Basic Control Structures

Conditions

using conditional (boolean) expressions

Syntax (and semantics):

m if condition then command;

m if condition then begin block of statements end;

m if condition then command else command;
Attention! Before else we do *not* place a semicolon!

m if condition then begin block end else begin block end;
Ptiklad:
if temperature>25 then
writeln(’Let us go to a pub!’);

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Basic Control Structures

Example

if temperature>25 then writeln(’Let us go to a
pub!’);

if temperature>25 then

begin

writeln(’Let’’s go to a pub!’);
end
else
begin

writeln(’Let’’s stay at home!’);
end;

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Basic Control Structures

Cycles

m while condition do command or block;
Repeat, while condition is satisfied (fulfilled).

m for i:=1 to 10 do command or block;
Repeat for each value of the variable starting by the former
bound up to the latter one.

m for i:=100 downto 1 do command or block;

B repeat commands; until condition;
Repeat while the condition is unsatisfied!

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Examples

Example:

program binary;
var a:integer;

begin
readln(a);
while a > 0 do
begin
if a mod 2 = 1 then
write(1)
else write(0);
a:=a div 2;
end;
end.

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Examples

Example improved

While programming, it is principal to think on it. Otherwise we
tend to perform an unnecessary operations!

program binary;

var a:integer;

begin
readln(a);
while a > 0 do
begin
write(a mod 2);
a:=a div 2;
end;
end.

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Examples

Example, factorization:

program factor;
var a,i:integer;

begin
i:=2;
readln(a);
while i <= a do
begin if (a div i)*i = a then
begin
write(i);
a:=a div i;
end
else i:=i+1;
end;
end.

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Examples

Example, the factorization improved:

program factor;

var a,i:integer; repeating:boolean;
begin i:=2; repeating:=false;
readln(a);

while i <= a do
begin if (a div i)*i = a then
begin if repeating then
write(’*?)
else repeating:=true;
write(i);
a:=a div i;
end else 1i:=i+1;
end;
end.

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Computational Complexity

For algorithms we analyze several types of complexities:

m Static — saying how long a program is (how many characters
has a source-code or binary executable file),

Martin Pergel, perm@kam.mff.cuni.cz

Computational Complexity

For algorithms we analyze several types of complexities:

m Static — saying how long a program is (how many characters
has a source-code or binary executable file),

m dynamic — how long does the algorithm run.

Martin Pergel, perm@kam.mff.cuni.cz

Computational Complexity

For algorithms we analyze several types of complexities:

m Static — saying how long a program is (how many characters
has a source-code or binary executable file),

m dynamic — how long does the algorithm run.

m By default we explore the dynamic complexity.

Martin Pergel, perm@kam.mff.cuni.cz

Computational Complexity

For algorithms we analyze several types of complexities:

m Static — saying how long a program is (how many characters
has a source-code or binary executable file),

m dynamic — how long does the algorithm run.

m By default we explore the dynamic complexity.

Definition

Let n denote the length of the input (for an algorithm A). The
(dynamic, time, worst-case-) complexity of A is the smallest
function f such that for all n, the value f(n) is at least the number
of elementary steps performed by algorithm A for any input of
length n.

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Computational Complexity

Examples |

Definition

Let n denote the length of the input (for an algorithm A). The
(dynamic, time, worst-case-) complexity of A is the smallest
function f such that for all n, the value f(n) is at least the number
of elementary steps performed by algorithm A for any input of
length n.

m Sieve of Eratosthenes: For each prime at most linear (w. r. t.
array-length), i.e., altogether at most quadratic.

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Computational Complexity

Examples |

Definition

Let n denote the length of the input (for an algorithm A). The
(dynamic, time, worst-case-) complexity of A is the smallest
function f such that for all n, the value f(n) is at least the number
of elementary steps performed by algorithm A for any input of
length n.

m Sieve of Eratosthenes: For each prime at most linear (w. r. t.
array-length), i.e., altogether at most quadratic.

m Number-factorization: linear w. r. t. value of the factorized
number.

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Computational Complexity

Examples |

Definition

Let n denote the length of the input (for an algorithm A). The
(dynamic, time, worst-case-) complexity of A is the smallest
function f such that for all n, the value f(n) is at least the number
of elementary steps performed by algorithm A for any input of
length n.

m Sieve of Eratosthenes: For each prime at most linear (w. r. t.
array-length), i.e., altogether at most quadratic.

m Number-factorization: linear w. r. t. value of the factorized
number.

m Attention! We are measuring the complexity in terms of
input-length!!

