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Standard units Pointers

Standard units

Turbo Pascal is equipped with several standard units:

crt,

dos,

graph,

printer,

...

Units may differ for individual compilers!
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Standard units Pointers

Unit crt

Unit operating a keyboard and a display (colors, sounds)

Variables: LastMode (says what textmode was the last one
used before switching graphics on),

TextAttr (current attributes for displaying (text). Gets
operated by TextBackground and TextColor),

Procedure TextBackground sets the background color, proc.
TextColor sets the color of foreground.

function keypressed (returns boolean saying whether any
key was pressed, clrscr (erases the display).
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Standard units Pointers

Units dos, graph a printer

Unit dos works with files, directories, disks...

Unit graph enables graphic mode (InitGraph,
CloseGraph, GraphResult, SetColor, GetColor...).

Unit Printer serves for printing.

All these units consist of many functions, procedures and
variables. If you want to, you may find them in Help.
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Standard units Pointers

Strange example:

Probably you have already several times seens:
program nothing;

uses crt;

...

begin

... repeat until keypressed;

end.

What is this?
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Standard units Pointers

Strange example:

Probably you have already several times seens:
program nothing;

uses crt;

...

begin

... repeat until keypressed;

end.

What is this?
Use of unit crt, namely its function keypressed.
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Standard units Pointers

Pointers – motivation

Sometimes we would need an unbounded amount of memory.
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Pointers – motivation

Sometimes we would need an unbounded amount of memory.

In Pascal (so far) it is impossible...
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Standard units Pointers

Pointers – motivation

Sometimes we would need an unbounded amount of memory.

In Pascal (so far) it is impossible...

if we do not know pointers.
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Standard units Pointers

Pointers – motivation

Sometimes we would need an unbounded amount of memory.

In Pascal (so far) it is impossible...

if we do not know pointers.

Memory is linearly organized (individual addresses are indexed
by natural numbers usually in hexadecimal system),

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Standard units Pointers

Pointers – motivation

Sometimes we would need an unbounded amount of memory.

In Pascal (so far) it is impossible...

if we do not know pointers.

Memory is linearly organized (individual addresses are indexed
by natural numbers usually in hexadecimal system),

on these addresses, data (and also code) can be stored.
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Standard units Pointers

Pointers – ideas

Pointer is that one who points (at an address).
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Standard units Pointers

Pointers – ideas

Pointer is that one who points (at an address).

Accessing directly a particular address is useful (larger
data-storage),
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Standard units Pointers

Pointers – ideas

Pointer is that one who points (at an address).

Accessing directly a particular address is useful (larger
data-storage),

but it needs responsibility - in the memory we are never alone,
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Standard units Pointers

Pointers – ideas

Pointer is that one who points (at an address).

Accessing directly a particular address is useful (larger
data-storage),

but it needs responsibility - in the memory we are never alone,

and mainly we have to share the memory with the code.
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Standard units Pointers

Pointers – ideas

Pointer is that one who points (at an address).

Accessing directly a particular address is useful (larger
data-storage),

but it needs responsibility - in the memory we are never alone,

and mainly we have to share the memory with the code.

Thus one has to pay attention!!!
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Standard units Pointers

Pointers – syntax and semantic

Technically we establish a data-type pointer.
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Standard units Pointers

Pointers – syntax and semantic

Technically we establish a data-type pointer.

To do so, we use the operator ^:
type pint=^integer; {pointer at integer}
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Standard units Pointers

Pointers – syntax and semantic

Technically we establish a data-type pointer.

To do so, we use the operator ^:
type pint=^integer; {pointer at integer}

Further we define an appropriate variable:
var a:pint;
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Standard units Pointers

Pointers – syntax and semantic

Technically we establish a data-type pointer.

To do so, we use the operator ^:
type pint=^integer; {pointer at integer}

Further we define an appropriate variable:
var a:pint;

The operator can be dereferenced by (unary postfix) operator
^:
writeln(a^);
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Standard units Pointers

Pointers – syntax and semantic

Technically we establish a data-type pointer.

To do so, we use the operator ^:
type pint=^integer; {pointer at integer}

Further we define an appropriate variable:
var a:pint;

The operator can be dereferenced by (unary postfix) operator
^:
writeln(a^);

But altogether it is not so simple!
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Standard units Pointers

Memory organization

Memory contains code, static data, buffer and a heap.
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Standard units Pointers

Memory organization

Memory contains code, static data, buffer and a heap.

Where does a pointer point to?
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Standard units Pointers

Memory organization

Memory contains code, static data, buffer and a heap.

Where does a pointer point to?

