Arrays

- ... when we need to store many elements of the same type (e.g., 1 000 of integer numbers),
- they get defined in the section of variables (i.e., var)),
- they get defined using the keyword <u>array</u>, followed by an interval that defines its bounds, and the underlying data-type.
- Example: var a: array [1..100] of integer;
 file_example:array[5..50] of string;
- Individual members are accessed using square brackets: Example:

```
a[1]:=10;
file_example[6]:='xxx';
{Beware:} file_example[1]:='out of bounds!';
```


Sieve of Eratosthenes

```
var primes: array[2..1000] of boolean;
                                               i,j:integer;
begin
for i:=2 to 1000 do primes[i]:=true;
for i:=2 to 1000 do
begin
      if primes[i] then
       begin writeln(i,' is a prime');
             i := 2:
             while(i*j <= 1000) do
              begin
                    primes[i*i]:=false;
                    i := i + 1;
              end;
       end;
```


■ Unsorted array ⇒ simple upper and lower bound (pass through the whole array until found),

- Unsorted array ⇒ simple upper and lower bound (pass through the whole array until found),
- sorted array:

- Unsorted array ⇒ simple upper and lower bound (pass through the whole array until found),
- sorted array:
 - unary search (browse through the array like through a book),

- Unsorted array ⇒ simple upper and lower bound (pass through the whole array until found),
- sorted array:
 - unary search (browse through the array like through a book),
 - binary search (start in the middle, in each step halve the input),

- Unsorted array ⇒ simple upper and lower bound (pass through the whole array until found),
- sorted array:
 - unary search (browse through the array like through a book),
 - binary search (start in the middle, in each step halve the input),
 - quadratic search, generalized quadratic search...

Unary search

■ Simple algorithm, simple analysis, its complexity:

Unary search

Arrays

- Simple algorithm, simple analysis, its complexity:
- $\Theta(n)$.

Binary search

■ What's the complexity of the algorithm? When do we have to add an extra step?

Binary search

- What's the complexity of the algorithm? When do we have to add an extra step?
- $\Theta(\log n)$.

of array manipulation algorithms and complexity analysis:

Matrix-multiplication:

- Matrix-multiplication:
- Naive algorithm Easily implementable, simple complexity-analysis.

- Matrix-multiplication:
- Naive algorithm Easily implementable, simple complexity-analysis.
- Strassen's algorithm hard to implement, hard to analyze, hard to understand, but it has a better complexity.

- Matrix-multiplication:
- Naive algorithm Easily implementable, simple complexity-analysis.
- Strassen's algorithm hard to implement, hard to analyze, hard to understand, but it has a better complexity.
- Coppersmith-Vinograd's algorithm yet even more complicated with yet better complexity.

- Matrix-multiplication:
- Naive algorithm Easily implementable, simple complexity-analysis.
- Strassen's algorithm hard to implement, hard to analyze, hard to understand, but it has a better complexity.
- Coppersmith-Vinograd's algorithm yet even more complicated with yet better complexity.
- Finding the largest zero-submatrix:

- Matrix-multiplication:
- Naive algorithm Easily implementable, simple complexity-analysis.
- Strassen's algorithm hard to implement, hard to analyze, hard to understand, but it has a better complexity.
- Coppersmith-Vinograd's algorithm yet even more complicated with yet better complexity.
- Finding the largest zero-submatrix:
- Naive algorithm: $O(n^6)$

- Matrix-multiplication:
- Naive algorithm Easily implementable, simple complexity-analysis.
- Strassen's algorithm hard to implement, hard to analyze, hard to understand, but it has a better complexity.
- Coppersmith-Vinograd's algorithm yet even more complicated with yet better complexity.
- Finding the largest zero-submatrix:
- Naive algorithm: $O(n^6)$
- Any ideas how to beat this complexity?

