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Topology has spectacular applications in discrete mathematics and com-
puter science, such as in lower bounds for the chromatic number of graphs
(which will be discussed later to some extent), in results about the behavior of
distributed computing systems (see Herlihy, Kozlov, and Rajsbaum [HKR13]),
or in methods for reconstructing 3-dimensional shapes from point samples,
whose importance increases with the advent of ubiquitous 3D printing.

Yet the entrance barriers of topology are relatively high, according to the
author’s experience. This has to do with the extent, maturity, and technical
sophistication of the field. At the very beginning of serious study, a newcomer
is confronted with new language and conventions, such as commutative dia-
grams, exact sequences, and categorical concepts. At the same time, in order
to honestly reach the first real results, one also has to work through a number
of technicalities such as approximations of continuous maps. These things can
be experienced once and then more or less forgotten, yet skipped they should
not be. Last but not least, some of the fundamental concepts are truly sophis-
ticated.

The notion of homology seems to be a particularly high stumbling block.
Many computer scientists with some topological background switch off when
a homology or cohomology group appears on the board. In this chapter we
thus aim at an introduction with as few technicalities as possible reaching all
the way to (simplicial) homology groups, including their independence of the
triangulation. The latter is technical, but we do not see any other way of getting
used to the machinery without actually working through a number of details.

The chapter does not get one very far in topology, but it may make a
systematic study of full-fledged textbooks easier for those wishing to get deeper.

We fix notation for two sets in Rn, which are used all the time in topology.
The n-dimensional ball is

Bn = {x ∈ Rn : ‖x‖ ≤ 1}

(some sources prefer the word disk and the notation Dn), and the (n − 1)-
dimensional sphere is the boundary of Bn, i.e.,

Sn−1 = {x ∈ Rn : ‖x‖ = 1}

(note that S2 lives in R3). Both are considered with the Euclidean metric.
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1 Topological spaces and continuous maps

A topological space is a mathematical structure for capturing the notion of
continuity, one of the most basic concepts of all mathematics, on a very general
level.

The usual definition of continuity of a mapping from introductory courses
uses the notion of distance: a mapping is continuous if the images of sufficiently
close points are again close.

This can be formalized for mappings between metric spaces. We recall that
a metric space is a pair (X, dX), where X is a set and dX : X × X → R is
a metric satisfying several natural axioms (x, y, z are arbitrary points of X):
dX(x, y) ≥ 0, dX(x, x) = 0, dX(x, y) > 0 for x 6= y, dX(y, x) = dX(x, y), and
dX(x, y) + dX(y, z) ≥ dX(x, z) (the triangle inequality). The most important
example of a metric space is Rn with the Euclidean metric, and another, of
particular interest in computer science, is a graph with the shortest-path metric.

Formally, a mapping f : X → Y between metric spaces is continuous if for
every x ∈ X and every ε > 0 there exists δ > 0 such that whenever y ∈ X and
dX(x, y) < δ, we have dY (f(x), f(y)) < ε.

One can think of a topological space as starting with a metric space and
forgetting the metric, remembering only which sets are open. (We recall that
a set U ⊆ X in a metric space is open if for every x ∈ U there is ε > 0 such
that U contains the ε-ball around x.) This is not quite precise since topological
spaces are much more general than metric spaces and there are many interesting
specimens which cannot be obtained from any metric space, but in applications
of topology we mostly encounter topological spaces coming from metric ones.

Topological space. Here is the general definition.

Definition 1.1. A topological space is a pair (X,O), where X is a (typ-
ically infinite) ground set and O ⊆ 2X is a set system, whose members are
called the open sets, such that ∅ ∈ O, X ∈ O, the intersection of finitely
many open sets is an open set, and so is the union of an arbitrary collection
of open sets.

The system O as in the definition is sometimes called a topology on X.
In this chapter, we will often say just space instead of topological space.
Two topological spaces (X,OX) and (Y,OY ) are considered “the same”

from the point of view of topology if there is a bijective map f : X → Y that
preserves open sets in both directions; that is, V ∈ OY implies f−1(V ) ∈ OX
and U ∈ OX implies f(U) ∈ OY . For most mathematical structures, such as
groups or graphs, an f with analogous structure-preserving properties is called
an isomorphism, but in topology an f as above is called a homeomorphism.
Topological spaces X and Y are said to be homeomorphic, written X ∼= Y ,
if there is a homeomorphism between them. (Strictly speaking, we should
write that the topological spaces (X,OX) and (Y,OY ) are homeomorphic, but
in agreement with a common practice we mostly use the same letter for the
topological space and for the underlying set.)
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Here we see a substantial difference between metric and topological spaces:
two spaces which are metrically quite different can be homeomorphic and thus
topologically the same.

Exercise 1.2. Verify the following homeomorphisms (the topology is always
given by the Euclidean metric):

(a) R, the open interval (0, 1), and S1 \ {(0, 1)} (the unit circle in the plane
minus one point).

(b) S1 and the boundary of the unit square [0, 1]2.

Similarly, different metrics on X may induce the same topology: this is the
case for all `p metrics on Rn (n fixed), for example. For readers familiar with
Banach spaces we also mention that all infinite-dimensional separable Banach
spaces are homeomorphic as topological spaces—this is a nontrivial theorem of
Kadets; in this case, from the point of view of functional analysis, the topology
carries too little information.

Subspaces. The topological spaces encountered most often in applications,
as well as in a substantial part of topology itself, are subspaces of some Rn with
the standard topology (i.e., the one induced by the Euclidean metric), or are
at least homeomorphic to such subspaces.