A correct pointer should point into the heap, incorrectly
operated pointer can point anywhere!
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Standard units Pointers

The @-operator

Still we did not solve the problem how to inicialize a
pointer-type variable:
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Standard units Pointers

The @-operator

Still we did not solve the problem how to inicialize a
pointer-type variable:

Considering a variable of an underlying data-type, we may
create the pointer by @-operator:
p:pint; a:integer; p:=@a;
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Standard units Pointers

The @-operator

Still we did not solve the problem how to inicialize a
pointer-type variable:

Considering a variable of an underlying data-type, we may
create the pointer by @-operator:
p:pint; a:integer; p:=@a;

Pointer points at the same address!
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Standard units Pointers

The @-operator

Still we did not solve the problem how to inicialize a
pointer-type variable:

Considering a variable of an underlying data-type, we may
create the pointer by @-operator:
p:pint; a:integer; p:=@a;

Pointer points at the same address!

Then what does this?
p^:=5; writeln(a);
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Standard units Pointers

The @-operator

Still we did not solve the problem how to inicialize a
pointer-type variable:

Considering a variable of an underlying data-type, we may
create the pointer by @-operator:
p:pint; a:integer; p:=@a;

Pointer points at the same address!

Then what does this?
p^:=5; writeln(a);

Also it may happen that several pointers are pointing at the
same point (pointer-aliasing).
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Dynamic variables

Our motivation was to use the memory dynamically, i.e.,
during the computation we decide how much we do need.
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Dynamic variables

Our motivation was to use the memory dynamically, i.e.,
during the computation we decide how much we do need.

We may use the function new.
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Standard units Pointers

Dynamic variables

Our motivation was to use the memory dynamically, i.e.,
during the computation we decide how much we do need.

We may use the function new.

As an argument we provide a pointer-typed variable,
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Standard units Pointers

Dynamic variables

Our motivation was to use the memory dynamically, i.e.,
during the computation we decide how much we do need.

We may use the function new.

As an argument we provide a pointer-typed variable,

function new allocates a new space for this variable:
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Standard units Pointers

Dynamic variables

Our motivation was to use the memory dynamically, i.e.,
during the computation we decide how much we do need.

We may use the function new.

As an argument we provide a pointer-typed variable,

function new allocates a new space for this variable:

Example: new(p); p^:=10;
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Standard units Pointers

Dynamic variables

Our motivation was to use the memory dynamically, i.e.,
during the computation we decide how much we do need.

We may use the function new.

As an argument we provide a pointer-typed variable,

function new allocates a new space for this variable:

Example: new(p); p^:=10;

After we finish using the variable, we have to deallocate the
space:
dispose(p);
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Standard units Pointers

Dynamic variables

Our motivation was to use the memory dynamically, i.e.,
during the computation we decide how much we do need.

We may use the function new.

As an argument we provide a pointer-typed variable,

function new allocates a new space for this variable:

Example: new(p); p^:=10;

After we finish using the variable, we have to deallocate the
space:
dispose(p);

Otherwise the memory leaks!
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Standard units Pointers

Example

var a,b:pint;

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Standard units Pointers

Example

var a,b:pint;

new(a); – allocate a space for an integer-typed variable,
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Standard units Pointers

Example

var a,b:pint;

new(a); – allocate a space for an integer-typed variable,

a^:=5; – fill the value 5 under pointer a.
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Standard units Pointers

Example

var a,b:pint;

new(a); – allocate a space for an integer-typed variable,

a^:=5; – fill the value 5 under pointer a.

new(b); – allocate space for b,
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Standard units Pointers

Example

var a,b:pint;

new(a); – allocate a space for an integer-typed variable,

a^:=5; – fill the value 5 under pointer a.

new(b); – allocate space for b,

b^:=a^; – copy the value stored under a under b.
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Standard units Pointers

Example

var a,b:pint;

new(a); – allocate a space for an integer-typed variable,

a^:=5; – fill the value 5 under pointer a.

new(b); – allocate space for b,

b^:=a^; – copy the value stored under a under b.

b:=a; – copy the pointer – a and b are pointing at the same
location (memory leak now!).
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Standard units Pointers

Example

var a,b:pint;

new(a); – allocate a space for an integer-typed variable,

a^:=5; – fill the value 5 under pointer a.

new(b); – allocate space for b,

b^:=a^; – copy the value stored under a under b.

b:=a; – copy the pointer – a and b are pointing at the same
location (memory leak now!).

b^:=10; – write under the pointer b,
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Standard units Pointers

Example

var a,b:pint;

new(a); – allocate a space for an integer-typed variable,

a^:=5; – fill the value 5 under pointer a.

new(b); – allocate space for b,

b^:=a^; – copy the value stored under a under b.

b:=a; – copy the pointer – a and b are pointing at the same
location (memory leak now!).

b^:=10; – write under the pointer b,

writeln(a^); – what does this do?
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Deallocation

When we do not need an allocated space, we have to
deallocate it.
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Standard units Pointers

Deallocation

When we do not need an allocated space, we have to
deallocate it.

