its complexity is the same.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Insert- and Select-sort

Selectsort:

Repeat until the array to sort is empty:

Find a minimum in the array to sort and add it to the sorted
array.

Insertsort:

Repeat until the array to sort is empty:

Take the first element of the array to sort and place it onto
the correct position in the target array, i.e.:
find the position where this element should be in the target
array, add it there and the rest of the target array move one
position further.

Complexity-analysis: We iterate the process ntimes. One iteration
takes at most cn steps (for some constant c). Therefore altogether
O(n2).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Quicksort
sorting using the recursion – the idea

Sorting a one-element-array is trivial (don’t do anything, it is
already sorted), i.e., just return the input sequence.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Quicksort
sorting using the recursion – the idea

Sorting a one-element-array is trivial (don’t do anything, it is
already sorted), i.e., just return the input sequence.

In a nontrivial array A take a pivot p (element that we use for
pivoting).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Quicksort
sorting using the recursion – the idea

Sorting a one-element-array is trivial (don’t do anything, it is
already sorted), i.e., just return the input sequence.

In a nontrivial array A take a pivot p (element that we use for
pivoting).

Divide the array A into arrays B and C . B consists of the
elements smaller than p, C consists of elements larger than p.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Quicksort
sorting using the recursion – the idea

Sorting a one-element-array is trivial (don’t do anything, it is
already sorted), i.e., just return the input sequence.

In a nontrivial array A take a pivot p (element that we use for
pivoting).

Divide the array A into arrays B and C . B consists of the
elements smaller than p, C consists of elements larger than p.

Employ recursion on B , employ recursion on C

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Quicksort
sorting using the recursion – the idea

Sorting a one-element-array is trivial (don’t do anything, it is
already sorted), i.e., just return the input sequence.

In a nontrivial array A take a pivot p (element that we use for
pivoting).

Divide the array A into arrays B and C . B consists of the
elements smaller than p, C consists of elements larger than p.

Employ recursion on B , employ recursion on C

Output the array B , output pivot p (as many times as it was
in A), output C .

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Quicksort
complexity analysis

What’s the complexity of the algorithm? How many times can
we ”employ the recursion”?

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Quicksort
complexity analysis

What’s the complexity of the algorithm? How many times can
we ”employ the recursion”?

Yes, n-times. If we take the minimum as pivot, B is trivial
and C is one element smaller than A.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Quicksort
complexity analysis

What’s the complexity of the algorithm? How many times can
we ”employ the recursion”?

Yes, n-times. If we take the minimum as pivot, B is trivial
and C is one element smaller than A.

What is the complexity of each ”recursion-level”?

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Quicksort
complexity analysis

What’s the complexity of the algorithm? How many times can
we ”employ the recursion”?

Yes, n-times. If we take the minimum as pivot, B is trivial
and C is one element smaller than A.

What is the complexity of each ”recursion-level”?

Linear w. r. t. n (because each element gets handled with a
constant overhead).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Quicksort
complexity analysis

What’s the complexity of the algorithm? How many times can
we ”employ the recursion”?

Yes, n-times. If we take the minimum as pivot, B is trivial
and C is one element smaller than A.

What is the complexity of each ”recursion-level”?

Linear w. r. t. n (because each element gets handled with a
constant overhead).

Altogether, again, O(n2).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Quicksort
complexity analysis

What’s the complexity of the algorithm? How many times can
we ”employ the recursion”?

Yes, n-times. If we take the minimum as pivot, B is trivial
and C is one element smaller than A.

What is the complexity of each ”recursion-level”?

Linear w. r. t. n (because each element gets handled with a
constant overhead).

Altogether, again, O(n2).

The average-case complexity is Θ(n log n) and the algorithm
can be improved to gain this complexity by choosing pivot in
a smarter way.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Quicksort
complexity analysis

What’s the complexity of the algorithm? How many times can
we ”employ the recursion”?

Yes, n-times. If we take the minimum as pivot, B is trivial
and C is one element smaller than A.

What is the complexity of each ”recursion-level”?

Linear w. r. t. n (because each element gets handled with a
constant overhead).

Altogether, again, O(n2).

The average-case complexity is Θ(n log n) and the algorithm
can be improved to gain this complexity by choosing pivot in
a smarter way.

To improve this algorithm we want to find a median - but we
have to do it in linear time.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Divide et impera method
alias Divide and conquer

Already in ancient times (antiquity) it was known that if we
divide enemies into several groups, we can gain control over
them more easily.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Divide et impera method
alias Divide and conquer

Already in ancient times (antiquity) it was known that if we
divide enemies into several groups, we can gain control over
them more easily.

