
Basic Control Structures Examples Computational Complexity

Conditions
using conditional (boolean) expressions

Syntax (and semantics):

if condition then command;

if condition then begin block of statements end;

if condition then command else command;
Attention! Before else we do *not* place a semicolon!

if condition then begin block end else begin block end;

Př́ıklad:
if temperature>25 then

writeln(’Let us go to a pub!’);

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Basic Control Structures Examples Computational Complexity

Example

if temperature>25 then writeln(’Let us go to a

pub!’);

if temperature>25 then

begin

writeln(’Let’’s go to a pub!’);

end

else

begin

writeln(’Let’’s stay at home!’);

end;

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Basic Control Structures Examples Computational Complexity

Cycles

while condition do command or block;
Repeat, while condition is satisfied (fulfilled).

for i:=1 to 10 do command or block;
Repeat for each value of the variable starting by the former
bound up to the latter one.

for i:=100 downto 1 do command or block;

repeat commands; until condition;

Repeat while the condition is unsatisfied!

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Basic Control Structures Examples Computational Complexity

Example:

program binary;

var a:integer;

begin

readln(a);

while a > 0 do

begin

if a mod 2 = 1 then

write(1)

else write(0);

a:=a div 2;

end;

end.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Basic Control Structures Examples Computational Complexity

Example improved

While programming, it is principal to think on it. Otherwise we
tend to perform an unnecessary operations!

program binary;

var a:integer;

begin

readln(a);

while a > 0 do

begin

write(a mod 2);

a:=a div 2;

end;

end.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Basic Control Structures Examples Computational Complexity

Example, factorization:

program factor;

var a,i:integer;

begin

i:=2;

readln(a);

while i <= a do

begin if (a div i)*i = a then

begin

write(i);

a:=a div i;

end

else i:=i+1;

end;

end.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Basic Control Structures Examples Computational Complexity

Example, the factorization improved:

program factor;

var a,i:integer; repeating:boolean;

begin i:=2; repeating:=false;

readln(a);

while i <= a do

begin if (a div i)*i = a then

begin if repeating then

write(’*’)

else repeating:=true;

write(i);

a:=a div i;

end else i:=i+1;

end;

end.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Basic Control Structures Examples Computational Complexity

For algorithms we analyze several types of complexities:

Static – saying how long a program is (how many characters
has a source-code or binary executable file),

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Basic Control Structures Examples Computational Complexity

For algorithms we analyze several types of complexities:

Static – saying how long a program is (how many characters
has a source-code or binary executable file),

dynamic – how long does the algorithm run.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Basic Control Structures Examples Computational Complexity

For algorithms we analyze several types of complexities:

Static – saying how long a program is (how many characters
has a source-code or binary executable file),

dynamic – how long does the algorithm run.

By default we explore the dynamic complexity.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Basic Control Structures Examples Computational Complexity

For algorithms we analyze several types of complexities:

Static – saying how long a program is (how many characters
has a source-code or binary executable file),

dynamic – how long does the algorithm run.

By default we explore the dynamic complexity.

Definition

Let n denote the length of the input (for an algorithm A). The
(dynamic, time, worst-case-) complexity of A is the smallest
function f such that for all n, the value f (n) is at least the number
of elementary steps performed by algorithm A for any input of
length n.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Basic Control Structures Examples Computational Complexity

Examples I

Definition

Let n denote the length of the input (for an algorithm A). The
(dynamic, time, worst-case-) complexity of A is the smallest
function f such that for all n, the value f (n) is at least the number
of elementary steps performed by algorithm A for any input of
length n.

Sieve of Eratosthenes: For each prime at most linear (w. r. t.
array-length), i.e., altogether at most quadratic.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Basic Control Structures Examples Computational Complexity

Examples I

Definition

Let n denote the length of the input (for an algorithm A). The
(dynamic, time, worst-case-) complexity of A is the smallest
function f such that for all n, the value f (n) is at least the number
of elementary steps performed by algorithm A for any input of
length n.

Sieve of Eratosthenes: For each prime at most linear (w. r. t.
array-length), i.e., altogether at most quadratic.

Number-factorization: linear w. r. t. value of the factorized
number.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Basic Control Structures Examples Computational Complexity

Examples I

Definition

Let n denote the length of the input (for an algorithm A). The
(dynamic, time, worst-case-) complexity of A is the smallest
function f such that for all n, the value f (n) is at least the number
of elementary steps performed by algorithm A for any input of
length n.

Sieve of Eratosthenes: For each prime at most linear (w. r. t.
array-length), i.e., altogether at most quadratic.

Number-factorization: linear w. r. t. value of the factorized
number.

Attention! We are measuring the complexity in terms of
input-length!!