Deallocator is represented by function dispose.
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Standard units Pointers

Deallocation

When we do not need an allocated space, we have to
deallocate it.

Deallocator is represented by function dispose.

Example: dispose(a);

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Standard units Pointers

Deallocation

When we do not need an allocated space, we have to
deallocate it.

Deallocator is represented by function dispose.

Example: dispose(a);

Now we must not use a^... until we newly allocate a!
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Standard units Pointers

Deallocation

When we do not need an allocated space, we have to
deallocate it.

Deallocator is represented by function dispose.

Example: dispose(a);

Now we must not use a^... until we newly allocate a!

We must *not* deallocate the same pointer more times (than
once)!
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Standard units Pointers

Deallocation

When we do not need an allocated space, we have to
deallocate it.

Deallocator is represented by function dispose.

Example: dispose(a);

Now we must not use a^... until we newly allocate a!

We must *not* deallocate the same pointer more times (than
once)!

If we redirect the (last) pointer at a particular address, we can
never access this memory again (before the program ends)!
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Standard units Pointers

Deallocation

When we do not need an allocated space, we have to
deallocate it.

Deallocator is represented by function dispose.

Example: dispose(a);

Now we must not use a^... until we newly allocate a!

We must *not* deallocate the same pointer more times (than
once)!

If we redirect the (last) pointer at a particular address, we can
never access this memory again (before the program ends)!

Some languages use garbage-collector (Java, C#), i.e., no
explicit deallocation is necessary, garbage-collector takes effect
at unexpected time (convenient but not as efficient as explicit
deallocation).
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Standard units Pointers

Deallocation

When we do not need an allocated space, we have to
deallocate it.

Deallocator is represented by function dispose.

Example: dispose(a);

Now we must not use a^... until we newly allocate a!

We must *not* deallocate the same pointer more times (than
once)!

If we redirect the (last) pointer at a particular address, we can
never access this memory again (before the program ends)!

Some languages use garbage-collector (Java, C#), i.e., no
explicit deallocation is necessary, garbage-collector takes effect
at unexpected time (convenient but not as efficient as explicit
deallocation).

Pascal does not have a garbage-collector.
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Standard units Pointers

One application of pointers

Linear list – a data structure where each element points at his
successor.
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Standard units Pointers

One application of pointers

Linear list – a data structure where each element points at his
successor.

We define a structure (record) containing a value (or values)
and a pointer at next.
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Standard units Pointers

One application of pointers

Linear list – a data structure where each element points at his
successor.

We define a structure (record) containing a value (or values)
and a pointer at next.

Note that it is possible in Pascal to make a pointer at a
data-type that is so far undefined!
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Standard units Pointers

One application of pointers

Linear list – a data structure where each element points at his
successor.

We define a structure (record) containing a value (or values)
and a pointer at next.

Note that it is possible in Pascal to make a pointer at a
data-type that is so far undefined!

Applications: Library, phone-book,...
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Standard units Pointers

One application of pointers

Linear list – a data structure where each element points at his
successor.

We define a structure (record) containing a value (or values)
and a pointer at next.

Note that it is possible in Pascal to make a pointer at a
data-type that is so far undefined!

Applications: Library, phone-book,...

Individual elements are pointing at their ancestors.
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Standard units Pointers

One application of pointers

Linear list – a data structure where each element points at his
successor.

We define a structure (record) containing a value (or values)
and a pointer at next.

Note that it is possible in Pascal to make a pointer at a
data-type that is so far undefined!

Applications: Library, phone-book,...

Individual elements are pointing at their ancestors.

How do we recognize the end?
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Standard units Pointers

One application of pointers

Linear list – a data structure where each element points at his
successor.

We define a structure (record) containing a value (or values)
and a pointer at next.

Note that it is possible in Pascal to make a pointer at a
data-type that is so far undefined!

Applications: Library, phone-book,...

Individual elements are pointing at their ancestors.

How do we recognize the end?

By a special constant nil (representing address 0).
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Standard units Pointers

Example

type ll=^packet;

packet=record

data:integer;

next:ll;

end;

var list,tmp:ll;
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Standard units Pointers

Linear list of numbers – read and write

begin list:=nil; tmp:=nil;

while not EOF do

begin new(tmp);

readln(tmp^.data);

tmp^.next:=list;

list:=tmp;

end;

while list<>nil do

begin writeln(list^.data);

tmp:=list;

list:=list^.next;

dispose(tmp);

end;

end.
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Standard units Pointers

Linear list typology

circular (instead of nil point at the first)
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Standard units Pointers

Linear list typology

circular (instead of nil point at the first)

with a head (first element is not a member)
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Standard units Pointers

Linear list typology

circular (instead of nil point at the first)

with a head (first element is not a member)

with a tail (last element is not a member)
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Standard units Pointers

