
Basic Control Structures Examples Computational Complexity

Conditions
using conditional (boolean) expressions

Syntax (and semantics):

if condition then command;

if condition then begin block of statements end;

if condition then command else command;
Attention! Before else we do *not* place a semicolon!

if condition then begin block end else begin block end;

Př́ıklad:
if temperature>25 then

writeln(’Let us go to a pub!’);
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Example

if temperature>25 then writeln(’Let us go to a

pub!’);

if temperature>25 then

begin

writeln(’Let’’s go to a pub!’);

end

else

begin

writeln(’Let’’s stay at home!’);

end;
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Cycles

while condition do command or block;
Repeat, while condition is satisfied (fulfilled).

for i:=1 to 10 do command or block;
Repeat for each value of the variable starting by the former
bound up to the latter one.

for i:=100 downto 1 do command or block;

repeat commands; until condition;

Repeat while the condition is unsatisfied!
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Example:

program binary;

var a:integer;

begin

readln(a);

while a > 0 do

begin

if a mod 2 = 1 then

write(1)

else write(0);

a:=a div 2;

end;

end.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I
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Example improved

While programming, it is principal to think on it. Otherwise we
tend to perform an unnecessary operations!

program binary;

var a:integer;

begin

readln(a);

while a > 0 do

begin

write(a mod 2);

a:=a div 2;

end;

end.
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Example, factorization:

program factor;

var a,i:integer;

begin

i:=2;

readln(a);

while i <= a do

begin if (a div i)*i = a then

begin

write(i);

a:=a div i;

end

else i:=i+1;

end;

end.
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Basic Control Structures Examples Computational Complexity

Example, the factorization improved:

program factor;

var a,i:integer; repeating:boolean;

begin i:=2; repeating:=false;

readln(a);

while i <= a do

begin if (a div i)*i = a then

begin if repeating then

write(’*’)

else repeating:=true;

write(i);

a:=a div i;

end else i:=i+1;

end;

end.
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Basic Control Structures Examples Computational Complexity

For algorithms we analyze several types of complexities:

Static – saying how long a program is (how many characters
has a source-code or binary executable file),
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For algorithms we analyze several types of complexities:

Static – saying how long a program is (how many characters
has a source-code or binary executable file),

dynamic – how long does the algorithm run.
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For algorithms we analyze several types of complexities:

Static – saying how long a program is (how many characters
has a source-code or binary executable file),

dynamic – how long does the algorithm run.

By default we explore the dynamic complexity.
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For algorithms we analyze several types of complexities:

Static – saying how long a program is (how many characters
has a source-code or binary executable file),

dynamic – how long does the algorithm run.

By default we explore the dynamic complexity.

Definition

Let n denote the length of the input (for an algorithm A). The
(dynamic, time, worst-case-) complexity of A is the smallest
function f such that for all n, the value f (n) is at least the number
of elementary steps performed by algorithm A for any input of
length n.
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Examples I

Definition

Let n denote the length of the input (for an algorithm A). The
(dynamic, time, worst-case-) complexity of A is the smallest
function f such that for all n, the value f (n) is at least the number
of elementary steps performed by algorithm A for any input of
length n.

Sieve of Eratosthenes: For each prime at most linear (w. r. t.
array-length), i.e., altogether at most quadratic.
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Examples I

Definition

Let n denote the length of the input (for an algorithm A). The
(dynamic, time, worst-case-) complexity of A is the smallest
function f such that for all n, the value f (n) is at least the number
of elementary steps performed by algorithm A for any input of
length n.

Sieve of Eratosthenes: For each prime at most linear (w. r. t.
array-length), i.e., altogether at most quadratic.

Number-factorization: linear w. r. t. value of the factorized
number.
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Examples I

Definition

Let n denote the length of the input (for an algorithm A). The
(dynamic, time, worst-case-) complexity of A is the smallest
function f such that for all n, the value f (n) is at least the number
of elementary steps performed by algorithm A for any input of
length n.

Sieve of Eratosthenes: For each prime at most linear (w. r. t.
array-length), i.e., altogether at most quadratic.

Number-factorization: linear w. r. t. value of the factorized
number.

