
Announcement

Traditional competition ”Semicolon”takes place on 9th May in the
afternoon.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Generic data-types
how to define them

We know that there exist generic data-types (e.g., List). But
how to define them?

Remark: These data-types are light-version of templates in
C++, those can be indexed by anything (e.g., by number).

They can be used if we want to create several instances with
different underlying data-type.

It is also a replacement of preprocessor-macros in C.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Generics II

When using generics, we proceeded as with normal data-type,
just we added a parameter into angle-brackets [chevrons].

When defining generic data-type we do almost the same, i.e.,
we just name the parameter and behave with that as with a
data-type.

There does not have to be only one parameter, more
parameters are separated by commas.

public class gen cl <T> {public T variable;}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Generic class example

public class my list <T>

{ public T data;

public my list<T> next;

}
...

my list<int> x=new my list<int>();

x.data=new my list<int>();

//This would not work:

// x.next=new my list<double>();

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Generic methods
not only classes may be generic

In the function-body the parameter behaves as when defining
generic class.

This time we put chevrons containing the data-types between
function-name and parameters.

void gen met<T,U>(T a, U b){
Console.WriteLine("Parameters are

{0},{1}.",Convert.ToString(a),Convert.ToString(b));}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Generic method example

static void swapit<T>(ref T a, ref T b)

{ T tmp=a;

a=b;

b=tmp;

}
static void Main()

{ int a=1,b=2;

swapit<int>(ref a, ref b);

Console.WriteLine("a is {0}, b is {1}",a,b);
}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Restricting data-types
in newer versions of .NET Framework

We may restrict the parameter using keyword where.

When defining the class, we put where behind the chevrons,

when defining the methods, it stands after the header.

class gen<T> where T:IComparable{...}
//T implements function CompareTo

void gener<T>(out T a) where T:new(){a=new T();}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Operator overloading
is the same as function overloading

We know that a function is defined by its name and
argument-structure.

Several functions with the same name may exist.

Also there are, e.g., many types of numbers: integers, longint,
double, rational numbers...

... and we want to add, subtract, multiply or divide them...

without calling obscure functions like add two rationals.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Complex numbers
and operations on them, a. k. a. operator overloading

We want to create a class representing complex numbers,...

whose elements can be added like c=a+b;

thus we overload operator +.

When overloading an operator, it looks like function
overloading just the name of the function is fixed (e.g.,
”operator +") and number of arguments, too

(follows from grammar of C#).

We may overload an operator in a class identical with at least
one of its parameters (we cannot overload an operator in
completely different class).

And the functions must be static!

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Example
Gaussian integers

class compl

{ public int re, im;

public compl(int re, int im)

{ this.re=re; this.im=im;’}
public static compl operator +(compl a,compl b)

{ return new compl(a.re+b.re,a.im+b.im);}
public static compl operator *(compl a,compl b)

{ return new compl(a.re*b.im-a.im*b.im,

a.re*b.im+a.im*b.re);

}
}

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Example – continued

To make the class compl demonstrable, we override her a method
ToString, too:
public override string ToString()

{ return ""+re+"+ "+im+"i";}
And let’s go:
kompl a=new compl(1,0), b=new compl(0,1),c;

c=a+b;

Console.WriteLine(c);

Console.WriteLine(a*b);

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Overloadable operators

We may overload the operators:
unary !, ~, ++, --

binary +, -, *, /, %, &, |, ^, <<,>>

WE CANNOT overload mainly &&, ||, [], (type)x ,+ =,− =...

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Games Programming

Combinatorial game is a game of two players. State of the
game is given by position of particular items. All items
relevant to the game are visible for both players. I.e.,
combinatorial games are games with full information.

Examples: Nim, Strange game, Draughts, Chess, Halma, Nine
Men’s Morris, Poisoned chocolate, Devilish darts,...

Combinatorial games are *NOT*: Poker, Mau mau, Black
jack, formula-race, Doom,...

We focus on the playing algorithms (not on input/output).

We expect the players to behave rationally (i.e., they want to
win).

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Shannon’s theorem

Theorem (Shannon)

Each combinatorial game (with finite number of possible moves)
has a winning strategy for at least one of the players.

Důkaz.

Sketch: Either at least one of the players may enfoce the game to
start cycling (to never finish). Then he never loses and theorem
holds. Or the game is finite and we examine predicates:
There exists our (1st player’s) move s.t. for all moves of 2nd player
there exists our move s.t.,... we win.
For all our moves there exists a move of the 2nd player s.t. for all
our moves... we do not win.
Predicates are negation one to another and they are finite (finite
quantification), thus they are decidable and exactly one of them
holds.Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Game-graph

For a game (its instance) we assign an oriented graph:

Vertices represent states of the game,

edges represent possibility of transition between states.

Example for Nim with 1 or 2 matches (on white-board).

Each state (vertex) may be colored according to who wins
(when starting here).

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Examples of graphs

The game is represented by an oriented graph and we are
moving a coin over this graph starting in a given vertex.

We should reach one of terminal vertices; who cannot move,
loses (who reaches that state, wins).

Graph of the game is given, questionable is how to win.

Note that each game can be represented as Devilish darts.

Strange game: vertices are individual squares of the board.

It is enough to say whether the player moving from current
vertex wins or loses (or if there is a cycle that both players
appreciate).

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



AND-OR-tree

Considering a game-graph, we may create game-tree instead
by splitting one state into possibly more states.

For this tree we may ask whether there is a branch where we
win.

Such a ”branch”is a subtree, s.t., after an odd step for all
possibilities (even step) there is an odd step,..., i.e.,...

either we win in the first son, or in the second, or in the
third,...

while the other player loses in the first (grand-)son and in the
second son and in the third,...

AND- and OR-gates are regularly interlacing, thus
AND-OR-tree.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



Games with evaluation

Definition

Game with an evaluation is a game where the result of a game is a
value. One player tries to maximize this number while the other is
trying to minimize it.

Definition

Game with a zero sum is a game where win for one player is a loss
for the other player (and these values are the same).

Martin Pergel, perm@kam.mff.cuni.cz

Programming II



That’s all for today...

...thank you for your attention.

Martin Pergel, perm@kam.mff.cuni.cz

Programming II