Linear list typology

circular (instead of nil point at the first)

with a head (first element is not a member)

with a tail (last element is not a member)

without head/tail
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Standard units Pointers

Linear list typology

circular (instead of nil point at the first)

with a head (first element is not a member)

with a tail (last element is not a member)

without head/tail

bidirectional (pointers next and prev).
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Standard units Pointers

A Queue and a Buffer

Queue is a data structure organizing the elements in a
FIFO-way,
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Standard units Pointers

A Queue and a Buffer

Queue is a data structure organizing the elements in a
FIFO-way,

it is equipped with functions enqueue and dequeue.
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Standard units Pointers

A Queue and a Buffer

Queue is a data structure organizing the elements in a
FIFO-way,

it is equipped with functions enqueue and dequeue.

Buffer is a data structure organizing the elements in a
LIFO-way,
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Standard units Pointers

A Queue and a Buffer

Queue is a data structure organizing the elements in a
FIFO-way,

it is equipped with functions enqueue and dequeue.

Buffer is a data structure organizing the elements in a
LIFO-way,

it is equipped with functions push and pop (or pull).
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Standard units Pointers

A Queue and a Buffer

Queue is a data structure organizing the elements in a
FIFO-way,

it is equipped with functions enqueue and dequeue.

Buffer is a data structure organizing the elements in a
LIFO-way,

it is equipped with functions push and pop (or pull).

It is possible to implement them using array,...
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Standard units Pointers

A Queue and a Buffer

Queue is a data structure organizing the elements in a
FIFO-way,

it is equipped with functions enqueue and dequeue.

Buffer is a data structure organizing the elements in a
LIFO-way,

it is equipped with functions push and pop (or pull).

It is possible to implement them using array,...

but it is much better to use linear lists!
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Standard units Pointers

Buffer
Implementation I/III

type pbuf=^buf;

buf=record

val:integer;

next:pbuf;

end;

var head:pbuf;

procedure init;

begin head:=nil;

end;
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Standard units Pointers

Buffer
Implementation II/III

type pbuf=^buf;

buf=record

val:integer;

next:pbuf;

end;

var head:pbuf;

procedure push(what:integer);

var tmp:pbuf;

begin

new(tmp);

tmp^.val:=what;

tmp^.next:=head;

head:=tmp;

end;
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Standard units Pointers

Buffer
Implementation III

function pop:integer;

var tmp:pbuf;

begin

tmp:=head;

if head<>nil then

begin pop:=head^.val;

head:=tmp^.next;

dispose(pom);

end else

begin writeln(’Error!’);

pop:=-1;

end;
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Standard units Pointers

Queue
Implementation

type=pq=^queue;

queue=record

val:integer;

next:pq;

end;

var head,tail:pq;

procedure init;

begin

head:=nil; tail:=nil; end;
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Standard units Pointers

procedure enqueue(what:integer);

var tmp:pq;

begin if head=nil then

begin new(head);

tail:=head;

head^.next:=nil;

head^.val:=what;

end else

begin new(tmp);

tmp^.next:=nil;

tmp^.val:=what;

head^.next:=tmp;

head:=tmp;

end;

end;
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Standard units Pointers

function dequeue:integer;

var tmp:pq;

begin if head=nil then

begin dequeue:=-1;

end else

begin if head=tail then

begin dequeue:=tail^.val;

dispose(tail);

head:=nil; tail:=nil;

end else

begin dequeue:=tail^.val;

tmp:=tail;

tail:=tail^.next;

dispose(tmp);

end;

end;

end;
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Standard units Pointers

Switch two neighboring elements
Switch an element in a linear list with its neighbor

procedure swap(var head:ll;what:ll);

var tmp:ll;

begin tmp:=head;

if head=what then

begin head:=head^.next;

tmp^.next:=head^.next;

head^.next:=tmp;

end else

begin while(tmp^.next<>what) do

tmp:=tmp^.next;

tmp^.next:=what^.next;

what^.next:=tmp^.next^.next;

tmp^.next^.next:=what;

end; end;
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Standard units Pointers

Dynamic data structures

The examples sometimes omit singularities (empty list, an
element not in the list, one-element-list...). All this would be
implemented by several tests for nil.
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Standard units Pointers

Dynamic data structures

The examples sometimes omit singularities (empty list, an
element not in the list, one-element-list...). All this would be
implemented by several tests for nil.

Good exercise: Bubblesort over linear list.
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Standard units Pointers

Dynamic data structures

The examples sometimes omit singularities (empty list, an
element not in the list, one-element-list...). All this would be
implemented by several tests for nil.

Good exercise: Bubblesort over linear list.

Organizing (an ordered) linear list (functions insert, delete and
member that are working with the ordered linear list).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Standard units Pointers

Ordered list

A linear list may be ordered (with respect to the values of the
elements, w.l.o.g. in a non-decreasing order).
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Standard units Pointers

Ordered list

A linear list may be ordered (with respect to the values of the
elements, w.l.o.g. in a non-decreasing order).