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Basic Control Structures Examples Computational Complexity

Examples II

Definition

Let n denote the length of the input (for an algorithm A). The
(dynamic, time, worst-case-) complexity of A is the smallest
function f such that for all n, the value f (n) is at least the number
of elementary steps performed by algorithm A for any input of
length n.

Minotaurus in the Labyrinth: Linear in the number of
corridors (edges).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Basic Control Structures Examples Computational Complexity

Examples II

Definition

Let n denote the length of the input (for an algorithm A). The
(dynamic, time, worst-case-) complexity of A is the smallest
function f such that for all n, the value f (n) is at least the number
of elementary steps performed by algorithm A for any input of
length n.

Minotaurus in the Labyrinth: Linear in the number of
corridors (edges).

Stable matching: At most quadratic w. r. t. number of ladies
(gentlemen).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Basic Control Structures Examples Computational Complexity

Asymptotic analysis

It is dubious what means an elementary step. Moreover, not
in all CPUs the elementary step would be defined in the same
way. Thus we introduce following abstraction (independent on
multiplicative constant):

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Basic Control Structures Examples Computational Complexity

Asymptotic analysis

It is dubious what means an elementary step. Moreover, not
in all CPUs the elementary step would be defined in the same
way. Thus we introduce following abstraction (independent on
multiplicative constant):

For functions f , g , we say that f ∈ O(g), if ∃c,n0 s. t.
∀n>n0

f (n) ≤ cg(n),

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Basic Control Structures Examples Computational Complexity

Asymptotic analysis

It is dubious what means an elementary step. Moreover, not
in all CPUs the elementary step would be defined in the same
way. Thus we introduce following abstraction (independent on
multiplicative constant):

For functions f , g , we say that f ∈ O(g), if ∃c,n0 s. t.
∀n>n0

f (n) ≤ cg(n),

f ∈ Ω(g), if ∃c>0,n0 s. t. ∀n>n0
f (n) ≥ cg(n).,

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Basic Control Structures Examples Computational Complexity

Asymptotic analysis

It is dubious what means an elementary step. Moreover, not
in all CPUs the elementary step would be defined in the same
way. Thus we introduce following abstraction (independent on
multiplicative constant):

For functions f , g , we say that f ∈ O(g), if ∃c,n0 s. t.
∀n>n0

f (n) ≤ cg(n),

f ∈ Ω(g), if ∃c>0,n0 s. t. ∀n>n0
f (n) ≥ cg(n).,

f ∈ Θ(g), if f ∈ O(g) and simultaneously f ∈ Ω(g).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Basic Control Structures Examples Computational Complexity

Examples

Is n ∈ O(n2)?

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Basic Control Structures Examples Computational Complexity

Examples

Is n ∈ O(n2)?

Is n2 ∈ O(n)?

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Basic Control Structures Examples Computational Complexity

Examples

Is n ∈ O(n2)?

Is n2 ∈ O(n)?

Is 3n5 + 2n3 + 1000 ∈ Θ(n5)?

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Basic Control Structures Examples Computational Complexity

Examples

Is n ∈ O(n2)?

Is n2 ∈ O(n)?

Is 3n5 + 2n3 + 1000 ∈ Θ(n5)?

Is n1000 ∈ O(2n)?

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Basic Control Structures Examples Computational Complexity

Examples

Is n ∈ O(n2)?

Is n2 ∈ O(n)?

Is 3n5 + 2n3 + 1000 ∈ Θ(n5)?

Is n1000 ∈ O(2n)?

Is 2n ∈ O(n2000)?

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Basic Control Structures Examples Computational Complexity

Examples

Is n ∈ O(n2)?

Is n2 ∈ O(n)?

Is 3n5 + 2n3 + 1000 ∈ Θ(n5)?

Is n1000 ∈ O(2n)?

Is 2n ∈ O(n2000)?

Example with cards showing how quickly the exponential
function grows.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Basic Control Structures Examples Computational Complexity

Further notions
related to the computational complexity

Best-case complexity,

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Basic Control Structures Examples Computational Complexity

Further notions
related to the computational complexity

Best-case complexity,

average-case complexity – average number of steps for
input-instances of a given length,

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Basic Control Structures Examples Computational Complexity

Further notions
related to the computational complexity

Best-case complexity,

average-case complexity – average number of steps for
input-instances of a given length,

amortized complexity – average number of steps for
(potentially) infinite sequence of operations – we consider the
worst possible sequence,

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Basic Control Structures Examples Computational Complexity

Further notions
related to the computational complexity

Best-case complexity,

average-case complexity – average number of steps for
input-instances of a given length,

amortized complexity – average number of steps for
(potentially) infinite sequence of operations – we consider the
worst possible sequence,

complexity of a problem – complexity of the best possible
algorithm (solving a given problem).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I


	Basic Control Structures
	Examples
	Computational Complexity

