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We aim at a more or less self-contained proof of the following useful result:

Theorem 1 (Weak Bézout theorem over the reals) Let f, g ∈ R[x, y] be
bivariate polynomials. If f and g have no common factor (of degree at least 1),
then the zero sets Z(f) and Z(g) intersect in at most k` points, where k := deg f
and ` := deg g.

Remarks. The “usual” Bézout theorem asserts that polynomials f, g with no
common factor have exactly k` intersections of their zero sets, but this needs
stronger assumptions: we need to work over an algebraically closed field, say
C; we need to count the intersections with appropriately defined multiplicity ;
and we need to consider zero sets in the projective plane, including points at
infinity.

The proof of Theorem 1 given here works, with a minor modification, over
any infinite field in place of R. The theorem itself holds over finite fields as
well, though.

We should also note that if f, g ∈ R[x, y] do have a common factor h, then
Z(h) may be finite or empty, say, so we cannot claim that the intersection of
Z(f) and Z(g) is infinite.

The following proof is essentially extracted from the treatment in the book
[D. Cox, J. Little and D. O’Shea, Ideals, Varieties, and Algorithms: An Intro-
duction to Computational Algebraic Geometry and Commutative Algebra (3rd
edition), Springer-Verlag, Heidelberg, 2007].

Resultants. Now let K be an arbitrary field. Before starting with the
proof of the weak Bézout theorem, we introduce a useful tool, the resultant of
two polynomials. Here, for a while, we will deal with univariate polynomials
f, g ∈ K[x].

Writing f(x) =
∑k

i=0 aix
i and g(x) =

∑`
j=0 bjx

j , we define the Sylvester
matrix of f and g. This is a (k+ `)× (k+ `) matrix made of the coefficients of
f and g and 0’s. The definition is perhaps best grasped from an example with
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specific values of k and `, here k = 5 and ` = 3:

a0 0 0 b0 0 0 0 0
a1 a0 0 b1 b0 0 0 0
a2 a1 a0 b2 b1 b0 0 0
a3 a2 a1 b3 b2 b1 b0 0
a4 a3 a2 0 b3 b2 b1 b0
a5 a4 a3 0 0 b3 b2 b1
0 a5 a4 0 0 0 b3 b2
0 0 a5 0 0 0 0 b3


.

The resultant of f and g, w.r.t. the variable x, is denoted by Res(f, g, x) and
defined as the determinant of the Sylvester matrix of f and g. Thus, Res(f, g, x)
is an element of the field K, and if we regard the coefficients a0, . . . , ak and
b0, . . . , b` as variables, then Res(f, g, x) is a polynomial in these variables.

Lemma 2 Two polynomials f, g ∈ K[x] have a common factor h ∈ K[x] (of
degree at least 1) if and only if Res(f, g, x) = 0.

Proof. We will prove that both of the statements in the lemma are equivalent
to the following statement (*):

There exist polynomials A,B ∈ K[x], not both zero, such that
degA ≤ ` − 1, degB ≤ k − 1, and Af + Bg = 0 (where k = deg f
and ` = deg g).1

The equivalence of (*) with Res(f, g, x) = 0 is a simple linear algebra. Let
us write A = A(x) =

∑`−1
i=0 αix

i, B = B(x) =
∑k−1

j=0 βjx
j , and let us regard

the coefficients α0, . . . , α`−1 and β0, . . . , βk−1 as unknowns. Then the condition
Af +Bg = 0 translates to a system of k + ` homogeneous linear equations for
these k + ` unknowns, and the matrix of this system is precisely the Sylvester
matrix of f and g.

As is well known, a homogeneous linear system Mx = 0 with a square
matrix M has a nonzero solution iff detM = 0. In our case, a nonzero solution
is equivalent to the existence of A,B as in the statement (*).

Next, let us assume that f and g have a common factor h, deg h ≥ 1, and
write f = hf1, g = hg1. Then A := g1 and B := −f1 satisfy Af + Bg =
g1hf1 − f1hg1 = 0, and so (*) holds.

Conversely, suppose that f, g have no nontrivial common factor. Then, as
is well known, there are polynomials u, v ∈ K[x] with uf + vg = 1.2 Let us

1The equality Af +Bg = 0 is meant as equality of polynomials, i.e., elements of K[x]. Note
that for finite field K, a nonzero polynomial may represent the zero function—for example,
this is the case for the polynomial x2 − x over the two-element field.

2For a quick proof, we consider a polynomial h that has the smallest possible degree among
all nonzero polynomials of the form uf + vg, and we want to check that h divides both f and
g (and consequently, h is a greatest common divisor of f and g). We can write f = qh + r for
suitable polynomials q and r, with deg r < deg h (this is division with remainder). If r = 0,
then f is a multiple of h as needed, and otherwise, we express r = f − qh = (1− qu)f − (qv)g,
and we get a contradiction to the choice of h.
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suppose that A,B ∈ K[x] satisfy Af +Bg = 0 as in (*); we want to check that
at least one of them has too large degree.

Using Af = −Bg we compute A = A · 1 = Auf + Avg = −uBg + Avg =
(Au− Bv)g. Thus, if A 6= 0, then degA ≥ deg g = `. Similarly we find that if
B 6= 0, then degB ≥ deg f = k. So the statement (*) cannot hold. The lemma
is proved. 2

Remark. If K is an algebraically closed field, such as C, then the polynomials
f and g factor as f(x) = ak

∏k
i=1(x− ρi), g(x) = b`

∏`
j=1(x− σj), where the ρi

are the roots of f and the σj the roots of g. Then it can be shown that

Res(f, g, x) = akb`

k∏
i=1

∏̀
j=1

(ρi − σj).