For such lists we usually implement functions:
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Standard units Pointers

Ordered list

A linear list may be ordered (with respect to the values of the
elements, w.l.o.g. in a non-decreasing order).

For such lists we usually implement functions:

member – says whether an element with an appropriate key is
in the list,
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Standard units Pointers

Ordered list

A linear list may be ordered (with respect to the values of the
elements, w.l.o.g. in a non-decreasing order).

For such lists we usually implement functions:

member – says whether an element with an appropriate key is
in the list,
insert – inserts an element into a list,
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Standard units Pointers

Ordered list

A linear list may be ordered (with respect to the values of the
elements, w.l.o.g. in a non-decreasing order).

For such lists we usually implement functions:

member – says whether an element with an appropriate key is
in the list,
insert – inserts an element into a list,
delete – deletes an element from a list.
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Standard units Pointers

Ordered list

A linear list may be ordered (with respect to the values of the
elements, w.l.o.g. in a non-decreasing order).

For such lists we usually implement functions:

member – says whether an element with an appropriate key is
in the list,
insert – inserts an element into a list,
delete – deletes an element from a list.

Example – see webpage (or we are going to write it here).
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Standard units Pointers

Further data structures

Self-organizing lists – lists that get modified by accessing
them.
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Standard units Pointers

Further data structures

Self-organizing lists – lists that get modified by accessing
them.

Move-front rule, transposition rule:
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Standard units Pointers

Further data structures

Self-organizing lists – lists that get modified by accessing
them.

Move-front rule, transposition rule:

When accessing a member, we move it to the beginning or
change with its (immediate) predecessor, respectively.
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Standard units Pointers

Further data structures

Self-organizing lists – lists that get modified by accessing
them.

Move-front rule, transposition rule:

When accessing a member, we move it to the beginning or
change with its (immediate) predecessor, respectively.

Idea: Usually we are accessing the same element repeatedly
(in a short time) but our interests are changing.
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Standard units Pointers

Trees

In a linear list, it is a problem to search an element.
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Standard units Pointers

Trees

In a linear list, it is a problem to search an element.

It takes a linear time, we want something better.
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Standard units Pointers

Trees

In a linear list, it is a problem to search an element.

It takes a linear time, we want something better.

We want to implement a data structure where binary search is
possible.
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Standard units Pointers

Trees

In a linear list, it is a problem to search an element.

It takes a linear time, we want something better.

We want to implement a data structure where binary search is
possible.

Natural idea is to create a binary search tree (smaller values in
the left subtree, larger in the right one).
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Standard units Pointers

Trees

In a linear list, it is a problem to search an element.

It takes a linear time, we want something better.

We want to implement a data structure where binary search is
possible.

Natural idea is to create a binary search tree (smaller values in
the left subtree, larger in the right one).

How to implement it?
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Standard units Pointers

Trees

In a linear list, it is a problem to search an element.

It takes a linear time, we want something better.

We want to implement a data structure where binary search is
possible.

Natural idea is to create a binary search tree (smaller values in
the left subtree, larger in the right one).

How to implement it?

Each element gets more than one sibling (left, right).
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Standard units Pointers

Tree representation
in Pascal

type tree=^vertex;

vertex=record

val:longint;

left:tree;

right:tree;

...

end;
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Standard units Pointers

Binary search trees

Binary tree is such a tree where each element has at most two
siblings.
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Standard units Pointers

Binary search trees

Binary tree is such a tree where each element has at most two
siblings.

Binary search tree is a binary tree which for each element with
a key K contains in the left subtree values with key smaller
than K and in the right subtree values with key larger than K .
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Standard units Pointers

Binary search trees

Binary tree is such a tree where each element has at most two
siblings.

Binary search tree is a binary tree which for each element with
a key K contains in the left subtree values with key smaller
than K and in the right subtree values with key larger than K .

Thus it is possible to search efficiently in such a tree.
Advantages/disadvantages?
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Standard units Pointers

Binary search trees

Binary tree is such a tree where each element has at most two
siblings.

Binary search tree is a binary tree which for each element with
a key K contains in the left subtree values with key smaller
than K and in the right subtree values with key larger than K .

Thus it is possible to search efficiently in such a tree.
Advantages/disadvantages?

If we build it well, it becomes more efficient than a linear-list.
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Standard units Pointers

Binary search trees

Binary tree is such a tree where each element has at most two
siblings.

Binary search tree is a binary tree which for each element with
a key K contains in the left subtree values with key smaller
than K and in the right subtree values with key larger than K .

Thus it is possible to search efficiently in such a tree.
Advantages/disadvantages?

If we build it well, it becomes more efficient than a linear-list.

