Programování I

Martin Pergel, perm@kam.mff.cuni.cz

October 10, 2014

Information

- This semester finishes by a credit, exam is on the next semester.
■ Requirements for being credited:
- Test on linked lists,
- program (written as a homework - including documentation),
- active participance at assignments (will be justified on assignments).

Goals of this course:

■ Programming in Pascal and later C\#,
■ algorithms

- and related theory.

Individual parts shall be parallelized.

Why Pascal:

■ Myth: Pascal is obsolete!
■ Reality: Pascal is well-tested.
■ Java, C \#, C programming language... - nice but complicated.
■ Pascal: Disadvantage: Age Advantage: Simplicity.
■ We: Borland Pascal (Free Pascal, GNU Pascal, Delphi),
■ since Christmas: C\# in Visual Studio.

Organizational affairs

■ CodEx machine (alias Code Examiner and account on it)
■ Account in computer lab at Mala Strana.

- Warning: Programming is a time-demanding skill!
- Literature: Kurt Mehlhorn: Algorithms and Data Structures (available on-line, individual chapters).
Donald E. Knuth: The Art of Computer Programming. Niklaus Wirth: Algorithms + Data Structures = Programs [older book, algorithms seem more interesting than the language, available on-line]
■ Any questions? [If so, pose them as soon as possible!]

Algoritms

Definition

Algorithms are rigorously defined and willingly created methods.
■ An algorithm is a way (method) how to solve a particular problem.

- Realization of an algorithms produces expected output from a given input.
■ Algorithm consists of individual steps called commands (e.g., natural numbers addition).
- Any correct algorithm must be:
- finite (i.e., for any input it finishes after finitely many steps)
- and partially correct (i.e., whenever the algorithm finishes, it produces a correct output (correct answer for a given problem)).

Ways how to describe algorithms

Karel: C progr. language:
krok while(i)
krok \{ if(i\%2) printf(1);
vlevobok else printf(0);
krok i/=2;
\}

Text:
Read i.
While $i>0$:
If i odd then write "1"
else write "O" divide i by 2.

Program-flow-diagram:

Greatest common divisor

Ways how to find it:
■ Find prime-decompositions and "compare",
■ Euclid's-algorithm.
Observation: Given $a \geq b$ natural numbers dividable by a (also natural) number k then $a-b$ is also dividable by k.

Euclid's algorithm: version 1 (using subtraction)

read a and b. read(a); read(b);
1: if $b>a$ then swap values of a and b.
If b is zero then write $a \quad$ if $b=0$ then write (a); and end the algorithm.
Subtract b from a. a:=a-b; GOTO 1:

Euclid's algoritmus: version 2 (using modulo)

```
read a and b.
1: if b>a then swap values of a and b.
If b is zero then write a
and end the algorithm.
Let a be a division remainder of a and b
(a:=a mod(b)).
GOTO 1:
```


Magic squares of an odd order

Easy algorithm with a hard proof of correctness:

6	1	8
7	5	3
2	9	4

15	8	1	24	17
16	14	7	5	23
22	20	13	6	4
3	21	19	12	10
9	2	25	18	11

1 Start in the middle of the top-most row.
2 Step one cell to the left and upwards and fill-in the numbers in increasing ordering
3 When the cell already contains a number, return one cell back and step one step downwards instead.

Prime-decomposition

■ Ideas?
■ Naive approach: Try one prime-number i after another from 2 to n and try to divide n / i.
■ Less naive algorithm: Let $m:=n$. Try only primes i from 2 to \sqrt{m}.It means: Let $i:=2$. When i is a factor of m (i.e., m / i is an integer), let $m:=m / i$., otherwise (else) increase i by one (i.e., $i:=i+1$.

■ Even less naive algorithm: Instead of primes try all the numbers. natural.
Why does it work?

Towards the Sieve of Eratosthenes

How to generate all prime numbers less than n ?
■ Naive algorithm: Generate and test.
■ Less naive approach: Generate and try to divide only by already generated primes.
■ Eratosthenes: Generate all natural numbers $2 \ldots n$. For $i \in\{2 \ldots \sqrt{n}\}$ do the following: If i is a prime (i.e., is not crossed-out), cross out all its nontrivial multiples (i.e., $j:=2$, while $i j<n$ do cross-out number $i j$, increase j by one).

