
Arrays Horner’s Method Functions and Procedures

Arrays

... when we need to store many elements of the same number
(e.g., 1 000 of integer numbers),

we define in the section of variables (i.e., var)),

gets defined using keyword array followed by an interval
defining its bounds and underlying data-type.

Example: var a: array [1..100] of integer;

file example:array[5..50] of string;

Individual members get accessed using square brackets:
Example:
a[1]:=10;

file example[6]:=’xxx’;

{Beware:} file example[1]:=’out of bounds!’;

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Sieve of Eratosthenes

var primes: array[2..1000] of boolean; i,j:integer;
begin
for i:=2 to 1000 do primes[i]:=true;
for i:=2 to 1000 do
begin

if primes[i] then
begin writeln(i,’ is a prime’);

j:=2;
while(i*j<=1000) do
begin

primes[i*j]:=false;
j:=j+1;

end;
end;

end.
Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Searching in an array

Unsorted array ⇒ simple upper and lower bound (pass
through the whole array until found),

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Searching in an array

Unsorted array ⇒ simple upper and lower bound (pass
through the whole array until found),

sorted array:

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Searching in an array

Unsorted array ⇒ simple upper and lower bound (pass
through the whole array until found),

sorted array:

unary search (browse through the array like through a book),

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Searching in an array

Unsorted array ⇒ simple upper and lower bound (pass
through the whole array until found),

sorted array:

unary search (browse through the array like through a book),
binary search (start in the middle, in each step halve the
input),

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Searching in an array

Unsorted array ⇒ simple upper and lower bound (pass
through the whole array until found),

sorted array:

unary search (browse through the array like through a book),
binary search (start in the middle, in each step halve the
input),
quadratic search, generalized quadratic search...

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Unary search

Simple algorithm, simple analysis, its complexity:

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Unary search

Simple algorithm, simple analysis, its complexity:

Θ(n).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Binary search

What’s the complexity of the algorithm? When we have to
add an extra step?

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Binary search

What’s the complexity of the algorithm? When we have to
add an extra step?

Θ(log n).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Further examples

of array-operating algorithms and the complexity-analysis:

Matrix-multiplication:

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Further examples

of array-operating algorithms and the complexity-analysis:

Matrix-multiplication:

Naive algorithm – Easily implementable, simple
complexity-analysis.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Further examples

of array-operating algorithms and the complexity-analysis:

Matrix-multiplication:

Naive algorithm – Easily implementable, simple
complexity-analysis.

Strassen’s algorithm – hard to implement, hard to analyze,
hard to understand, but it has a better complexity.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Further examples

of array-operating algorithms and the complexity-analysis:

Matrix-multiplication:

Naive algorithm – Easily implementable, simple
complexity-analysis.

Strassen’s algorithm – hard to implement, hard to analyze,
hard to understand, but it has a better complexity.

Coppersmith-Vinograd’s algorithm – yet even more
complicated with yet better complexity.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Further examples

of array-operating algorithms and the complexity-analysis:

Matrix-multiplication:

Naive algorithm – Easily implementable, simple
complexity-analysis.

Strassen’s algorithm – hard to implement, hard to analyze,
hard to understand, but it has a better complexity.

Coppersmith-Vinograd’s algorithm – yet even more
complicated with yet better complexity.

Finding largest zero-submatrix:

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Further examples

of array-operating algorithms and the complexity-analysis:

Matrix-multiplication:

Naive algorithm – Easily implementable, simple
complexity-analysis.

Strassen’s algorithm – hard to implement, hard to analyze,
hard to understand, but it has a better complexity.

Coppersmith-Vinograd’s algorithm – yet even more
complicated with yet better complexity.

Finding largest zero-submatrix:

Naive algorithm: O(n6)

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Further examples

of array-operating algorithms and the complexity-analysis:

Matrix-multiplication:

Naive algorithm – Easily implementable, simple
complexity-analysis.

Strassen’s algorithm – hard to implement, hard to analyze,
hard to understand, but it has a better complexity.

Coppersmith-Vinograd’s algorithm – yet even more
complicated with yet better complexity.

Finding largest zero-submatrix:

Naive algorithm: O(n6)

Any ideas how to beat this complexity?

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Further examples

of array-operating algorithms and the complexity-analysis:

Matrix-multiplication:

Naive algorithm – Easily implementable, simple
complexity-analysis.

Strassen’s algorithm – hard to implement, hard to analyze,
hard to understand, but it has a better complexity.

Coppersmith-Vinograd’s algorithm – yet even more
complicated with yet better complexity.

Finding largest zero-submatrix:

Naive algorithm: O(n6)

Any ideas how to beat this complexity?

Exercise (think about it at home, solution appears later).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Horner’s Method

We want to convert a number stored as string into an integer.

Number anan−1an−2...a0 in decimal (position) system means:
an10

n + an−110
n−1 + ...+ a0. It holds:

an10
n+an−110

n−1+...+a0 = (...((an∗10)+an−1∗10)+...+a1)∗10+a0

In the same way we may evaluate numbers in other position
systems (binary, ternary, quaternary, decimal, hexadecimal...).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Horner’s Method

We want to convert a number stored as string into an integer.

