
Directive forward

Annotation

Directive forward

Standard units,

Pointers.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Directive forward

It is typical that one function calles another but

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Directive forward

It is typical that one function calles another but

sometimes the latter function calls the former, too.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Directive forward

It is typical that one function calles another but

sometimes the latter function calls the former, too.

Problem: In Pascal we have to define first (then we may use).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Directive forward

It is typical that one function calles another but

sometimes the latter function calls the former, too.

Problem: In Pascal we have to define first (then we may use).

Cyclic dependence seems unsolvable...

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Directive forward

It is typical that one function calles another but

sometimes the latter function calls the former, too.

Problem: In Pascal we have to define first (then we may use).

Cyclic dependence seems unsolvable...

until we find the forward directive!

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Directive forward

It is typical that one function calles another but

sometimes the latter function calls the former, too.

Problem: In Pascal we have to define first (then we may use).

Cyclic dependence seems unsolvable...

until we find the forward directive!

This directive is placed after the function prototype:

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Directive forward

It is typical that one function calles another but

sometimes the latter function calls the former, too.

Problem: In Pascal we have to define first (then we may use).

Cyclic dependence seems unsolvable...

until we find the forward directive!

This directive is placed after the function prototype:

procedure two(a:integer);forward;

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Forward example:

program qq;

procedure two(a:integer);forward;

procedure one(a:integer);

begin

two(a);

end;

procedure two(a:integer);

begin

one(a);

end;

begin

one(1);

{Let us ignore that this program does

not make a good sense!}
end.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Linear list typology

circular (instead of nil point at the first)

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Linear list typology

circular (instead of nil point at the first)

with a head (first element is not a member)

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Linear list typology

circular (instead of nil point at the first)

with a head (first element is not a member)

with a tail (last element is not a member)

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Linear list typology

circular (instead of nil point at the first)

with a head (first element is not a member)

with a tail (last element is not a member)

without head/tail

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Linear list typology

circular (instead of nil point at the first)

with a head (first element is not a member)

with a tail (last element is not a member)

without head/tail

bidirectional (pointers next and prev).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

A Queue and a Buffer

Queue is a data structure organizing the elements in a
FIFO-way,

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

A Queue and a Buffer

Queue is a data structure organizing the elements in a
FIFO-way,

it is equipped with functions enqueue and dequeue.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

A Queue and a Buffer

Queue is a data structure organizing the elements in a
FIFO-way,

it is equipped with functions enqueue and dequeue.

Buffer is a data structure organizing the elements in a
LIFO-way,

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

A Queue and a Buffer

Queue is a data structure organizing the elements in a
FIFO-way,

it is equipped with functions enqueue and dequeue.

Buffer is a data structure organizing the elements in a
LIFO-way,

it is equipped with functions push and pop (or pull).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

A Queue and a Buffer

Queue is a data structure organizing the elements in a
FIFO-way,

it is equipped with functions enqueue and dequeue.

Buffer is a data structure organizing the elements in a
LIFO-way,

it is equipped with functions push and pop (or pull).

It is possible to implement them using array,...

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

A Queue and a Buffer

Queue is a data structure organizing the elements in a
FIFO-way,

it is equipped with functions enqueue and dequeue.

Buffer is a data structure organizing the elements in a
LIFO-way,

it is equipped with functions push and pop (or pull).

It is possible to implement them using array,...

but it is much better to use linear lists!

