Namespaces and keyword using

m Last time we remarked that each class must be defined in
some namespace.

m When we want to call anything from different namespace, we
have to say the name of the namespace...

m ... or use keyword using.

m See the example in Studio - usings are of this type.

Martin Pergel, perm@kam.mff.cuni.cz
Programming Il



Comment
about C#

m Note that now we understand the "ritual” necessary to write
arbitrary program in C#.

m Also note that now you are able to write in C# almost
anything you were able to write in Pascal.

m What will be doing the rest of semester?

m Except of algorithms and theory we proceed with further parts
of C#.

Martin Pergel, perm@kam.mff.cuni.cz
Programming Il



Input and Output

m Functions Read and ReadLine in Console we already know.

m QOutput was so far very simplified. We are missing something
like...

m writeln(’Value of a is ’,a,’, value of b ’,b,’
and their sum’,at+b);

m Console.WriteLine("Value of a is {0}, value of b
{1} and their sum {2}",a,b,a+b);

m Note that it may be dangerous to pass a string directly to the
output!

m We may use these placeholders also for output formatting in
much more sophisticated way than in Pascal.

Martin Pergel, perm@kam.mff.cuni.cz
Programming Il



Objects as structures

instanciation

m Note that inside a namespace we may define many classes.

m We will try some classes with not only static attributes and
methods and see what happens.

m As an example, we implement complex numbers.

Martin Pergel, perm@kam.mff.cuni.cz
Programming Il



Example

class-definition

namespace nothing {
class compl {
int re,im;
public void setnr up(int x,int y)
{ re=x;
im=y;

}

class Program {
static void Main(string[]x)

}

Martin Pergel, perm@kam.mff.cuni.cz
Programming Il



Instanciation

example - better version the same occurs next week

namespace Nic {
class Program {
public void Main(string[]x)
{ compl a=new compl(),b=new compl();
a.set up(0,0);
b.set_up(10,5);

Martin Pergel, perm@kam.mff.cuni.cz
Programming Il



Complex numbers

further interesting methods

class compl {

public void add(compl what)
{ re+=what.re;
im+=what.im;

}

Question: Are re and im public, private or protected?

Martin Pergel, perm@kam.mff.cuni.cz
Programming Il



Complex numbers

passing the argument by result

class compl{
public void value(out int x,out int y)
{ x=re; y=im;}

What if we were passing it by reference...

... and if we did not initialize values passed by reference (as
those values get immediately overwritten)?

m Attention, please, modifiers out a ref have to be used even
when calling the function: (x.value(out a, out b);)!

What in the example seems like the biggest nonsence?

Hint: Fact that value containing the value is named re and x.
Can we avoid it?

Martin Pergel, perm@kam.mff.cuni.cz
Programming Il



Step aside

scope-resolution

m When looking for a variable (identifier), compiler tries first
arguments of the recent function and local variables,

m after that it tries the attributes of own class.
m What happens if an attribute is named as an argument?

m Attribute is covered and we could not see it. Thus in any
object there is a variable this referencing it. Beware in static
context (this is invalid)!

m Better implementation:
public void value(out int re, out int im)

{ re=this.re; im=this.im;}

Martin Pergel, perm@kam.mff.cuni.cz
Programming Il



Constructors 1/

are filling the object in

m When implementing, e.g., binary tree in Pascal, after
allocating the structure, we had to fill it (almost always in the
same way) which is sometimes clumsy.

m Thus constructor was designed.

m Constructor is a function that is called when creating a new
object.

m Syntactically we may observe it as an unnamed function
returning object of its underlying type [class].

m Or we may imagine it as a function named as the class
without the resulting data-type.

Martin Pergel, perm@kam.mff.cuni.cz
Programming Il



Constructors 11/

are normal overloadable functions

m There may be more constructors for one class, just they have
to differ in the structure of arguments (number, data-types).

m Remark: This is called overloading and in C# any
function may be overloaded in this way.

m If we define no constructor, a default constructor (with no
parameters) gets generated.

m When we define any constructor, the implicit one is not
generated!

Martin Pergel, perm@kam.mff.cuni.cz
Programming Il



Example on constructor

class compl {

public compl (int re,int im)

{ this.re=re; this.im=im;}
public compl()
{ this.re=0; this.im=0;}

}

Can't we implement the argument-free constructor better?

Martin Pergel, perm@kam.mff.cuni.cz
Programming Il



Constructors

calling a different constructor

m To call a different constructor we use semicolon and say what
should be called like this:

m public compl():this(0,0){}

m In the braces we may define further code that gets called after
the "colleague”.

m Step aside: When using inheritance, keyword base may be
used for the parent in the same way as this. So we can
(similarly) call the parent’s constructor

Martin Pergel, perm@kam.mff.cuni.cz
Programming Il



Destructor

Analogy to constructor, called when deallocating the object.

This usually does garbage-collector, thus its use in C# is
complicated.

Destructor’'s name differ by the wave: (“compl).

It takes no arguments and returns nothing.

m In C# not so widely used, in C++ it has better use.

Martin Pergel, perm@kam.mff.cuni.cz
Programming Il



Garbage collector

.. in C# is another good reason why we taught you Pascal in the winter term

m After we allocate an object (new typename();), we are
working with it as in Pascal...

® ... up to the moment when we want to deallocate it.

m Instead of deallocation we simply drop the reference at it (in
Pascal = memory leak).

m In C# garbage-collector takes effect after some time.

m Amount of available memory:
System.GC.GetTotalMemory(bool) ;

m Explicit call of Garbage-collector:
System.GC.Collect();

Martin Pergel, perm@kam.mff.cuni.cz
Programming Il



Arrays

they are completely simple although they behave differently than in Pascal

m Defining an array type variable we indicate by square brackets
in front of the variable name:

m int [] intarray;

m Compared to Pascal, we have only arrays of previously

unknown size, we have to initialize them - allocate a space for

them.

Again we use operator new for that:

intarray=new int[10];

Arrays get indexed from 0 (up to length - 1)!

Arrays of some types may be initialized immediately:

int [Jarr=new int[31{1,2,3}; or

int [Jarr=new int[]1{1,2,3};

Martin Pergel, perm@kam.mff.cuni.cz
Programming Il



Arrays 11/11I

Arrays of type we defined (say compl):
compl[] arrc=new compl[10];

The array is uninitialized so far [full of nulls]!
arrc[0]=new compl();

Array-length — length attribute:
int len=arrc.Length;

m Accessing element out of range causes
IndexOutOfRangeException.

m Use of uninitialized array cause NullReferenceException.

Martin Pergel, perm@kam.mff.cuni.cz
Programming Il



Arrays Il

m Multidimensional arrays: int [,Jarr=new int[2,3];

m This array is rectangular and:
arr.Rank==2 and arr.Length==6

m Nonrectangular arrays (array of arrays):
int [][Jarr=new int[3][];

m Later we perform: arr [0]=new int[2];
arr[1]=new int[3];...

m Construction foreach:

m int [Jarr=int([]{1,2,3,4,5,6};
foreach(int i in arr)

Console.WriteLine(i);

Martin Pergel, perm@kam.mff.cuni.cz
Programming Il



