
Computer simulation I
is a very important topic

Considering a problem complicated enough to get imagined,
we should get an opinion of it.

We may simulate many topics (e.g., injury – namely its
healing, how the alcohol gets spreaded through the organism,
how the elevators are serving people...)

Computer simulation is a simulation where for modelling a
computer-program is used.

The aim is to decide how the simulated objects interact, i.e.,
how the whole simulated system works.

Simulation should not optimize the processes!

Results may differ, basic information is time of end (of a
simulation).

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Computer simulation II

Continuous VS Discrete event simulation,

problem of continuous simulation usually needs some
(differential) equation to get solved,

we restrict our attention to discrete event simulation,

continuous simulation can be approximated making small
steps and recalculating very often (which needs so called
stability of the system).

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Cars transporting a sand
very typical problem on our lectures

We want to move a sand-heap to a building yard [site].

We have a given number of workers and a given number of
cars,

along the path, critical sections may turn up (at the building
year and at the heap, too).

Number of workers is bounded, road may be narrow (for one
car only driven by traffic-light or there are no overtaking
zones).

How to schedule workers and cars to move the heap as soon
as possible?

Discrete simulation simulates a given schedule (workers and
cars) and determins when the heap will be moved completely.

Usually we will consider one narrow zone (for one car only).

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Elevators

D. Marx (earlier leader of MERL) claimed that the industrial
norm expects lifts to arrive within 30 seconds.

Tests on humans are expensive (customers are running out of
patience),

thus an environment simulating people calling the lift may be
useful.

Interesting: Distribution of waiting-times for individual people.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Department store

How to distribute goods in a department store (supermarket)
to make average customer pass through the whole shop (to
convince them to buy something they do not need but they
see it)?

How many customers get angry at too long queues thus how
many of them finally buy elsewhere (and how many baskets
we’ll have to tidy away?

Customers are passing through the store looking for items on
their lists,

with the amount of shopped items the patience of a customer
grows.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



How to solve general discrete simulation problem
in the object environment

Note that time when a process is running is uninteresting,

interesting is just start/end of a process. Thus we focus only
on (so called) events.

Usually, we implement classes that represent individual
participants (using attributes and methods).

We also implement an event-calendar (which tells us when
what happens),

yet we implement a simulating kernel able to handle individual
events...

and that’s all.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Event calendar

Contains list of expected events (including the time when they
take place).

It must be able to tell us next event.

We must be able to modify the calendar (add, remove or
re-schedule the events).

Simulating kernel picks the first event (given by the calendar,
i.e., that one that takes place as the first one).

While serving this event, kernel may modify the calendar.

Calendar is usually able to measure time (determine the end
of simulation).

Simulation ends after handling such an event which keeps the
calendar empty (with no further expected events).

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Process-states

Each (simulated) process is (always) in a particular state.

Typical states are:

Running (active) – process is right being served (some its
event).

Scheduled – process is waiting until a given time.

Waiting (passive) – waits until some (other) process wakes it
up.

Terminated – process ended and incurs no further events.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Situations and their solutions I/II

When two cars meet at a critical section, one of them has to
wait. How to do that?

Either the waiting car enters state waiting, or it calculates
the time when the car in the critical section leaves it (and
schedules itself for that time).

In the former case, someone must wake the waiting car up,

in the latter case it is necessary to ensure that the critical
section is free.

Race condition – why how and when may the cars crash?

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Situations and their solutions II

What happens if the program is represented by more processes
and between the moment when one car checks whether
critical section is free and (before) enters it, some other
process asks about the same?

This problem is generally called ”race-condition”.

What hapens when a car realizes that the critical section is
busy (occupied by someone else) but before it enqueues into
the waiting-queue, the car leaves critical section?

This problem is kind of deadlock.

These problems (deadlock, race-condition and starving) is
explained in course of operating systems (spin-locks,
semaphores, with active and passive waiting...).

At the moment, we try to avoid these problem by simulating
without paralelism and preemptions.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Discrete simulation
back on trees – i.e., back to cars transporting the sand

Implementation I:

The event-calendar may be implemented by bidirectional
circular linked-list.
We are scheduling individual processes (type of the event is
reflected by the process and its attributes).
Waiting in queues (e.g., a supermarket): Process that is
quitting the queue activates the next one (from the queue).
So we use passive-waiting. Advantages, disadvantages???:
Passive waiting (compared to the active one, called
busy-waiting) does not waste processor,
Busy waiting: Process is continuously asking whether it
already can start, thus there is lower risk of process being
forgotten (before it gets enqueued, the only its ancestor
finishes).

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Event-description
enumerating data-types

enum typename{constants,separated,by,commas};

or {some constant=its value,...}

Example: enum state{waiting,runs,loading};

enum state{waiting=0,runs=1,loading=3};

We may increment individual variables (++, −−).

Still nobody checks whether we overflow (or underflow)!

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Lists

Lists (linked) and basic data-structures were lectured in
Pascal,

as in C# they are already implemented:

System.Collections.ArrayList is a universal list.

Instances of this class are equipped with several methods, e.g.:

Add – adds an element (into the list).
Remove – removes an element (one occurence).
Sort – sorts the list (by default integers),
IndexOf – looks up and element, when found, it returns
non-negative value, when not found, returns -1.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Example

using System.Collections;

ArrayList AL = new ArrayList();

AL.Add("First");

AL.Add(222);

AL.Add(100);

AL.Add(1);

AL.Add(null);

AL.Remove("First");

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Example, cont...

We can output all elements using foreach:
Console.WriteLine("Number (of el’s): 0", AL.Count );

Console.WriteLine("First element: 0", AL[0]);

AL.Sort();

System.Console.Write("All elements: ");

foreach (object obj in AL)

System.Console.Write("0", obj);

System.Console.WriteLine();

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Typed list and generics

Often we need some structure for different data-types,

but we know that each list shall be homogeneous (all
elements of the same type).

Now we may employ generics (in C++ called templates.
They can be recognized by the argument in ”acute-brackets”:

List<int> numbers=new List<int>();

Once defined, we work with generic as with a normal variable:

numbers.Add(10);

Today we show how to use the generics.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Generic List

It is a successor of ArrayListu since C# 2.0 thus it is used
in a similar way:

List<int> integers=new List<int>();

integers.Add(5);

integers.Add(3);

integers.Add(1);

foreach(int i in integers)

Console.WriteLine(i);

Console.WriteLine("In total 0",integers.Count);

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Complex numbers
... there is a problem that integers sometimes do not suffice

class Compl

{ public double Re,Im;

public Compl(double Re,double Im)

{ this.Re=Re; this.Im=Im;}
}
List<Compl> s=newList<Compl>();

s.Add(new Compl(1,0));

s.Add(new Compl(0,1));

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Generic class List

contained in System.Collections.Generic,

contains many methods, e.g.:

Add, Contains, Sort, BinarySearch

Example:
List<string> s1 = new List<string>();

s1.Add("abcd");

s1.Add("efgh");

if(s1.Contains("abcd"))

Console.WriteLine("It is included!");

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



2nd possibility
how to implement discrete event simulation

Calendar is a list of events List<OurEvent>,

individual processes are operated by event-handlers,

thus when implementing a queue for waiting cars, the queues
are not necessary,

waiting can be implemented by scheduling the event at the
first possible time (when it can occur),

we have to pay attention at race-conditions.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II