If we build it badly, it collapses into a linear-list.
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Standard units Pointers

Binary search trees

Binary tree is such a tree where each element has at most two
siblings.

Binary search tree is a binary tree which for each element with
a key K contains in the left subtree values with key smaller
than K and in the right subtree values with key larger than K .

Thus it is possible to search efficiently in such a tree.
Advantages/disadvantages?

If we build it well, it becomes more efficient than a linear-list.

If we build it badly, it collapses into a linear-list.

How to build a balanced binary search tree (and how to keep
the tree balanced)?
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Standard units Pointers

Binary search trees

Binary tree is such a tree where each element has at most two
siblings.

Binary search tree is a binary tree which for each element with
a key K contains in the left subtree values with key smaller
than K and in the right subtree values with key larger than K .

Thus it is possible to search efficiently in such a tree.
Advantages/disadvantages?

If we build it well, it becomes more efficient than a linear-list.

If we build it badly, it collapses into a linear-list.

How to build a balanced binary search tree (and how to keep
the tree balanced)?

Balanced BST is a tree where for each element # elements in
the left subtree (of this element) and # elements in the right
subtree differ at most by 1.
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Standard units Pointers

Building a balanced BST

Find a median and root it.
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Standard units Pointers

Building a balanced BST

Find a median and root it.

Build a balanced BST on smaller elements (recursively),
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Standard units Pointers

Building a balanced BST

Find a median and root it.

Build a balanced BST on smaller elements (recursively),

build a balanced BST on larger elements (recursively),
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Standard units Pointers

Building a balanced BST

Find a median and root it.

Build a balanced BST on smaller elements (recursively),

build a balanced BST on larger elements (recursively),

set these trees to be sibings of the root.
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Standard units Pointers

BVS – datové struktury

Pole, ze kterého budeme stavět (nebudeme řešit).

Dynamická struktura reprezentuj́ıćı vrcholy stromu:
type pbst:^bst;

bst=record

val:longint;

left:pbst;

right:pbst;
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Standard units Pointers

Building a balanced BST
(pseudocode)

function build(array):pbst;

begin

if empty(array) then build:=nil; else begin

med:=median(array);

small:=smaller(med,array);

large:=larger(med,array);

new(root);

root^.hod:=med;

root^.left:=build(small);

root^.right:=build(large);

build:=root;

end;

end;
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Standard units Pointers

Further operations on balanced BST
member, insert, delete

Operation member is simple:
function member(what:longint,where:pbst):pbst;

begin if where=nil then member:=nil

else if where^.val=what then member:=where

else if where^.val>what then

member:=member(where^.left)

else member:=member(where^.right);

end;
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Standard units Pointers

Further operations on balanced BST
member, insert, delete

Operation member is simple:
function member(what:longint,where:pbst):pbst;

begin if where=nil then member:=nil

else if where^.val=what then member:=where

else if where^.val>what then

member:=member(where^.left)

else member:=member(where^.right);

end;

Beware of the algorithm’s side-effect using trichotomy (i.e.,
the third branch ensures that whereˆ.val<what)
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Standard units Pointers

Further operations on balanced BST
member, insert, delete

Operation member is simple:
function member(what:longint,where:pbst):pbst;

begin if where=nil then member:=nil

else if where^.val=what then member:=where

else if where^.val>what then

member:=member(where^.left)

else member:=member(where^.right);

end;

Beware of the algorithm’s side-effect using trichotomy (i.e.,
the third branch ensures that whereˆ.val<what)

Function insert and delete are almost unimplementable (it
would be necessary to destruct the whole tree).
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Standard units Pointers

Binary search tree
far from being balanced!

procedure insert(what,where);

begin {Marginal cases!}
while((( what<where^.val) and

(where^.left<>nil)) or

((what>where^.val)and

(where^.right<>nil)))

if(what<where^.val) then

where:=where^.left

else where:=where^.right;

if(what=where^.val) then error("Already

there!");

if(what<where^.val) then

begin new(where^.left);

kam:=where^.left;

end else symmmetric for the right...

where^.left:=nil; where^.right:=nil;
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Standard units Pointers

BST – delete – bad version

Find an element,
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Standard units Pointers

BST – delete – bad version

Find an element,

if it has out-degree at most 1, delete it (or bypass it).
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Standard units Pointers

BST – delete – bad version

Find an element,

if it has out-degree at most 1, delete it (or bypass it).

With an out-degree 2,
add its left son as the left son of the left-most element in the
right subtree,
now the erased element behaves as with out-degree 1.
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Standard units Pointers

BST – delete – bad version

Find an element,

if it has out-degree at most 1, delete it (or bypass it).

With an out-degree 2,
add its left son as the left son of the left-most element in the
right subtree,
now the erased element behaves as with out-degree 1.