Further examples

- Matrix-multiplication:
- Naive algorithm Easily implementable, simple complexity-analysis.
- Strassen's algorithm hard to implement, hard to analyze, hard to understand, but it has a better complexity.
- Coppersmith-Vinograd's algorithm yet even more complicated with yet better complexity.
- Finding the largest zero-submatrix:
- Naive algorithm: $O(n^6)$
- Any ideas how to beat this complexity?
- Exercise (think about it at home, a solution will be shown later).

Horner's Method

We want to convert a number stored as a string into an integer.

Number $a_n a_{n-1} a_{n-2} ... a_0$ in decimal (position) system means: $a_n 10^n + a_{n-1} 10^{n-1} + ... + a_0$. It holds:

$$a_n 10^n + a_{n-1} 10^{n-1} + \dots + a_0 = (\dots((a_n * 10) + a_{n-1} * 10) + \dots + a_1) * 10 + a_0$$

In the same way we may evaluate numbers in other position

cyctome (hipany tornary quatornary docimal hoxadocimal Martin Pergel, perm@kam.mff.cuni.cz

Horner's Method

- We want to convert a number stored as a string into an integer.
- Naive approach: We may start from the least important digit, keep track of an exponent by 10 and sum up.

Number $a_n a_{n-1} a_{n-2} ... a_0$ in decimal (position) system means: $a_n 10^n + a_{n-1} 10^{n-1} + ... + a_0$. It holds:

$$a_n 10^n + a_{n-1} 10^{n-1} + \dots + a_0 = (\dots((a_n * 10) + a_{n-1} * 10) + \dots + a_1) * 10 + a_0$$

In the same way we may evaluate numbers in other position

Martin Pergel, perm@kam.mff.cuni.cz

Horner's Method

- We want to convert a number stored as a string into an integer.
- Naive approach: We may start from the least important digit, keep track of an exponent by 10 and sum up.
- ... or we use Horner's method and start with the most important digit.

Number $a_n a_{n-1} a_{n-2} ... a_0$ in decimal (position) system means: $a_n 10^n + a_{n-1} 10^{n-1} + ... + a_0$. It holds:

$$a_n 10^n + a_{n-1} 10^{n-1} + \dots + a_0 = (\dots((a_n * 10) + a_{n-1} * 10) + \dots + a_1) * 10 + a_0$$

In the same way we may evaluate numbers in other position

Martin Pergel, perm@kam.mff.cuni.cz

Horner's Method

- We want to convert a number stored as a string into an integer.
- Naive approach: We may start from the least important digit, keep track of an exponent by 10 and sum up.
- ... or we use Horner's method and start with the most important digit.
- We find its value and proceed (inductively): Multiply so far obtained result by 10 and add (sum up with) the newly loaded digit.

Number $a_n a_{n-1} a_{n-2} ... a_0$ in decimal (position) system means: $a_n 10^n + a_{n-1} 10^{n-1} + ... + a_0$. It holds:

$$a_n 10^n + a_{n-1} 10^{n-1} + \dots + a_0 = (\dots((a_n * 10) + a_{n-1} * 10) + \dots + a_1) * 10 + a_0$$

In the same way we may evaluate numbers in other position

Martin Pergel, perm@kam.mff.cuni.cz

Example

```
program x;
var a:string;
    i, value: longint;
begin
     readln(a); i:=1; value:=0;
     while i <= length(a) do
     begin
          value:=10*value+ord(a[i])-ord('0');
          i:=i+1;
     end;
     writeln(value);
end.
```

Consider a polynomial $a_n x^n + a_{n-1} x^{n-1} + ... + a_0$.

- Consider a polynomial $a_n x^n + a_{n-1} x^{n-1} + ... + a_0$.
- We want to evaluate it, i.e., find its value for some value of x.

- Consider a polynomial $a_n x^n + a_{n-1} x^{n-1} + ... + a_0$.
- We want to evaluate it, i.e., find its value for some value of x.
- Possibilities?

