
Stable matching

This problem gets used, e.g., when assigning medicins to
hospitals. Usually described in a more naturalistic way:

Instance: N ladies, N gentlemen. Each person has a list of
acceptability of persons of the other gender (this list is a
permutation).

Question: Find a stable matching with respect to the input.
The matching is stable, if all persons are matched and there
exists no pair ij such that the matching is aj , ib and on the
list of j , person i preceeds a and on the list of i , person j

preceeds b (i.e., if we re-match this pair of pairs, both, i and j

will be more satisfied.

At the first sight, even unclear whether always such a
matching can be found.

Easy algorithm which always finishes, proof of
partial-correctness is a bit harder.

Martin Pergel, perm@kam.mff.cuni.cz Programováńı I



Stable matching

”Gentlemen, please, ask ladies for a dance!”

Getlemen start asking ladies in the ordering given by their
(individual) permutations.

Each lady chooses among a current partner and all the newly
coming gentlemen the best one (with respect to her
permutation).

The refused gentlemen continue asking the ladies in the
ordering given by their (individual) permutations.

Why the algorithm is finite?

Because ladies are still getting better and better partners.

Why does it find a stable matching?

In fact we show even more...

Martin Pergel, perm@kam.mff.cuni.cz Programováńı I



Can we show something better?

Fact: The algorithm finds a stable matching optimal for all

gentlemen.

It means: For any gentlemen there is no stable matching permitting
him a better partner than the matching found by this algorithm.

Definition

A sin is a situation, when a lady refuses a getleman, who would be
acceptable for her in any stable matching.

We show that our algorithm permits no ”sin”.

Martin Pergel, perm@kam.mff.cuni.cz Programováńı I



Lemma

Our algorithm permits no ”sin”.

Proof.

By contradiction: The algorithm does not permit the first sin. For
contradiction let there is (a first) sin.

Let Eve refused Adam acceptable in some stable matching.
Now, she is matched to Žibřid.

Let us take a look at the orderings.

Is Žibřid better or worse than Adam for Eve!? [worse, thus
our algorithm does not permit this behavior!]

Martin Pergel, perm@kam.mff.cuni.cz Programováńı I



Searching in Graphs

Motivation: Mı́nótaurus in a Labyrinth is consuming citizens
of Athens.
Among them, prince Théseus appeared and killed Mı́nótaurus.

Algoritmus:

1 Find Mı́nótaurus,
2 Kill Mı́nótaurus.

We keep the latter part to him, we are interested in the
former part.

Martin Pergel, perm@kam.mff.cuni.cz Programováńı I



Searching – depth first search

Théseus obtained a thread from Ariadne,

either he used a randomized algorithm, or he obtained a
bucket with a color, as well.

Algorithm (Interesting only for crossings, through the corridors
we just pass):
While we did not find Mı́nótaurus yet:

If there is a corridor not yet colored (containing no thread),
color this corridor (its beginning and end) and pass through it.
Otherwise reel the thread in (return to the previous crossing).

Why the algorithm is correct? Finiteness? [trick with numbers on
edges]
Partial correctness? Invariants? [a thread always denotes a
sequence to Ariadne]
Each corridor gets passed through at most twice.
There is no reachable crossing (or even a corridor) which we do not
reach before returning.

Martin Pergel, perm@kam.mff.cuni.cz Programováńı I



Different algorithm:

While we are not by Mı́nótaurus:

If you see two corridors containing a thread, reel the thread in
(return).

Else, if there is an uncolored corridor, pass through it and
color it.

Else, reel the thread in [if it is possible].

Lemma

Even this algorithm is correct.

Although we return while we still can go further, because we know
that we return at some moment (and then we go further).
Moreover, this algorithm keeps a ”return path to Ariadne”, not
just a ”return sequence to Ariadne”.

Martin Pergel, perm@kam.mff.cuni.cz Programováńı I



Remarks

The former algorithm is called depth-first search. It passes as
long as possible. When it is impossible, it starts returning
(but only when necessary). The latter is search with return.

While exploring graphs, we may use also a breadth-first search
(also called the wave-algorithm):

The wave-algorithm: Labyrinth gets explored with unbounded
number of warriors who are spreading through the labyrinth
like a flood. This algorithm finds the shortest path to
Minotaurus (will be better described later).

Martin Pergel, perm@kam.mff.cuni.cz Programováńı I



How to notate an algorithm?

While notating an algorithm, we do:

operate the variables (of different types) and constants,

modify the values of variables,

call subroutines,

compare the content of individual variables,

decide based on these comparisons,

perform cycles,

read the input, write the output.