What’s wrong?
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Standard units Pointers

BST – delete – bad version

Find an element,

if it has out-degree at most 1, delete it (or bypass it).

With an out-degree 2,
add its left son as the left son of the left-most element in the
right subtree,
now the erased element behaves as with out-degree 1.

What’s wrong?

In a short time the tree looks like a linear list.
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Standard units Pointers

BST – delete – correct version

Find an element,
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Standard units Pointers

BST – delete – correct version

Find an element,

With an out-degree at most 1, delete it (or bypass it).
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Standard units Pointers

BST – delete – correct version

Find an element,

With an out-degree at most 1, delete it (or bypass it).

Otherwise find the left-most element in the right subtree and
switch these elements.
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Standard units Pointers

BST – delete – correct version

Find an element,

With an out-degree at most 1, delete it (or bypass it).

Otherwise find the left-most element in the right subtree and
switch these elements.

We violate the property of a BST for a while!
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Standard units Pointers

BST – delete – correct version

Find an element,

With an out-degree at most 1, delete it (or bypass it).

Otherwise find the left-most element in the right subtree and
switch these elements.

We violate the property of a BST for a while!

Now, the deleted vertex (on the incorrect location) has an
out-degree at most 1 ⇒
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Standard units Pointers

BST – delete – correct version

Find an element,

With an out-degree at most 1, delete it (or bypass it).

Otherwise find the left-most element in the right subtree and
switch these elements.

We violate the property of a BST for a while!

Now, the deleted vertex (on the incorrect location) has an
out-degree at most 1 ⇒

delete it (bypass).
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Standard units Pointers

BST – delete – correct version

Find an element,

With an out-degree at most 1, delete it (or bypass it).

Otherwise find the left-most element in the right subtree and
switch these elements.

We violate the property of a BST for a while!

Now, the deleted vertex (on the incorrect location) has an
out-degree at most 1 ⇒

delete it (bypass).

Instead of the left-most element in the right subtree we may
use the right-most element in the left subtree (as it has the
closest value to the erased element). Thus both keep the
pivoting properties of the erased element.
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Standard units Pointers

Balancedness

Generally, it is an unpleasant problem.
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Standard units Pointers

Balancedness

Generally, it is an unpleasant problem.

Thus AVL-trees got introduced with a bit relaxed notion of
balancedness.
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Standard units Pointers

Balancedness

Generally, it is an unpleasant problem.

Thus AVL-trees got introduced with a bit relaxed notion of
balancedness.

AVL-tree is a BST where for each element the depth of the
left subtree differs at most by 1 from the depth of the right
subtree.
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Standard units Pointers

Balancedness

Generally, it is an unpleasant problem.

Thus AVL-trees got introduced with a bit relaxed notion of
balancedness.

AVL-tree is a BST where for each element the depth of the
left subtree differs at most by 1 from the depth of the right
subtree.

AVL – Adelson-Velskij and Landis.
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Standard units Pointers

Balancedness

Generally, it is an unpleasant problem.

Thus AVL-trees got introduced with a bit relaxed notion of
balancedness.

AVL-tree is a BST where for each element the depth of the
left subtree differs at most by 1 from the depth of the right
subtree.

AVL – Adelson-Velskij and Landis.

Operations member, insert and delete are the same as for
BST, just
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Standard units Pointers

Balancedness

Generally, it is an unpleasant problem.

Thus AVL-trees got introduced with a bit relaxed notion of
balancedness.

AVL-tree is a BST where for each element the depth of the
left subtree differs at most by 1 from the depth of the right
subtree.

AVL – Adelson-Velskij and Landis.

Operations member, insert and delete are the same as for
BST, just

after insert and delete we perform the balance-renewing
operations.
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Standard units Pointers

Balancedness

Generally, it is an unpleasant problem.

Thus AVL-trees got introduced with a bit relaxed notion of
balancedness.

AVL-tree is a BST where for each element the depth of the
left subtree differs at most by 1 from the depth of the right
subtree.

AVL – Adelson-Velskij and Landis.

Operations member, insert and delete are the same as for
BST, just

after insert and delete we perform the balance-renewing
operations.

For each vertex we define a value balance saying
depth right - depth left, permitted values are -1, 0

and 1.
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Standard units Pointers

Balance-renewing operations

Problem appears with balance WLOG 2.
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Standard units Pointers

Balance-renewing operations

Problem appears with balance WLOG 2.

We start solving on the bottom-most level with this balance.
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Standard units Pointers

Balance-renewing operations

Problem appears with balance WLOG 2.

We start solving on the bottom-most level with this balance.

We explore two possibilities, the remaining 2 are symmetric.
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Standard units Pointers

Balance-renewing operations

Problem appears with balance WLOG 2.

We start solving on the bottom-most level with this balance.

We explore two possibilities, the remaining 2 are symmetric.