- Consider a polynomial $a_n x^n + a_{n-1} x^{n-1} + ... + a_0$.
- We want to evaluate it, i.e., find its value for some value of x.
- Possibilities?
- Brute force (estimate $a_n x^n$, $a_{n-1} x^{n-1}$,... and sum it up)

- Consider a polynomial $a_n x^n + a_{n-1} x^{n-1} + ... + a_0$.
- We want to evaluate it, i.e., find its value for some value of x.
- Possibilities?
- Brute force (estimate $a_n x^n$, $a_{n-1} x^{n-1}$,... and sum it up)
- or Horner's method:

$$\sum_{i=0}^{n} a_i x^i = ((...(a_n x + a_{n-1})x + ... + a_1)x + a_0).$$

Evaluating a polynomial by Horner's method

- 1: Read the coefficient of highest (so far not processed) monomial
- multiply the value obtained so far with x,
- add the value of the newly read coefficient,
- GOTO 1;

Example

```
program nothing;
var i,a,sum,degree,x:integer;
{Evaluate a polynomial for a value x, use variable a
to read the coefficients}
begin
      readln(degree); readln(x);
      sum:=0:
      for i:=0 to degree do
      begin sum:=sum*x;
            readln(a);
            sum:=sum+a;
      end;
      writeln('The value is: ',sum);
end.
```

It is possible to perform hard-wired jumps within a Pascal program.

- It is possible to perform hard-wired jumps within a Pascal program.
- After defining the global variables (section var) we can define a section label. There we list the used labels.

- It is possible to perform hard-wired jumps within a Pascal program.
- After defining the global variables (section var) we can define a section label. There we list the used labels.
- Then we may use these labels in the program

- It is possible to perform hard-wired jumps within a Pascal program.
- After defining the global variables (section var) we can define a section label. There we list the used labels.
- Then we may use these labels in the program
- and by goto label; we perform a jump to the location of the label.

- It is possible to perform hard-wired jumps within a Pascal program.
- After defining the global variables (section var) we can define a section label. There we list the used labels.
- Then we may use these labels in the program
- and by goto label; we perform a jump to the location of the label.
- Never use GOTO (in structured programming). I am using it in pseudocode in order to postpone the introductin of loop constructs after the kernel of the algorithm.

Defining functions and procedures

Often the same sequence of nontrivial operations will be needed in many different places (and it would be inefficient to write them more than once).

- Often the same sequence of nontrivial operations will be needed in many different places (and it would be inefficient to write them more than once).
- Procedures and functions provide us with a possibility to define such sequences once and using (calling) them many times.

- Often the same sequence of nontrivial operations will be needed in many different places (and it would be inefficient to write them more than once).
- Procedures and functions provide us with a possibility to define such sequences once and using (calling) them many times.
- Procedures are a part of a program. Procedures are able to process parameters passed to them.

rrays Horner's Method **Functions and Procedures** Nested Functions

- Often the same sequence of nontrivial operations will be needed in many different places (and it would be inefficient to write them more than once).
- Procedures and functions provide us with a possibility to define such sequences once and using (calling) them many times.
- Procedures are a part of a program. Procedures are able to process parameters passed to them.
- Functions are a part of a program. They are able to process given parameters and to return a result.

Arrays Horner's Method **Functions and Procedures** Nested Functions

- Often the same sequence of nontrivial operations will be needed in many different places (and it would be inefficient to write them more than once).
- Procedures and functions provide us with a possibility to define such sequences once and using (calling) them many times.
- Procedures are a part of a program. Procedures are able to process parameters passed to them.
- Functions are a part of a program. They are able to process given parameters and to return a result.
- Examples: Cross the street; write out a message; arrive somewhere (by a train); calculate a factorial...

function name(argument :type;...):type_of_result

Start with keyword function followed by name of the function.

- Start with keyword function followed by name of the function.
- arguments are listed in parentheses (as if we defined variables).

- Start with keyword function followed by name of the function.
- arguments are listed in parentheses (as if we defined variables).
- Inidividual arguments get separated by a semicolon (while defining).

- Start with keyword function followed by name of the function.
- arguments are listed in parentheses (as if we defined variables).
- Inidividual arguments get separated by a semicolon (while defining).
- After a colon we put the type of the result.