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Buffer
Implementation I/III

type pbuf=^buf;

buf=record

val:integer;

next:pbuf;

end;

var head:pbuf;

procedure init;

begin head:=nil;

end;

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Buffer
Implementation II/III

type pbuf=^buf;

buf=record

val:integer;

next:pbuf;

end;

var head:pbuf;

procedure push(what:integer);

var tmp:pbuf;

begin

new(tmp);

tmp^.val:=what;

tmp^.next:=head;

head:=tmp;

end;
Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Buffer
Implementation III

function pop:integer;

var tmp:pbuf;

begin

tmp:=head;

if head<>nil then

begin pop:=head^.val;

head:=tmp^.next;

dispose(pom);

end else

begin writeln(’Error!’);

pop:=-1;

end;

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Queue
Implementation

type=pq=^queue;

queue=record

val:integer;

next:pq;

end;

var head,tail:pq;

procedure init;

begin

head:=nil; tail:=nil; end;

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

procedure enqueue(what:integer);

var tmp:pq;

begin if head=nil then

begin new(head);

tail:=head;

head^.next:=nil;

head^.val:=what;

end else

begin new(tmp);

tmp^.next:=nil;

tmp^.val:=what;

head^.next:=tmp;

head:=tmp;

end;

end;

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

function dequeue:integer;

var tmp:pq;

begin if head=nil then

begin dequeue:=-1;

end else

begin if head=tail then

begin dequeue:=tail^.val;

dispose(tail);

head:=nil; tail:=nil;

end else

begin dequeue:=tail^.val;

tmp:=tail;

tail:=tail^.next;

dispose(tmp);

end;

end;

end;
Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Switch two neighboring elements
Switch an element in a linear list with its neighbor

procedure swap(var head:ll;what:ll);

var tmp:ll;

begin tmp:=head;

if head=what then

begin head:=head^.next;

tmp^.next:=head^.next;

head^.next:=tmp;

end else

begin while(tmp^.next<>what) do

tmp:=tmp^.next;

tmp^.next:=what^.next;

what^.next:=tmp^.next^.next;

tmp^.next^.next:=what;

end; end;
Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Dynamic data structures

The examples sometimes omit singularities (empty list, an
element not in the list, one-element-list...). All this would be
implemented by several tests for nil.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Dynamic data structures

The examples sometimes omit singularities (empty list, an
element not in the list, one-element-list...). All this would be
implemented by several tests for nil.

Good exercise: Bubblesort over linear list.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Dynamic data structures

The examples sometimes omit singularities (empty list, an
element not in the list, one-element-list...). All this would be
implemented by several tests for nil.

Good exercise: Bubblesort over linear list.

Organizing (an ordered) linear list (functions insert, delete and
member that are working with the ordered linear list).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Ordered list

A linear list may be ordered (with respect to the values of the
elements, w.l.o.g. in a non-decreasing order).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Ordered list

A linear list may be ordered (with respect to the values of the
elements, w.l.o.g. in a non-decreasing order).

For such lists we usually implement functions:

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Ordered list

A linear list may be ordered (with respect to the values of the
elements, w.l.o.g. in a non-decreasing order).

For such lists we usually implement functions:

member – says whether an element with an appropriate key is
in the list,

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Ordered list

A linear list may be ordered (with respect to the values of the
elements, w.l.o.g. in a non-decreasing order).

For such lists we usually implement functions:

member – says whether an element with an appropriate key is
in the list,
insert – inserts an element into a list,

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Ordered list

A linear list may be ordered (with respect to the values of the
elements, w.l.o.g. in a non-decreasing order).

For such lists we usually implement functions:

member – says whether an element with an appropriate key is
in the list,
insert – inserts an element into a list,
delete – deletes an element from a list.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Ordered list

A linear list may be ordered (with respect to the values of the
elements, w.l.o.g. in a non-decreasing order).

For such lists we usually implement functions:

member – says whether an element with an appropriate key is
in the list,
insert – inserts an element into a list,
delete – deletes an element from a list.

Example – see webpage (or we are going to write it here).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Further data structures

Self-organizing lists – lists that get modified by accessing
them.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Further data structures

Self-organizing lists – lists that get modified by accessing
them.

Move-front rule, transposition rule:

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Further data structures

Self-organizing lists – lists that get modified by accessing
them.

Move-front rule, transposition rule:

When accessing a member, we move it to the beginning or
change with its (immediate) predecessor, respectively.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Further data structures

Self-organizing lists – lists that get modified by accessing
them.

Move-front rule, transposition rule:

When accessing a member, we move it to the beginning or
change with its (immediate) predecessor, respectively.