Naive approach: We may start from the least important digit,
keep track of an exponent by 10 and sum up.

Number anan−1an−2...a0 in decimal (position) system means:
an10

n + an−110
n−1 + ...+ a0. It holds:

an10
n+an−110

n−1+...+a0 = (...((an∗10)+an−1∗10)+...+a1)∗10+a0

In the same way we may evaluate numbers in other position
systems (binary, ternary, quaternary, decimal, hexadecimal...).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Horner’s Method

We want to convert a number stored as string into an integer.

Naive approach: We may start from the least important digit,
keep track of an exponent by 10 and sum up.

... or we use Horner’s method and start with the most
important digit.

Number anan−1an−2...a0 in decimal (position) system means:
an10

n + an−110
n−1 + ...+ a0. It holds:

an10
n+an−110

n−1+...+a0 = (...((an∗10)+an−1∗10)+...+a1)∗10+a0

In the same way we may evaluate numbers in other position
systems (binary, ternary, quaternary, decimal, hexadecimal...).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Horner’s Method

We want to convert a number stored as string into an integer.

Naive approach: We may start from the least important digit,
keep track of an exponent by 10 and sum up.

... or we use Horner’s method and start with the most
important digit.

We find its value and proceed (inductively):
Multiply so far obtained result by 10 and add (sum up with)
the newly loaded digit.

Number anan−1an−2...a0 in decimal (position) system means:
an10

n + an−110
n−1 + ...+ a0. It holds:

an10
n+an−110

n−1+...+a0 = (...((an∗10)+an−1∗10)+...+a1)∗10+a0

In the same way we may evaluate numbers in other position
systems (binary, ternary, quaternary, decimal, hexadecimal...).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Example

program x;

var a:string;

i,value:longint;

begin

readln(a); i:=1; value:=0;

while i<=length(a) do

begin

value:=10*value+ord(a[i])-ord(’0’);

i:=i+1;

end;

writeln(value);

end.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Evaluating a polynomial

Consider a polynomial anx
n + an−1x

n−1 + ...+ a0.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Evaluating a polynomial

Consider a polynomial anx
n + an−1x

n−1 + ...+ a0.

We want to evaluate it, i.e., find its value for some value of x .

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Evaluating a polynomial

Consider a polynomial anx
n + an−1x

n−1 + ...+ a0.

We want to evaluate it, i.e., find its value for some value of x .

Possibilities?

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Evaluating a polynomial

Consider a polynomial anx
n + an−1x

n−1 + ...+ a0.

We want to evaluate it, i.e., find its value for some value of x .

Possibilities?

Brute force (estimate anx
n, an−1x

n−1,... and sum it up)

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Evaluating a polynomial

Consider a polynomial anx
n + an−1x

n−1 + ...+ a0.

We want to evaluate it, i.e., find its value for some value of x .

Possibilities?

Brute force (estimate anx
n, an−1x

n−1,... and sum it up)

or Horner’s method:

n∑

i=0

aix
i = ((...(anx + an−1)x + ...+ a1)x + a0).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Evaluating a polynomial by Horner’s method

1: Read the coefficient of highest (so far not processed)
monomial

so far estimated value multiply with x ,

add the value of the newly read coefficient,

GOTO 1;

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Example

program nothing;

var i,a,sum,degree,x:integer;

{Evaluate a polynomial for a value x, use variable a

to read the coefficients}
begin

readln(degree); readln(x);

sum:=0;

for i:=0 to degree do

begin sum:=sum*x;

readln(a);

sum:=sum+a;

end;

writeln(’The value is: ’,sum);

end.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Excursion – labels and GOTO

It is possible to perform (loosely controlled) skips across the
program in Pascal.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Excursion – labels and GOTO

It is possible to perform (loosely controlled) skips across the
program in Pascal.

After defining the global variables (section var) we define a
section label. There we list the used labels.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Excursion – labels and GOTO

It is possible to perform (loosely controlled) skips across the
program in Pascal.

After defining the global variables (section var) we define a
section label. There we list the used labels.

Then we may use these labels in the program

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Excursion – labels and GOTO

It is possible to perform (loosely controlled) skips across the
program in Pascal.

After defining the global variables (section var) we define a
section label. There we list the used labels.

Then we may use these labels in the program

and by goto label; perform a skip there.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Excursion – labels and GOTO

It is possible to perform (loosely controlled) skips across the
program in Pascal.

After defining the global variables (section var) we define a
section label. There we list the used labels.

Then we may use these labels in the program

and by goto label; perform a skip there.

Never use GOTO (in structured programming). I am using it
in pseudocode in order to postpone the cycling condition after
the kernel of the algorithm.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Defining functions and procedures

It happens that several (nontrivial) operations get performed
many times (and it is embarassing to write them more than
once).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Defining functions and procedures

It happens that several (nontrivial) operations get performed
many times (and it is embarassing to write them more than
once).

Procedures and functions provide us with a possibility of
defining once and using (calling) many times.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Defining functions and procedures

It happens that several (nontrivial) operations get performed
many times (and it is embarassing to write them more than
once).