This formula, which we won’t prove, makes it clear that the resultant vanishes
iff f and g have a common root.

Back to bivariate polynomials. Now we again consider two polynomials
f, g ∈ R[x, y]. In order to be able to use resultants, we will regard f and g as
polynomials in x with coefficients in R[y]; that is, f =

∑k
i=0 ai(y)xi, where each

ai(y) is a polynomial in y.
Then the entries of the Sylvester matrix of f and g are polynomials in y,

and so Res(f, g, x), which is the determinant of a matrix of polynomials, is still
well-defined.

Lemma 3 For f, g ∈ R[x, y] with deg f = k, deg g = `, we have deg Res(f, g, x) ≤
k`.

We leave the proof as an exercise (not entirely trivial). Hint: consider the
terms in the expansion of the determinant (as a sum over all permutations),
and observe that, with f =

∑k
i=0 ai(y)xi as above, deg ai(y) ≤ k − i.

Proof of Theorem 1. Let us suppose that Z(f) ∩ Z(g) has at least k` + 1
points, and let us fix some points p1, . . . , pk`+1 ∈ Z(f) ∩ Z(g).

First we want to rotate the coordinate system so that all the pi have distinct
y-coordinates. This is possible since there are only finitely many lines containing
two or more of the pi, and if the x-axis is not parallel to any of these lines, then
the y-coordinates are all distinct.

Algebraically speaking, rotating the coordinate system by some suitable
angle α means replacing the old coordinates (x, y) by new coordinates (x∗, y∗),
where x = ax∗+by∗, y = cx∗+dy∗, with a = c = cosα, b = −d = sinα. By this
substitution, we obtain new polynomials f∗(x∗, y∗) = f(ax∗ + by∗, cx∗ + dy∗),
g∗(x∗, y∗) = g(ax∗ + by∗, cx∗ + dy∗). It is easily checked that deg f∗ = deg f ,
deg g∗ = deg g, and that f and g have common factor iff f∗ and g∗ have one (for
this, we need that the substitution is invertible, i.e., x∗ and y∗ can be expressed
as linear functions of x and y).

Thus, from now on, we assume that the y-coordinates y1, . . . , yk`+1 of p1, . . . , pk`+1

are all distinct, and for simpler notation, we keep calling our polynomials f
and g.
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Now for each yi, fi(x) := f(x, yi) and gi(x) := g(x, yi) are univariate poly-
nomials, and they have a common root, namely, the x-coordinate of pi. Having
a common root implies having a common factor, and hence Res(fi, gi, x) = 0.

Since Res(fi, gi, x) is the value of the polynomial Res(f, g, x) at yi, we con-
clude that Res(f, g, x) has at least k`+ 1 distinct roots. By Lemma 3 we know
that deg Res(f, g, x) ≤ k`, and so Res(f, g, x) is the zero polynomial.

Now we would like to conclude that since the resultant is zero, f and g have
a common factor. But there is a catch: Lemma 2 assumes that the coefficients of
the considered polynomials belong to a field K, but in our case, the coefficients
are from R[y], which most certainly is not a field!

A way around this is extending R[y] into a field. Namely, one can imitate
the usual construction of the field of rational numbers from the ring of integers.
In the case of R[y] we arrive at the field R(y), consisting of all rational functions
of the form p(y)/q(y), where q(y) is nonzero. (More precisely, the elements of
R(y) are equivalence classes of rational functions, similarly as, e.g., 3

4 represents
the same fraction as 6

8 .)
So for the purpose of using Lemma 2, we regard f, g as polynomials in x

with coefficients in the field R(y). Then Res(f, g, x), being the zero polynomial,
is also the zero element of R(y), so Lemma 2 allows us to conclude that f and g
have a common factor h ∈ R(y)[x]. That is, we can write f = hf1 and g = hg1,
where the coefficients of h, f1, g1 are rational functions in y.

Let d = d(y) be a common denominator of all the coefficients of h ,f1, and
g1; thus, we can write

h(x, y) =
h̃(x, y)
d(y)

, f1(x, y) =
f̃1(x, y)
d(y)

, g1(x, y) =
g̃1(x, y)
d(y)

,

where h̃, f̃1, g̃1 are polynomials with coefficients in R (no rational functions
anymore).

We let h̃1 be an irreducible factor of h̃ of degree at least 1 in x (there must
be such a factor since h contains a nonzero power of x). From the equality
f = hf1 = h̃f̃1/d

2 we see that the irreducible factor h̃1 has to divide the
product fd2. It cannot divide d2, since d contains no power of x, and hence h̃1

has to divide f . The same argument shows that h̃1 divides g as well, and hence
we can finally conclude that f and g have a common factor.

In the last argument, we have used the unique factorization property of
the polynomial ring R[x, y], stating that every polynomial in R[x, y] can be
factorized into irreducible factors, in a way that is unique up to reordering the
factors and multiplying them by nonzero numbers (the same holds for K[x, y]
with any field K). This property is well known; a full proof would take perhaps
another page, but here we skip it. 2
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