Idea: Usually we are accessing the same element repeatedly
(in a short time) but our interests are changing.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Trees

In a linear list, it is a problem to search an element.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Trees

In a linear list, it is a problem to search an element.

It takes a linear time, we want something better.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Trees

In a linear list, it is a problem to search an element.

It takes a linear time, we want something better.

We want to implement a data structure where binary search is
possible.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Trees

In a linear list, it is a problem to search an element.

It takes a linear time, we want something better.

We want to implement a data structure where binary search is
possible.

Natural idea is to create a binary search tree (smaller values in
the left subtree, larger in the right one).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Trees

In a linear list, it is a problem to search an element.

It takes a linear time, we want something better.

We want to implement a data structure where binary search is
possible.

Natural idea is to create a binary search tree (smaller values in
the left subtree, larger in the right one).

How to implement it?

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Trees

In a linear list, it is a problem to search an element.

It takes a linear time, we want something better.

We want to implement a data structure where binary search is
possible.

Natural idea is to create a binary search tree (smaller values in
the left subtree, larger in the right one).

How to implement it?

Each element gets more than one ancestor (left, right).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Tree representation
in Pascal

type tree=^vertex;

vertex=record

val:longint;

left:tree;

right:tree;

...

end;

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Binary search trees

Binary tree is such a tree where each element has at most two
ancestor.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Binary search trees

Binary tree is such a tree where each element has at most two
ancestor.

Binary search tree is a binary tree which for each element with
a key K contains in the left subtree values with key smaller
than K and in the right subtree values with key larger than K .

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Binary search trees

Binary tree is such a tree where each element has at most two
ancestor.

Binary search tree is a binary tree which for each element with
a key K contains in the left subtree values with key smaller
than K and in the right subtree values with key larger than K .

Thus it is possible to search efficiently in such a tree.
Advantages/disadvantages?

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Binary search trees

Binary tree is such a tree where each element has at most two
ancestor.

Binary search tree is a binary tree which for each element with
a key K contains in the left subtree values with key smaller
than K and in the right subtree values with key larger than K .

Thus it is possible to search efficiently in such a tree.
Advantages/disadvantages?

If we build it well, it becomes more efficient than a linear-list.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Binary search trees

Binary tree is such a tree where each element has at most two
ancestor.

Binary search tree is a binary tree which for each element with
a key K contains in the left subtree values with key smaller
than K and in the right subtree values with key larger than K .

Thus it is possible to search efficiently in such a tree.
Advantages/disadvantages?

If we build it well, it becomes more efficient than a linear-list.

If we build it badly, it collapses into a linear-list.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Binary search trees

Binary tree is such a tree where each element has at most two
ancestor.

Binary search tree is a binary tree which for each element with
a key K contains in the left subtree values with key smaller
than K and in the right subtree values with key larger than K .

Thus it is possible to search efficiently in such a tree.
Advantages/disadvantages?

If we build it well, it becomes more efficient than a linear-list.

If we build it badly, it collapses into a linear-list.

How to build a balanced binary search tree (and how to keep
the tree balanced)?

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Binary search trees

Binary tree is such a tree where each element has at most two
ancestor.

Binary search tree is a binary tree which for each element with
a key K contains in the left subtree values with key smaller
than K and in the right subtree values with key larger than K .

Thus it is possible to search efficiently in such a tree.
Advantages/disadvantages?

If we build it well, it becomes more efficient than a linear-list.

If we build it badly, it collapses into a linear-list.

How to build a balanced binary search tree (and how to keep
the tree balanced)?

Balanced BST is a tree where for each element # elements in
the left subtree (of this element) and # elements in the right
subtree differ at most by 1.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Building a balanced BST

Find a median and root it.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Building a balanced BST

Find a median and root it.

Build a balanced BST on smaller elements (recursively),

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Building a balanced BST

Find a median and root it.

Build a balanced BST on smaller elements (recursively),

build a balanced BST on larger elements (recursively),

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Building a balanced BST

Find a median and root it.

