
Namespaces and keyword using

Last time we remarked that each class must be defined in
some namespace.

When we want to call anything from different namespace, we
have to say the name of the namespace...

... or use keyword using.

See the example in Studio - usings are of this type.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Comment
about C#

Note that now we understand the ”ritual”necessary to write
arbitrary program in C#.

Also note that now you are able to write in C# almost
anything you were able to write in Pascal.

What will be doing the rest of semester?

Except of algorithms and theory we proceed with further parts
of C#.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Input and Output

Functions Read and ReadLine in Console we already know.

Output was so far very simplified. We are missing something
like...

writeln(’Value of a is ’,a,’, value of b ’,b,’

and their sum’,a+b);

Console.WriteLine("Value of a is {0}, value of b

{1} and their sum {2}",a,b,a+b);

Note that it may be dangerous to pass a string directly to the
output!

We may use these placeholders also for output formatting in
much more sophisticated way than in Pascal.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Objects as structures
instanciation

Note that inside a namespace we may define many classes.

We will try some classes with not only static attributes and
methods and see what happens.

As an example, we implement complex numbers.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Example
class-definition

namespace nothing {
class compl {

int re,im;

public void set nr up(int x,int y)

{ re=x;

im=y;

}
}
class Program {

static void Main(string[]x)

{.........}
}

}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Instanciation
example - better version the same occurs next week

namespace Nic {
........

class Program {
public void Main(string[]x)

{ compl a=new compl(),b=new compl();

a.set up(0,0);

b.set up(10,5);

}
}

}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Complex numbers
further interesting methods

class compl {
.........

public void add(compl what)

{ re+=what.re;

im+=what.im;

}
}
Question: Are re and im public, private or protected?

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Complex numbers
passing the argument by result

class compl{
.............

public void value(out int x,out int y)

{ x=re; y=im;}
}

What if we were passing it by reference...

... and if we did not initialize values passed by reference (as
those values get immediately overwritten)?

Attention, please, modifiers out a ref have to be used even
when calling the function: (x.value(out a, out b);)!

What in the example seems like the biggest nonsence?

Hint: Fact that value containing the value is named re and x.
Can we avoid it?

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Step aside
scope-resolution

When looking for a variable (identifier), compiler tries first
arguments of the recent function and local variables,

after that it tries the attributes of own class.

What happens if an attribute is named as an argument?

Attribute is covered and we could not see it. Thus in any
object there is a variable this referencing it. Beware in static
context (this is invalid)!

Better implementation:
public void value(out int re, out int im)

{ re=this.re; im=this.im;}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Constructors I/II
are filling the object in

When implementing, e.g., binary tree in Pascal, after
allocating the structure, we had to fill it (almost always in the
same way) which is sometimes clumsy.

Thus constructor was designed.

Constructor is a function that is called when creating a new
object.

Syntactically we may observe it as an unnamed function
returning object of its underlying type [class].

Or we may imagine it as a function named as the class
without the resulting data-type.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Constructors II/II
are normal overloadable functions

There may be more constructors for one class, just they have
to differ in the structure of arguments (number, data-types).

Remark: This is called overloading and in C# any

function may be overloaded in this way.

If we define no constructor, a default constructor (with no
parameters) gets generated.

When we define any constructor, the implicit one is not
generated!

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Example on constructor

class compl {
..............

public compl (int re,int im)

{ this.re=re; this.im=im;}
public compl()

{ this.re=0; this.im=0;}
}
Can’t we implement the argument-free constructor better?

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Constructors
calling a different constructor

To call a different constructor we use semicolon and say what
should be called like this:

public compl():this(0,0){}

In the braces we may define further code that gets called after
the ”colleague”.

Step aside: When using inheritance, keyword base may be
used for the parent in the same way as this. So we can
(similarly) call the parent’s constructor

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Destructor

Analogy to constructor, called when deallocating the object.

This usually does garbage-collector, thus its use in C# is
complicated.

Destructor’s name differ by the wave: (~compl).

It takes no arguments and returns nothing.

In C# not so widely used, in C++ it has better use.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Garbage collector
... in C# is another good reason why we taught you Pascal in the winter term

After we allocate an object (new typename();), we are
working with it as in Pascal...

... up to the moment when we want to deallocate it.

Instead of deallocation we simply drop the reference at it (in
Pascal ⇒ memory leak).

In C# garbage-collector takes effect after some time.

Amount of available memory:
System.GC.GetTotalMemory(bool);

Explicit call of Garbage-collector:
System.GC.Collect();

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Arrays
they are completely simple although they behave differently than in Pascal

Defining an array type variable we indicate by square brackets
in front of the variable name:

int [] intarray;

Compared to Pascal, we have only arrays of previously
unknown size, we have to initialize them - allocate a space for
them.

Again we use operator new for that:

intarray=new int[10];

Arrays get indexed from 0 (up to length - 1)!

Arrays of some types may be initialized immediately:

int[]arr=new int[3]{1,2,3}; or

int[]arr=new int[]{1,2,3};

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Arrays II/III

Arrays of type we defined (say compl):

compl[] arrc=new compl[10];

The array is uninitialized so far [full of nulls]!

arrc[0]=new compl();

Array-length – length attribute:
int len=arrc.Length;

Accessing element out of range causes
IndexOutOfRangeException.

Use of uninitialized array cause NullReferenceException.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

Arrays III

Multidimensional arrays: int [,]arr=new int[2,3];

This array is rectangular and:
arr.Rank==2 and arr.Length==6

Nonrectangular arrays (array of arrays):
int [][]arr=new int[3][];

Later we perform: arr[0]=new int[2];

arr[1]=new int[3];...

Construction foreach:

int []arr=int[]{1,2,3,4,5,6};
foreach(int i in arr)

Console.WriteLine(i);

Martin Pergel, perm@kam.mff.cuni.cz

Programming II