Attention! We are measuring the complexity in terms of
input-length!!
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Examples II

Definition

Let n denote the length of the input (for an algorithm A). The
(dynamic, time, worst-case-) complexity of A is the smallest
function f such that for all n, the value f (n) is at least the number
of elementary steps performed by algorithm A for any input of
length n.

Minotaurus in the Labyrinth: Linear in the number of
corridors (edges).
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Examples II

Definition

Let n denote the length of the input (for an algorithm A). The
(dynamic, time, worst-case-) complexity of A is the smallest
function f such that for all n, the value f (n) is at least the number
of elementary steps performed by algorithm A for any input of
length n.

Minotaurus in the Labyrinth: Linear in the number of
corridors (edges).

Stable matching: At most quadratic w. r. t. number of ladies
(gentlemen).
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Asymptotic analysis

It is dubious what means an elementary step. Moreover, not
in all CPUs the elementary step would be defined in the same
way. Thus we introduce following abstraction (independent on
multiplicative constant):

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I
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Asymptotic analysis

It is dubious what means an elementary step. Moreover, not
in all CPUs the elementary step would be defined in the same
way. Thus we introduce following abstraction (independent on
multiplicative constant):

For functions f , g , we say that f ∈ O(g), if ∃c,n0 s. t.
∀n>n0

f (n) ≤ cg(n),
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Asymptotic analysis

It is dubious what means an elementary step. Moreover, not
in all CPUs the elementary step would be defined in the same
way. Thus we introduce following abstraction (independent on
multiplicative constant):

For functions f , g , we say that f ∈ O(g), if ∃c,n0 s. t.
∀n>n0

f (n) ≤ cg(n),

f ∈ Ω(g), if ∃c>0,n0 s. t. ∀n>n0
f (n) ≥ cg(n).,
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Asymptotic analysis

It is dubious what means an elementary step. Moreover, not
in all CPUs the elementary step would be defined in the same
way. Thus we introduce following abstraction (independent on
multiplicative constant):

For functions f , g , we say that f ∈ O(g), if ∃c,n0 s. t.
∀n>n0

f (n) ≤ cg(n),

f ∈ Ω(g), if ∃c>0,n0 s. t. ∀n>n0
f (n) ≥ cg(n).,

f ∈ Θ(g), if f ∈ O(g) and simultaneously f ∈ Ω(g).
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Examples

Is n ∈ O(n2)?
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Examples

Is n ∈ O(n2)?

Is n2 ∈ O(n)?
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Examples

Is n ∈ O(n2)?

Is n2 ∈ O(n)?

Is 3n5 + 2n3 + 1000 ∈ Θ(n5)?
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Examples

Is n ∈ O(n2)?

Is n2 ∈ O(n)?

Is 3n5 + 2n3 + 1000 ∈ Θ(n5)?

Is n1000 ∈ O(2n)?
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Examples

Is n ∈ O(n2)?

Is n2 ∈ O(n)?

Is 3n5 + 2n3 + 1000 ∈ Θ(n5)?

Is n1000 ∈ O(2n)?

Is 2n ∈ O(n2000)?
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Examples

Is n ∈ O(n2)?

Is n2 ∈ O(n)?

Is 3n5 + 2n3 + 1000 ∈ Θ(n5)?

Is n1000 ∈ O(2n)?

Is 2n ∈ O(n2000)?

Example with cards showing how quickly the exponential
function grows.
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Further notions
related to the computational complexity

Best-case complexity,
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Further notions
related to the computational complexity

Best-case complexity,

average-case complexity – average number of steps for
input-instances of a given length,
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Further notions
related to the computational complexity

Best-case complexity,

average-case complexity – average number of steps for
input-instances of a given length,

amortized complexity – average number of steps for
(potentially) infinite sequence of operations – we consider the
worst possible sequence,
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Further notions
related to the computational complexity

Best-case complexity,

average-case complexity – average number of steps for
input-instances of a given length,

amortized complexity – average number of steps for
(potentially) infinite sequence of operations – we consider the
worst possible sequence,

complexity of a problem – complexity of the best possible
algorithm (solving a given problem).
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