Similar approach is used in the algorithm-design, just we
divide the data.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Divide et impera method
alias Divide and conquer

Already in ancient times (antiquity) it was known that if we
divide enemies into several groups, we can gain control over
them more easily.

Similar approach is used in the algorithm-design, just we
divide the data.

This method is specific by dividing the data in a fixed way,
e.g., Quicksort.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Divide et impera method
alias Divide and conquer

Already in ancient times (antiquity) it was known that if we
divide enemies into several groups, we can gain control over
them more easily.

Similar approach is used in the algorithm-design, just we
divide the data.

This method is specific by dividing the data in a fixed way,
e.g., Quicksort.

Technically we are designing recursive algorithms with

complexity T (n) =
k∑

i=1

T (ni ) where
k∑

i=1

ni = n.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

FIXME!!!

Here should be a quicksort implementation!

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Units
how to compile parts of code separately

Sometimes we implement functions usable in several projects
(e.g., our sorting functions).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Units
how to compile parts of code separately

Sometimes we implement functions usable in several projects
(e.g., our sorting functions).

We may copy (click’n’paste) them into the other source files
(bad idea)

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Units
how to compile parts of code separately

Sometimes we implement functions usable in several projects
(e.g., our sorting functions).

We may copy (click’n’paste) them into the other source files
(bad idea)

or we store them into a separate file that gets compiled
separately.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Units
how to compile parts of code separately

Sometimes we implement functions usable in several projects
(e.g., our sorting functions).

We may copy (click’n’paste) them into the other source files
(bad idea)

or we store them into a separate file that gets compiled
separately.

The latter approach is referred as the units.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Units – advantages and disadvantages

Source code gets spreaded into several files,

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Units – advantages and disadvantages

Source code gets spreaded into several files,

it is not necessary to store the code more than once when we
want to share it in several projects.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Units – syntax and semantic

Instead of with the keyword program, we start such files with
the keyword unit,

after this keyword we place the name of the unit. Please, note
that the name must correspond with the filename. Also the
keyword unit is compulsory.

A unit consists of an interface (what’s visible from the
outside)

and of implementation (internal part where the interface is
implemented).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Units – the interface part

The interface describes the publicly visible part of a unit.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Units – the interface part

The interface describes the publicly visible part of a unit.

Interface consists of:

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Units – the interface part

The interface describes the publicly visible part of a unit.

Interface consists of:

variable definitions (when the variables should be publicly
visible),

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Units – the interface part

The interface describes the publicly visible part of a unit.

Interface consists of:

variable definitions (when the variables should be publicly
visible),

function (and proc.) prototypes (when the function should be
publicly visible),

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Units – the interface part

The interface describes the publicly visible part of a unit.

Interface consists of:

variable definitions (when the variables should be publicly
visible),

function (and proc.) prototypes (when the function should be
publicly visible),

prototype is the header of the function, i.e., the ”first line”.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Units – impelementation

What should *not* be publicly visible, i.e.:

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Units – impelementation

What should *not* be publicly visible, i.e.:

Function definitions,

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Units – impelementation

What should *not* be publicly visible, i.e.:

Function definitions,

variable definitions (for internal variables of the unit),

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Units – impelementation

What should *not* be publicly visible, i.e.:

Function definitions,

variable definitions (for internal variables of the unit),

definition of any stuff that should be (publicly) invisible,

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Units – impelementation

What should *not* be publicly visible, i.e.:

Function definitions,

variable definitions (for internal variables of the unit),

definition of any stuff that should be (publicly) invisible,

definition of internal functions (not mentioned in interface).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Units – impelementation

What should *not* be publicly visible, i.e.:

Function definitions,

variable definitions (for internal variables of the unit),

definition of any stuff that should be (publicly) invisible,

definition of internal functions (not mentioned in interface).

We finish the unit by keyword end. (followed by full-stop)

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Units – example

unit sorting;

interface

type po=array[0..9] of integer;

procedure bubble(var arr:array of integer);

procedure select(var a:po);

procedure insert(var a:po);

procedure quicksort(var arr:array of

integer;number:integer);

procedure output(a:array of integer);

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Units – example (cont.)

...

implementation

var inserted:integer;

procedure bubble(var arr:array of integer);

...

function extract min(var a:po):integer;

{This function will not be visible from

outside!}
...

procedure select(var a:po):integer;

...

...

end.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Units – how to use them

When using a unit, we announe it with a keyword uses

followed by the name of the unit:

Example: uses sorting;

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Sorting Units

Using the unit – example

program sort;

uses sorting;

var p:array [0..9] of integer;

i:integer;

begin

for i:=0 to 9 do

read(p[i]);

quicksort(p,1,10);

output(p);

end.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I


	Sorting
	Units

