Strings

sometime behave a bit devilish

Variables of type string

they are objects but can be directly initialized:

string s="piece of text";

Comparison at equality compares the string-content
(however, in family of C language it is exceptional).
Length — as in arrays: s.Length

String can be considered as an array,

but it is read-only! For writing use StringBuilder.
Array can be splitted into array using its method Split:

string t="1 22 333 444";
string[lnums=t.Split({’ ’});

Martin Pergel, perm@kam.mff.cuni.cz
Programming Il



Structures

m In C programming language there were no objects but there
were structures.

m They were operated as records in Pascal,

m they were defined using keyword struct (syntactically
similarly to classes in C#),

m In C# they are present too, but instead of them one uses
usually objects.

m Example: struct compl{public int re,im;};

Martin Pergel, perm@kam.mff.cuni.cz
Programming Il



Inheritance

m Sometimes we have special cases (to the general case) and we
want them to behave uniformly.

m E.g., a living mass has 7 methods (signs of life), but each
living mass behaves completely differently.

m If we want to implement menagerie, it would be nice to
implement a type animal that would be kind of template for
particular animal species.

m Defining a " parent”is simple, son gets defined using
semicolon-operator.

Martin Pergel, perm@kam.mff.cuni.cz
Programming Il



Example

parent

class animal {
string name;
public void MakeNoise()
{ Console.WriteLine("Cannot, I am animal!");}
public void SetName (string name)
{ this.name=name;}
public void WhoSThat ()
{ Console.WriteLine (name);}

Martin Pergel, perm@kam.mff.cuni.cz
Programming Il



Example

sons

class tiger:animal
{ public tiger(string name)
{ SetName (name) ; }
public void MakeNoise()
{ Console.Writeline("Vrrrrrr-rrum!");}
1
class hen:animal
{ public hen() //hens have no names
{ SetName("none"); }
public void MakeNoise()
{ Console.WriteLine("Ko - ko - ko!");}

}

Martin Pergel, perm@kam.mff.cuni.cz
Programming Il



Inheritance

and its use

m The son-class inherites everything from the parent class,

m if we redefine some method, it is redefined,

m however, we would appreciate some "uniform approach”to the
sons (otherwise inheritance is just a toy), thus

B we may assign a son into a parent

m animal matysek=new tiger("Matysek");

m Then we can call inherited methods:
matysek.WhoSThat () ;

m We may also try to call redefined methods (defined in parent),

m but it does something unexpected: matysek.MakeNoise () ;
=> "Cannot, I am animal!’’

m To make possible a behavior we expect, the method would
have to be virtual.

Martin Pergel, perm@kam.mff.cuni.cz
Programming Il



Virtual methods I/11

motivation by example

m If the previous problem was unsolvable, object programming
would be merely useless.

m Thus it can be solved using virtual methods.

m Defining virtual methods — modifier virtual.

m Example: public virtual void MakeNoise()... and

public override MakeNoise()...

m After this modification the example does what we wanted.

Martin Pergel, perm@kam.mff.cuni.cz
Programming Il



Virtual methods I/

explanation how it works

m Although methods behave like if they were present in each
individual object (they can operate its attributes), it would be
too demanding...

m ...thus they are stored in a class-prototype.

m Thus methods redefined in son-class are not reflected when
referencing the object as parent
animal a=new tiger();

m Even virtual methods are not present in each object, they are
represented by VMT and VMT s also present in prototype.

m But each object has a pointer at VMT and this pointer gets
initialized when calling the constructor.

m That is why it works as we want.

Martin Pergel, perm@kam.mff.cuni.cz
Programming Il



Abstract classes |/11

and abstract methods

m Sometimes we want to use classes only as some template — we
define what each class inheriting from us must define without
defining general version.

m Example: Printer has method print, but ink-printer and
laser-printer are doing it in completely different way.

m Abstract class and abstract (purely virtual) methods are giving
us this possibility.

m Abstract method is not defined, just declared. In C# it is
denoted by modifier abstract

m public abstract void print(string x);

Martin Pergel, perm@kam.mff.cuni.cz
Programming Il



Abstract classes I1/11

m Abstract class is a class containing at least one abstract
method.

m In C# it must be also denoted by keyword abstract

m abstract class printer{
public abstract void print(string x);}

m Abstract classes cannot be instantiated, they just define what
each (non-abstract) descendant must define.

Martin Pergel, perm@kam.mff.cuni.cz
Programming Il



Sealed classes and methods

m Sealed classes cannot be used as parents of further classes,
m sealed methods we cannot override.

m Modifier sealed is used in a (syntactically) similar way as
abstract.

m sealed class thelastone{...},

m public sealed override void print(){...}.

Martin Pergel, perm@kam.mff.cuni.cz
Programming Il



Wrappers around attributes

when we want to be politically correct

m We know that attributes should not be visible,

m but we want to modify them often and calling functions is
impractical.

m Thus we may establish entity resembling a variable consisting
(in fact) of two methods (get and set).

public int wrappername{
get{ return Variable;}
set{ Variable=value;}

}

set has an implicit argument value,

wrappername then behaves as a variable.

Martin Pergel, perm@kam.mff.cuni.cz
Programming Il



Wrapper example

class animal
{ private int numLegs;
public int Numlegs
{ get
{ return numlegs;}
set
{ if ((value’2)==0) numLegs=value;}

Martin Pergel, perm@kam.mff.cuni.cz
Programming Il



Example — use

of wrapper around attribute

matysek=new tiger(" Matysek”);
matysek.NumLegs=4; //OK
matysek.NumLegs=3; //K. O.
Console.WriteLine(matysek.NumLegs);

Martin Pergel, perm@kam.mff.cuni.cz
Programming Il