Martin Pergel, perm@kam.mff.cuni.cz Programováńı I



Program in Pascal

Example:
program useless;
const x=10;

text=’ten’;
var a,b:integer;

c:string;
begin

write(’Enter a number:’);

Program begins with the
keyword program!
We divide individual
statements (commands) by a
semicolon!

A section of constants follows
introduced by keyword const.

We assign the constants:
constant = value Next is
the section defining variables
(keyword var). We are
defining integer variables a and
b.

Then definitions of functionsMartin Pergel, perm@kam.mff.cuni.cz Programováńı I



About the importance of indentation:

program useless; const x=10; text=’ten’; var

a,b:integer; c:string;

begin write(’Enter a number: ’); readln(a);

write(’Enter yet another number: ’); readln(b);

writeln(’Their sum is ’,a+b); writeln(x,’ is ’,text);

end.

Martin Pergel, perm@kam.mff.cuni.cz Programováńı I



Variables and their types

Each variable has an underlying (data-)type. Possible (Pascal)
types are

byte: 0 .. 255 (integers),

integer: −32 768 .. 32 768,

longint: −231 .. 231,

real: −1038 .. 1038 (non-integers),

word: 0 .. 65 535 (integers),

char: character (one 8-bit ASCII-character),

string: string [of characters] (text) with length at most 255
chars,

boolean: true or false (having values true a false).

Martin Pergel, perm@kam.mff.cuni.cz Programováńı I



Arithmetic expressions:

+ Addition,

− subtraction,

∗ multiplication,

/ division (result is a real),

brackets,

div integral division (with a remainder),

mod remainder (of a division).

Beware of the priority!
Beware, div and mod has a
priority ”between” addition
and multiplication!

Beware of string-addition!

Example:
(a + 5) ∗ 17 + (b mod c)

Assignment expression: :=

Př́ıklad: x:= 2*y;

Martin Pergel, perm@kam.mff.cuni.cz Programováńı I



Relational operators

< less than (e.g., a < b),

> greater than,

>= greater or equal,

<= less or equal,

<> not equal,

= equals (are two values the same?).

Martin Pergel, perm@kam.mff.cuni.cz Programováńı I



Conditions
using conditional (boolean) expressions

Syntax (and semantics):

if condition then command;

if condition then begin block of statements end;

if condition then command else command;
Careful! Before else we do *not* place a semicolon!

if condition then begin block end else begin block end;

Př́ıklad:
if temperature>25 then

writeln(’Let us go to a pub!’);

Martin Pergel, perm@kam.mff.cuni.cz Programováńı I



Example

if temperature>25 then writeln(’Let us go to a

pub!’);

if temperature>25 then

begin

writeln(’Let’’s go to a pub!’);

end

else

begin

writeln(’Let’’s stay at home!’);

end;

Martin Pergel, perm@kam.mff.cuni.cz Programováńı I



Cycles

while condition do command or block;
Repeat, while condition is satisfied (fulfilled).

for i:=1 to 10 do command or block;
Repeat for each value of the variable starting by the former
bound up to the latter one.

for i:=100 downto 1 do command or block;

repeat commands; until condition;

Repeat while the condition is unsatisfied!

Martin Pergel, perm@kam.mff.cuni.cz Programováńı I



Example:

program binary;

var a:integer;

begin

readln(a);

while a > 0 do

begin

if a mod 2 = 1 then

write(1)

else write(0);

a:=a div 2;

end;

end.

Martin Pergel, perm@kam.mff.cuni.cz Programováńı I



Example improved

While programming, it is principal to think on it. Otherwise we
tend to perform an unnecessary computations!

program binary;

var a:integer;

begin

readln(a);

while a > 0 do

begin

write(a mod 2);

a:=a div 2;

end;

end.

Martin Pergel, perm@kam.mff.cuni.cz Programováńı I



Example, factorization:

program factor;

var a,i:integer;

begin

i:=2;

readln(a);

while i <= a do

begin if (a div i)*i = a then

begin

write(i);

a:=a div i;

end

else i:=i+1;

end;

end.

Martin Pergel, perm@kam.mff.cuni.cz Programováńı I



Example, the factorization improved:

program factor;

var a,i:integer; repeating:boolean;

begin i:=2; repeating:=false;

readln(a);

while i <= a do

begin if (a div i)*i = a then

begin if repeating then

write(’*’)

else repeating:=true;

write(i);

a:=a div i;

end else i:=i+1;

end;

end.

Martin Pergel, perm@kam.mff.cuni.cz Programováńı I