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Computational Complexity

Examples |l

Definition

Let n denote the length of the input (for an algorithm A). The
(dynamic, time, worst-case-) complexity of A is the smallest
function f such that for all n, the value f(n) is at least the number
of elementary steps performed by algorithm A for any input of
length n.

m Minotaurus in the Labyrinth: Linear in the number of
corridors (edges).

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Computational Complexity

Examples |l

Definition

Let n denote the length of the input (for an algorithm A). The
(dynamic, time, worst-case-) complexity of A is the smallest
function f such that for all n, the value f(n) is at least the number
of elementary steps performed by algorithm A for any input of
length n.

m Minotaurus in the Labyrinth: Linear in the number of
corridors (edges).

m Stable matching: At most quadratic w. r. t. number of ladies
(gentlemen).

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Computational Complexity

Asymptotic analysis

m It is dubious what means an elementary step. Moreover, not
in all CPUs the elementary step would be defined in the same
way. Thus we introduce following abstraction (independent on
multiplicative constant):

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Computational Complexity

Asymptotic analysis

m It is dubious what means an elementary step. Moreover, not
in all CPUs the elementary step would be defined in the same
way. Thus we introduce following abstraction (independent on
multiplicative constant):

m For functions f, g, we say that f € O(g), if 3¢ p, s. t.
Visnf(n) < cg(n),

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Computational Complexity

Asymptotic analysis

m It is dubious what means an elementary step. Moreover, not
in all CPUs the elementary step would be defined in the same
way. Thus we introduce following abstraction (independent on
multiplicative constant):

m For functions f, g, we say that f € O(g), if 3¢ p, s. t.
Visnf(n) < cg(n),
mf€Q(g), if eson S- t. Ynsnof(n) > cg(n).,

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Computational Complexity

Asymptotic analysis

m It is dubious what means an elementary step. Moreover, not
in all CPUs the elementary step would be defined in the same
way. Thus we introduce following abstraction (independent on
multiplicative constant):

m For functions f, g, we say that f € O(g), if 3¢ p, s. t.
Visnef(n) < cg(n),

mf€Q(g), if eson S- t. Ynsnof(n) > cg(n).,

m f€0O(g),if f € O(g) and simultaneously f € Q(g).

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Computational Complexity

Examples

m Is n€ O(n?)?

Ma Pergel, perm@kam.mff.cun

Programovani |

Computational Complexity

Examples

m Is n€ O(n?)?
m Is n? € O(n)?

Martin Pergel, perm@kam.mff.cuni.cz

Computational Complexity

Examples

m Is n€ O(n?)?
m Is n? € O(n)?
m Is 3n% +2n% 4 1000 € ©(n®)?

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Computational Complexity

Examples

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Is n € O(n?)?

Is n? € O(n)?

Is 3n® + 2n3 + 1000 € ©(n®)?
Is 1900 ¢ O(2)?

Computational Complexity

Examples

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Is n € O(n?)?

Is n? € O(n)?

Is 3n® + 2n3 + 1000 € ©(n®)?
Is 1900 ¢ O(2)?

Is 2" € O(n?09)?

Computational Complexity

Examples

Is n € O(n?)?

Is n? € O(n)?

Is 3n® + 2n3 + 1000 € ©(n®)?
Is 1900 ¢ O(2)?

Is 2" € O(n?09)?

Example with cards showing how quickly the exponential
function grows.

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

Computational Complexity

Further notions

related to the computational complexity

m Best-case complexity,

el, perm@kam.mff.cuni.cz

Computational Complexity

Further notions

related to the computational complexity

m Best-case complexity,

m average-case complexity — average number of steps for
input-instances of a given length,

el, perm@kam.mff.cuni.cz

Computational Complexity

Further notions

related to the computational complexity

m Best-case complexity,

m average-case complexity — average number of steps for
input-instances of a given length,

m amortized complexity — average number of steps for
(potentially) infinite sequence of operations — we consider the
worst possible sequence,

el, perm@kam.mff.cuni.cz

Computational Complexity

Further notions

related to the computational complexity

m Best-case complexity,

m average-case complexity — average number of steps for
input-instances of a given length,

m amortized complexity — average number of steps for
(potentially) infinite sequence of operations — we consider the
worst possible sequence,

m complexity of a problem — complexity of the best possible
algorithm (solving a given problem).

Martin Pergel, perm@kam.mff.cuni.cz
Programovani |

	Basic Control Structures
	Examples
	Computational Complexity