Build a balanced BST on smaller elements (recursively),

build a balanced BST on larger elements (recursively),

set these trees to be sibings of the root.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

BST – data structures

We are going to build from an array (uninteresting [obvious])

Dynamic data structure representing nodes [vertices] of the
tree:
type pbst:^bst;

bst=record

val:longint;

left:pbst;

right:pbst;

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Building a balanced BST
(pseudocode)

function build(array):pbst;

begin

if empty(array) then build:=nil; else begin

med:=median(array);

small:=smaller(med,array);

large:=larger(med,array);

new(root);

root^.hod:=med;

root^.left:=build(small);

root^.right:=build(large);

build:=root;

end;

end;

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Further operations on balanced BST
member, insert, delete

Operation member is simple:
function member(what:longint,where:pbst):pbst;

begin if where=nil then member:=nil

else if where^.val=what then member:=where

else if where^.val>what then

member:=member(where^.left)

else member:=member(where^.right);

end;

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Further operations on balanced BST
member, insert, delete

Operation member is simple:
function member(what:longint,where:pbst):pbst;

begin if where=nil then member:=nil

else if where^.val=what then member:=where

else if where^.val>what then

member:=member(where^.left)

else member:=member(where^.right);

end;

Beware of the algorithm’s side-effect using trichotomy (i.e.,
the third branch ensures that whereˆ.val<what)

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Further operations on balanced BST
member, insert, delete

Operation member is simple:
function member(what:longint,where:pbst):pbst;

begin if where=nil then member:=nil

else if where^.val=what then member:=where

else if where^.val>what then

member:=member(where^.left)

else member:=member(where^.right);

end;

Beware of the algorithm’s side-effect using trichotomy (i.e.,
the third branch ensures that whereˆ.val<what)

Function insert and delete are almost unimplementable (it
would be necessary to destruct the whole tree).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Binary search tree
far from being balanced!

procedure insert(what,where);

begin {Marginal cases!}
while(((what<where^.val) and

(where^.left<>nil)) or

((what>where^.val)and

(where^.right<>nil)))

if(what<where^.val) then

where:=where^.left

else where:=where^.right;

if(what=where^.val) then error("Already

there!");

if(what<where^.val) then

begin new(where^.left);

kam:=where^.left;

end else symmmetric for the right...

where^.left:=nil; where^.right:=nil;

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

BST – delete – bad version

Find an element,

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

BST – delete – bad version

Find an element,

if it has out-degree at most 1, delete it (or bypass it).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

BST – delete – bad version

Find an element,

if it has out-degree at most 1, delete it (or bypass it).

With an out-degree 2,
add its left son as the left son of the left-most element in the
right subtree,
now the erased element behaves as with out-degree 1.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

BST – delete – bad version

Find an element,

if it has out-degree at most 1, delete it (or bypass it).

With an out-degree 2,
add its left son as the left son of the left-most element in the
right subtree,
now the erased element behaves as with out-degree 1.

What’s wrong?

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

BST – delete – bad version

Find an element,

if it has out-degree at most 1, delete it (or bypass it).

With an out-degree 2,
add its left son as the left son of the left-most element in the
right subtree,
now the erased element behaves as with out-degree 1.

What’s wrong?

In a short time the tree looks like a linear list.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

BST – delete – correct version

Find an element,

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

BST – delete – correct version

Find an element,

With an out-degree at most 1, delete it (or bypass it).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

BST – delete – correct version

Find an element,

With an out-degree at most 1, delete it (or bypass it).

Otherwise find the left-most element in the right subtree and
switch these elements.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

BST – delete – correct version

Find an element,

With an out-degree at most 1, delete it (or bypass it).

Otherwise find the left-most element in the right subtree and
switch these elements.

We violate the property of a BST for a while!

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

BST – delete – correct version

Find an element,

With an out-degree at most 1, delete it (or bypass it).

Otherwise find the left-most element in the right subtree and
switch these elements.

