
Strings
sometime behave a bit devilish

Variables of type string

they are objects but can be directly initialized:

string s="piece of text";

Comparison at equality compares the string-content

(however, in family of C language it is exceptional).

Length – as in arrays: s.Length

String can be considered as an array,

but it is read-only! For writing use StringBuilder.

Array can be splitted into array using its method Split:

string t="1 22 333 444";

string[]nums=t.Split({’ ’});

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Structures

In C programming language there were no objects but there
were structures.

They were operated as records in Pascal,

they were defined using keyword struct (syntactically
similarly to classes in C#),

In C# they are present too, but instead of them one uses
usually objects.

Example: struct compl{public int re,im;};

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Inheritance

Sometimes we have special cases (to the general case) and we
want them to behave uniformly.

E.g., a living mass has 7 methods (signs of life), but each
living mass behaves completely differently.

If we want to implement menagerie, it would be nice to
implement a type animal that would be kind of template for
particular animal species.

Defining a ”parent”is simple, son gets defined using
semicolon-operator.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Example
parent

class animal {
string name;

public void MakeNoise()

{ Console.WriteLine("Cannot, I am animal!");}
public void SetName(string name)

{ this.name=name;}
public void WhoSThat()

{ Console.WriteLine(name);}
}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Example
sons

class tiger:animal

{ public tiger(string name)

{ SetName(name);}
public void MakeNoise()

{ Console.Writeline("Vrrrrrr-rrum!");}
}
class hen:animal

{ public hen() //hens have no names

{ SetName("none"); }
public void MakeNoise()

{ Console.WriteLine("Ko - ko - ko!");}
}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Inheritance
and its use

The son-class inherites everything from the parent class,

if we redefine some method, it is redefined,

however, we would appreciate some ”uniform approach”to the
sons (otherwise inheritance is just a toy), thus

we may assign a son into a parent

animal matysek=new tiger("Matysek");

Then we can call inherited methods:
matysek.WhoSThat();

We may also try to call redefined methods (defined in parent),

but it does something unexpected: matysek.MakeNoise();
=> "Cannot, I am animal!’’

To make possible a behavior we expect, the method would
have to be virtual.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Virtual methods I/II
motivation by example

If the previous problem was unsolvable, object programming
would be merely useless.

Thus it can be solved using virtual methods.

Defining virtual methods – modifier virtual.

Example: public virtual void MakeNoise()... and
public override MakeNoise()...

After this modification the example does what we wanted.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Virtual methods II/II
explanation how it works

Although methods behave like if they were present in each
individual object (they can operate its attributes), it would be
too demanding...

...thus they are stored in a class-prototype.

Thus methods redefined in son-class are not reflected when
referencing the object as parent
animal a=new tiger();

Even virtual methods are not present in each object, they are
represented by VMT and VMT is also present in prototype.

But each object has a pointer at VMT and this pointer gets
initialized when calling the constructor.

That is why it works as we want.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Abstract classes I/II
and abstract methods

Sometimes we want to use classes only as some template – we
define what each class inheriting from us must define without
defining general version.

Example: Printer has method print, but ink-printer and
laser-printer are doing it in completely different way.

Abstract class and abstract (purely virtual) methods are giving
us this possibility.

Abstract method is not defined, just declared. In C# it is
denoted by modifier abstract

public abstract void print(string x);

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Abstract classes II/II

Abstract class is a class containing at least one abstract
method.

In C# it must be also denoted by keyword abstract

abstract class printer{
public abstract void print(string x);}

Abstract classes cannot be instantiated, they just define what
each (non-abstract) descendant must define.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Sealed classes and methods

Sealed classes cannot be used as parents of further classes,

sealed methods we cannot override.

Modifier sealed is used in a (syntactically) similar way as
abstract.

sealed class thelastone{...},

public sealed override void print(){...}.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Wrappers around attributes
when we want to be politically correct

We know that attributes should not be visible,

but we want to modify them often and calling functions is
impractical.

Thus we may establish entity resembling a variable consisting
(in fact) of two methods (get and set).

public int wrappername{
get{ return Variable;}
set{ Variable=value;}

}

set has an implicit argument value,

wrappername then behaves as a variable.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Wrapper example

class animal

{ private int numLegs;

public int NumLegs

{ get

{ return numLegs;}
set

{ if((value%2)==0) numLegs=value;}
}

}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Example – use
of wrapper around attribute

matysek=new tiger(”Matysek”);
matysek.NumLegs=4; //OK
matysek.NumLegs=3; //K. O.
Console.WriteLine(matysek.NumLegs);

Martin Pergel, perm@kam.mff.cuni.cz

Programming II