The tree may be falling ”to the side” or ”to the interior”.
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Standard units Pointers

Balance-renewing operations

Problem appears with balance WLOG 2.

We start solving on the bottom-most level with this balance.

We explore two possibilities, the remaining 2 are symmetric.

The tree may be falling ”to the side” or ”to the interior”.

In the former case we use a rotation, in the latter a
double-rotation.
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Standard units Pointers

Rotation
Tree is falling ”to the side”.

B,2

A C,1

α β γ δ ⇒

C

B δ

A γ

α β
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Standard units Pointers

Double-rotation
Tree is falling ”to the interior”.

A,2

α B,-1

C δ

β γ
⇒

C

A B

α β γ δ
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Standard units Pointers

Analysis and remarks
rotation, double-rotation, depths

While inserting, one rotation (or double-rotation) suffices.
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Standard units Pointers

Analysis and remarks
rotation, double-rotation, depths

While inserting, one rotation (or double-rotation) suffices.

Delete may start a cascade of rotations (the distortion is
travelling towards the root).
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Standard units Pointers

Analysis and remarks
rotation, double-rotation, depths

While inserting, one rotation (or double-rotation) suffices.

Delete may start a cascade of rotations (the distortion is
travelling towards the root).

Number of elements in an AVL-tree with depth n:
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Standard units Pointers

Analysis and remarks
rotation, double-rotation, depths

While inserting, one rotation (or double-rotation) suffices.

Delete may start a cascade of rotations (the distortion is
travelling towards the root).

Number of elements in an AVL-tree with depth n:

Depth of the sons differs at most by one, thus:
T (n) ≥ T (n − 1) + T (n − 2),
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Standard units Pointers

Analysis and remarks
rotation, double-rotation, depths

While inserting, one rotation (or double-rotation) suffices.

Delete may start a cascade of rotations (the distortion is
travelling towards the root).

Number of elements in an AVL-tree with depth n:

Depth of the sons differs at most by one, thus:
T (n) ≥ T (n − 1) + T (n − 2),

Thus the number of elements is at least the nth Fibonacci
number,
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Standard units Pointers

Analysis and remarks
rotation, double-rotation, depths

While inserting, one rotation (or double-rotation) suffices.

Delete may start a cascade of rotations (the distortion is
travelling towards the root).

Number of elements in an AVL-tree with depth n:

Depth of the sons differs at most by one, thus:
T (n) ≥ T (n − 1) + T (n − 2),

Thus the number of elements is at least the nth Fibonacci
number,

thus the depth is logarithmic w.r.t. number of elements.
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Standard units Pointers

Red-black trees

Another method how to keep the tree sufficiently spreaded.
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Standard units Pointers

Red-black trees

Another method how to keep the tree sufficiently spreaded.

Each vertex is colored with red or black color.
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Standard units Pointers

Red-black trees

Another method how to keep the tree sufficiently spreaded.

Each vertex is colored with red or black color.

Red vertices must not appear one after another,
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Standard units Pointers

Red-black trees

Another method how to keep the tree sufficiently spreaded.

Each vertex is colored with red or black color.

Red vertices must not appear one after another,

number of black vertices is the same for any path from the
root to all the leaves.
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Standard units Pointers

Red-black trees

Another method how to keep the tree sufficiently spreaded.

Each vertex is colored with red or black color.

Red vertices must not appear one after another,

number of black vertices is the same for any path from the
root to all the leaves.

Thus one subtree has depth at most twice larger than the
other.
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Standard units Pointers

Red-black trees

Another method how to keep the tree sufficiently spreaded.

Each vertex is colored with red or black color.

Red vertices must not appear one after another,

number of black vertices is the same for any path from the
root to all the leaves.

Thus one subtree has depth at most twice larger than the
other.

The tree is administrated using rotations, double-rotations
and recoloring.
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Standard units Pointers

Red-black trees

Another method how to keep the tree sufficiently spreaded.

Each vertex is colored with red or black color.

Red vertices must not appear one after another,

number of black vertices is the same for any path from the
root to all the leaves.

Thus one subtree has depth at most twice larger than the
other.

The tree is administrated using rotations, double-rotations
and recoloring.

Exact rules get lectured on Algorithms.
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Red-black trees

Another method how to keep the tree sufficiently spreaded.

Each vertex is colored with red or black color.

Red vertices must not appear one after another,

number of black vertices is the same for any path from the
root to all the leaves.

Thus one subtree has depth at most twice larger than the
other.

The tree is administrated using rotations, double-rotations
and recoloring.

Exact rules get lectured on Algorithms.

The depth is also logarithmic w.r.t. number of elements.
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FIXME!!!

binary search trees,
AVL-trees,
red-black-trees.
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FIXME

Passing a function as an argument.
A queue and a buffer, graph-searching algorithms (including graph
representation). Odstrasujici priklady (slidy10.tex for
mathematicians).
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