We violate the property of a BST for a while!

Now, the deleted vertex (on the incorrect location) has an
out-degree at most 1 ⇒

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

BST – delete – correct version

Find an element,

With an out-degree at most 1, delete it (or bypass it).

Otherwise find the left-most element in the right subtree and
switch these elements.

We violate the property of a BST for a while!

Now, the deleted vertex (on the incorrect location) has an
out-degree at most 1 ⇒

delete it (bypass).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

BST – delete – correct version

Find an element,

With an out-degree at most 1, delete it (or bypass it).

Otherwise find the left-most element in the right subtree and
switch these elements.

We violate the property of a BST for a while!

Now, the deleted vertex (on the incorrect location) has an
out-degree at most 1 ⇒

delete it (bypass).

Instead of the left-most element in the right subtree we may
use the right-most element in the left subtree (as it has the
closest value to the erased element). Thus both keep the
pivoting properties of the erased element.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Balancedness

Generally, it is an unpleasant problem.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Balancedness

Generally, it is an unpleasant problem.

Thus AVL-trees got introduced with a bit relaxed notion of
balancedness.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Balancedness

Generally, it is an unpleasant problem.

Thus AVL-trees got introduced with a bit relaxed notion of
balancedness.

AVL-tree is a BST where for each element the depth of the
left subtree differs at most by 1 from the depth of the right
subtree.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Balancedness

Generally, it is an unpleasant problem.

Thus AVL-trees got introduced with a bit relaxed notion of
balancedness.

AVL-tree is a BST where for each element the depth of the
left subtree differs at most by 1 from the depth of the right
subtree.

AVL – Adelson-Velskij and Landis.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Balancedness

Generally, it is an unpleasant problem.

Thus AVL-trees got introduced with a bit relaxed notion of
balancedness.

AVL-tree is a BST where for each element the depth of the
left subtree differs at most by 1 from the depth of the right
subtree.

AVL – Adelson-Velskij and Landis.

Operations member, insert and delete are the same as for
BST, just

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Balancedness

Generally, it is an unpleasant problem.

Thus AVL-trees got introduced with a bit relaxed notion of
balancedness.

AVL-tree is a BST where for each element the depth of the
left subtree differs at most by 1 from the depth of the right
subtree.

AVL – Adelson-Velskij and Landis.

Operations member, insert and delete are the same as for
BST, just

after insert and delete we perform the balance-renewing
operations.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Balancedness

Generally, it is an unpleasant problem.

Thus AVL-trees got introduced with a bit relaxed notion of
balancedness.

AVL-tree is a BST where for each element the depth of the
left subtree differs at most by 1 from the depth of the right
subtree.

AVL – Adelson-Velskij and Landis.

Operations member, insert and delete are the same as for
BST, just

after insert and delete we perform the balance-renewing
operations.

For each vertex we define a value balance saying
depth right - depth left, permitted values are -1, 0

and 1.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Balance-renewing operations

Problem appears with balance WLOG 2.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Balance-renewing operations

Problem appears with balance WLOG 2.

We start solving on the bottom-most level with this balance.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Balance-renewing operations

Problem appears with balance WLOG 2.

We start solving on the bottom-most level with this balance.

We explore two possibilities, the remaining 2 are symmetric.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Balance-renewing operations

Problem appears with balance WLOG 2.

We start solving on the bottom-most level with this balance.

We explore two possibilities, the remaining 2 are symmetric.

The tree may be falling ”to the side” or ”to the interior”.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Balance-renewing operations

Problem appears with balance WLOG 2.

We start solving on the bottom-most level with this balance.

We explore two possibilities, the remaining 2 are symmetric.

The tree may be falling ”to the side” or ”to the interior”.

In the former case we use a rotation, in the latter a
double-rotation.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Rotation
Tree is falling ”to the side”.

B,2

A C,1

α β γ δ ⇒

C

B δ

A γ

α β

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Double-rotation
Tree is falling ”to the interior”.