Procedures and functions provide us with a possibility of
defining once and using (calling) many times.

Procedure is a part of a program. Procedure is able to process
given parameters.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Defining functions and procedures

It happens that several (nontrivial) operations get performed
many times (and it is embarassing to write them more than
once).

Procedures and functions provide us with a possibility of
defining once and using (calling) many times.

Procedure is a part of a program. Procedure is able to process
given parameters.

Function is a part of a program. It is able to process given
parameters and to return a result.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Defining functions and procedures

It happens that several (nontrivial) operations get performed
many times (and it is embarassing to write them more than
once).

Procedures and functions provide us with a possibility of
defining once and using (calling) many times.

Procedure is a part of a program. Procedure is able to process
given parameters.

Function is a part of a program. It is able to process given
parameters and to return a result.

Examples: Cross the street; write out a message; arrive
somewhere (by a train); calculate a factorial...

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Defining a function

function name(argument :type;...):type of result

Start with keyword function followed by name of the
function.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Defining a function

function name(argument :type;...):type of result

Start with keyword function followed by name of the
function.

arguments are listed in parentheses (as if we defined variables).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Defining a function

function name(argument :type;...):type of result

Start with keyword function followed by name of the
function.

arguments are listed in parentheses (as if we defined variables).

Inidividual arguments get separated by a semicolon (while
defining).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Defining a function

function name(argument :type;...):type of result

Start with keyword function followed by name of the
function.

arguments are listed in parentheses (as if we defined variables).

Inidividual arguments get separated by a semicolon (while
defining).

After a colon we put the type of the result.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Defining a function

function name(argument :type;...):type of result

Start with keyword function followed by name of the
function.

arguments are listed in parentheses (as if we defined variables).

Inidividual arguments get separated by a semicolon (while
defining).

After a colon we put the type of the result.

Value of the result gets assigned into a special variable with
the same name as the function has.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Example

function sum up(a:integer; b:integer):integer;

begin

sum up:=a+b;

end;

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Example

program x;

var a:integer;

function sum up(a:integer; b:integer):integer;

begin

sum up:=a+b;

end;

begin

a:=sum up(5,10);

writeln(a);

end.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Local variables

Each function may use special variables (its own).

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Local variables

Each function may use special variables (its own).

These variables are called the local variables.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Local variables

Each function may use special variables (its own).

These variables are called the local variables.

We define them in a normal way, just their definition appears
after the header of a particular function-definition:

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Local variables

Each function may use special variables (its own).

These variables are called the local variables.

We define them in a normal way, just their definition appears
after the header of a particular function-definition:

function f(a:integer):boolean;

var b,c:integer;...

begin...end;

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Example

function sum up(a:integer; b:integer):integer;

var c:integer;

begin

c:=a+b;

sum up:=c;

end;

Note that the variable used to define the result is write-only. It
must never be read! (It could not be distinguished from calling a
parameter-less function.)

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Scope resolution

Except of global variables we obtain so called local variables.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Scope resolution

Except of global variables we obtain so called local variables.

Local variables are visible only from the appropriate functions.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Scope resolution

Except of global variables we obtain so called local variables.

Local variables are visible only from the appropriate functions.

A local variable may have the same name as some global one.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Scope resolution

Except of global variables we obtain so called local variables.

Local variables are visible only from the appropriate functions.

A local variable may have the same name as some global one.

In case of this conflict, inside the function only the local
variable is visible.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Scope resolution

Except of global variables we obtain so called local variables.

Local variables are visible only from the appropriate functions.

A local variable may have the same name as some global one.

In case of this conflict, inside the function only the local
variable is visible.

Values of the parameters are (by default) a value-parameters,
i.e., the value of an expression is copied. If the function
changes this value, this change is not propagated to the caller.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Example

function sum up(a:integer; b:integer):integer;

begin

sum up:=a+b;

a:=0;

end;

begin

x:=5; y:=10; c:=sum up(x,y);

writeln(x);

end.

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Reference-parameters

Sometimes we want to propagate the argument-change to the
caller. How can we do that?
We use a keyword var in an appropriate moment:
function f(var a:integer; b:integer):integer;

begin

a:=5;

b:=5;

end;

...

x:=0; y:=0; a:=f(x,y);

writeln(x); writeln(y);

...

Result: 5 and 0; if reference-parameter applied on not a variable ⇒
error!

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Parameter-free functions

It makes sense to define functions without parameters (e.g., a
function reading the data).
Then we omit parentheses behind the function-name (when, both,
defining and calling it):
function x:integer;

begin

x:=10;

end;

...

a:=x;

...

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I



Arrays Horner’s Method Functions and Procedures

Procedures

’Procedures are functions that return no value.’
procedure name(arguments);

... name(arguments);...

example:
procedure writeit(a:integer;b:integer);
begin

writeln(a); writeln(b);
{We have outputted the parameters}

end;

... writeit(5,10);...

Martin Pergel, perm@kam.mff.cuni.cz

Programováńı I


	Arrays
	Horner's Method
	Functions and Procedures