- Start with keyword function followed by name of the function.
- arguments are listed in parentheses (as if we defined variables).
- Inidividual arguments get separated by a semicolon (while defining).
- After a colon we put the type of the result.
- Value of the result gets assigned into a special variable with the same name as the function has.

Example

Example

```
program x;
var a:integer;
function sum_up(a:integer; b:integer):integer;
begin
        sum_up:=a+b;
end;
begin
        a:=sum\_up(5,10);
        writeln(a);
end.
```

■ Each function may use special variables (its own).

- Each function may use special variables (its own).
- These variables are called the *local* variables.

- Each function may use special variables (its own).
- These variables are called the *local* variables.
- We define them in a normal way, just their definition appears after the header of a particular function-definition:

- Each function may use special variables (its own).
- These variables are called the local variables.
- We define them in a normal way, just their definition appears after the header of a particular function-definition:
- function f(a:integer):boolean; var b,c:integer;... begin...end;

Example

<u>end</u>;

Note that the variable used to define the result is *write-only*. It must **never** be read! (It could not be distinguished from calling a parameter-less function.)

In addition to global variables there are also so called *local* variables.

- In addition to global variables there are also so called *local* variables.
- Local variables are visible only within the appropriate functions.

- In addition to global variables there are also so called *local* variables.
- Local variables are visible only within the appropriate functions.
- A local variable may have the same name as a global one.

- In addition to global variables there are also so called *local* variables.
- Local variables are visible only within the appropriate functions.
- A local variable may have the same name as a global one.
- In case of such a conflict, inside the function only the local variable is visible.

- In addition to global variables there are also so called *local* variables.
- Local variables are visible only within the appropriate functions.
- A local variable may have the same name as a global one.
- In case of such a conflict, inside the function only the local variable is visible.
- Values of the parameters are (by default) a value-parameters, i.e., the value of an expression is copied. If the function changes this value, this change is not propagated to the caller.

Example

Reference-parameters

Sometimes we want to propagate the argument-change to the caller. How can we do that?

We use the keyword var in the appropriate place:

```
function f(var a:integer; b:integer):integer;
begin
        a := 5;
        b:=5;
end;
x:=0; y:=0; a:=f(x,y);
writeln(x); writeln(y);
```

Result: 5 and 0; only genuine variables can be passed as such parameter!

Parameter-free functions

It can make sense to define functions without parameters (e.g., a function reading the data).

Then we omit parentheses behind the function-name (when, both, defining and calling it):

```
function x:integer;
begin
         x := 10:
end;
a:=x;
```


Procedures

```
'Procedures are functions that return no value.'
procedure name(arguments);
      name(arguments);...
example:
procedure writeit(a:integer;b:integer);
begin
      writeln(a); writeln(b);
      {We output the parameters}
end;
... writeit(5,10);...
```


Nested Functions and Procedures

```
It is possible to define a function inside another one:
    procedure f(a:integer);
        procedure g(b:integer);
        begin
            writeln('Proc. g in proc. f w/arg. ',b);
        end;
begin
        writeln('Procedure f with argument ',a);
        g(2);{Calling nested proc. g}
end;
```


Procedure can 'see' (except of local variables) also local variables of its parents.

- Procedure can 'see' (except of local variables) also local variables of its parents.
- Conflicting names resolve to the most 'local' one.

- Procedure can 'see' (except of local variables) also local variables of its parents.
- Conflicting names resolve to the most 'local' one.
- In this way we can define 'local' procedures and functions.
 I.e., nested functions that are visible only inside their direct parents (not from grand-parents and further).

Example

```
procedure f(h:integer);
    procedure g(b:integer);
        procedure h(c:integer);
        begin
            writeln('Procedure h with arg. ',c);
        end;
    begin
        writeln('Procedure g with arg. ',b);
        h(5);
    end;
begin
    writeln('Procedure f with arg. ',h);
    g(3); f(5); {so far so good, but calling
         h(4) here causes an error!}
```