A,2

α B,-1

C δ

β γ
⇒

C

A B

α β γ δ

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Analysis and remarks
rotation, double-rotation, depths

While inserting, one rotation (or double-rotation) suffices.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Analysis and remarks
rotation, double-rotation, depths

While inserting, one rotation (or double-rotation) suffices.

Delete may start a cascade of rotations (the distortion is
travelling towards the root).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Analysis and remarks
rotation, double-rotation, depths

While inserting, one rotation (or double-rotation) suffices.

Delete may start a cascade of rotations (the distortion is
travelling towards the root).

Number of elements in an AVL-tree with depth n:

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Analysis and remarks
rotation, double-rotation, depths

While inserting, one rotation (or double-rotation) suffices.

Delete may start a cascade of rotations (the distortion is
travelling towards the root).

Number of elements in an AVL-tree with depth n:

Depth of the sons differs at most by one, thus:
T (n) ≥ T (n − 1) + T (n − 2),

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Analysis and remarks
rotation, double-rotation, depths

While inserting, one rotation (or double-rotation) suffices.

Delete may start a cascade of rotations (the distortion is
travelling towards the root).

Number of elements in an AVL-tree with depth n:

Depth of the sons differs at most by one, thus:
T (n) ≥ T (n − 1) + T (n − 2),

Thus the number of elements is at least the nth Fibonacci
number,

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Analysis and remarks
rotation, double-rotation, depths

While inserting, one rotation (or double-rotation) suffices.

Delete may start a cascade of rotations (the distortion is
travelling towards the root).

Number of elements in an AVL-tree with depth n:

Depth of the sons differs at most by one, thus:
T (n) ≥ T (n − 1) + T (n − 2),

Thus the number of elements is at least the nth Fibonacci
number,

thus the depth is logarithmic w.r.t. number of elements.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Red-black trees

Another method how to keep the tree sufficiently spreaded.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Red-black trees

Another method how to keep the tree sufficiently spreaded.

Each vertex is colored with red or black color.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Red-black trees

Another method how to keep the tree sufficiently spreaded.

Each vertex is colored with red or black color.

Red vertices must not appear one after another,

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Red-black trees

Another method how to keep the tree sufficiently spreaded.

Each vertex is colored with red or black color.

Red vertices must not appear one after another,

number of black vertices is the same for any path from the
root to all the leaves.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Red-black trees

Another method how to keep the tree sufficiently spreaded.

Each vertex is colored with red or black color.

Red vertices must not appear one after another,

number of black vertices is the same for any path from the
root to all the leaves.

Thus one subtree has depth at most twice larger than the
other.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Red-black trees

Another method how to keep the tree sufficiently spreaded.

Each vertex is colored with red or black color.

Red vertices must not appear one after another,

number of black vertices is the same for any path from the
root to all the leaves.

Thus one subtree has depth at most twice larger than the
other.

The tree is administrated using rotations, double-rotations
and recoloring.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Red-black trees

Another method how to keep the tree sufficiently spreaded.

Each vertex is colored with red or black color.

Red vertices must not appear one after another,

number of black vertices is the same for any path from the
root to all the leaves.

Thus one subtree has depth at most twice larger than the
other.

The tree is administrated using rotations, double-rotations
and recoloring.

Exact rules get lectured on Algorithms.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

Red-black trees

Another method how to keep the tree sufficiently spreaded.

Each vertex is colored with red or black color.

Red vertices must not appear one after another,

number of black vertices is the same for any path from the
root to all the leaves.

Thus one subtree has depth at most twice larger than the
other.

The tree is administrated using rotations, double-rotations
and recoloring.

Exact rules get lectured on Algorithms.

The depth is also logarithmic w.r.t. number of elements.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

Directive forward

FIXME!!!

A-B-trees, k-ary tree canonical representation.
Passing a function as an argument.
A queue and a buffer,
graph-searching algorithms (including graph representation).
Odstrasujici priklady (slidy10.tex for mathematicians).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I

	Directive forward