In general, for a topological space (X,O), every subset Y ⊆ X induces a
subspace of (X,O), namely, the topological space (Y, {U ∩Y : U ∈ O}). (This
is quite different, e.g., from groups, where only quite special subsets correspond
to subgroups.) Note that the open sets of the subspace need not be open as
subsets of X: for instance, let X be the Euclidean plane and Y a segment in
it; then Y is open in Y but, of course, not in the plane.

Neighborhoods, bases, closure, boundary, interior. A set N in a
topological space X is called a neighborhood of a point x ∈ X if there is an
open set U such that x ∈ U ⊆ N .

The system O of all open sets in a topological space can often be described
more economically by specifying a base of O, which is a collection B ⊆ O such
that every U ∈ O is a union of some of the sets in B. For example, the system of
all open intervals is a base of the standard topology of R, and so is the system
of all open intervals with rational endpoints.

Exercise 1.3. Check that the system of all open balls of radius 1
n , n = 1, 2, . . .,

constitutes a base of the topology of a metric space.

A possibly still more compact specification of a topology O is a subbase,
which is a system S such that the system of all finite intersections of sets from
S forms a base of O. An example is the system of all intervals (−∞, a) and
(a,∞), a ∈ R, for R.

A set F ⊆ X is closed if X \ F is open. Traditionally one uses letters
U, V,W for open sets and F,G,H for closed sets, and in sketches, open sets are
drawn as smooth ovals and closed sets as polygons.

The closure clY of a set in a topological space X is the intersection of
all closed sets containing Y (an alternative notation is Y ). In the metric case,
the closure consists of all points with zero distance to Y (where dX(x, Y ) =
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infy∈Y dX(x, y)). The boundary of Y is ∂Y := cl(Y ) ∩ cl(X \ Y ), and the
interior intY := Y \ ∂Y .

We note that these last three notions depend not only on Y , but also on
the space X in which they are considered: for example, if X = R and Y is the
closed interval [0, 1], then ∂Y = {0, 1} and intY = (0, 1), but if we consider
the segment Y ′ connecting the points (0, 0) and (1, 0) as a subspace of R2, then
Y ′ ∼= Y but ∂Y ′ = Y ′ and intY ′ = ∅. To avoid ambiguities one sometimes
writes clX Y , ∂XY , intX Y .

Continuous maps. Now we return to continuity, whose topological definition
is strikingly simple.

Definition 1.4. A continuous mapping of a topological space (X,OX)
into a topological space (Y,OY ) is a mapping f : X → Y of the underlying
sets such that f−1(U) ∈ OX for all U ∈ OY . In words, a mapping is
continuous if the preimages of all open sets are open.

In topological texts, all mappings between topological spaces are usually as-
sumed to be continuous unless stated otherwise. We will also sometimes use
this convention.

The next exercise is definitely worth doing.

Exercise 1.5. Show that for mappings R → R (where R has the standard
topology), or more generally for mappings between metric spaces, this definition
of continuity is equivalent to the ε-δ definition recalled earlier.

Exercise 1.6. A curious reader might ask why the definition of continuity
requires preimages, rather than images, of open sets to be open. We define
a mapping f : X → Y between topological spaces to be an open mapping if
f(U) is open for every open set U . Find examples, involving mappings between
subspaces of R, of a continuous map that is not open, as well as of an open map
that is not continuous.

Exercise 1.7. (a) Check that a homeomorphism of topological spaces can equiv-
alently be defined as a bijective continuous mapping with continuous inverse.
(b) Find an example of a bijective continuous mapping between suitable sub-
spaces of R that is not a homeomorphism.

Exercise 1.8. Let X,Y be a topological spaces, let f : X → Y be a mapping,
and let A1, . . . , An ⊆ X be closed sets that together cover all of X. Let us assume
that the restriction of f to the subspace of X induced by Ai is continuous, for
every i = 1, 2, . . . , n (while we do not apriori assume f continuous). Prove that
f is continuous.

2 Bits of general topology

There is a sizeable list of properties a topological space may or may not have.
(These properties are all invariant under homeomorphism.) Here we present a
brief selection.

4



Connectedness. There are two different definitions capturing the intuitive
idea that a topological space “has just one piece.” A topological space X is
connected if X cannot be written as a union of two disjoint nonempty open
sets.1 And X is path-connected if every two points x, y are connected by a
path, where in the topological setting, a path from x to y is a continuous map
f : [0, 1]→ X of the unit interval with f(0) = x and f(1) = y.

Connectedness and path-connectedness are not equivalent: the latter im-
plies the former, but a famous example of a connected space that is not path-
connected is the topologist’s sine curve, the subspace of R2 consisting of the
vertical segment from (0,−1) to (0, 1) and the graph of the function x 7→ sin 1

x
for x > 0:

0.1 0.2 0.3 0.4

-1.0

-0.5

0.5

1.0

For applications, path-connectedness seems to be more important.
One can define connected components of a space X as inclusion-maximal

subsets that, considered as topological subspaces of X, are connected, and
analogously for path-connected components. Among the wilder examples we
have the famous Cantor set C ⊂ R, given by C =

⋂∞
i=1Ci, where C0 = [0, 1]

and Ci = 1
3Ci−1 ∪ (1

3Ci−1 + 2
3):

C0

C1

C2

C3

C4

All of its connected (or path-connected) components are singletons, and there
are uncountably many.

For every topological property we can hope that it allows us to distinguish
some pairs of non-homeomorphic spaces. In the case of (path-)connectedness,
we can prove that no two of the spaces S1, (0, 1) (open interval) and [0, 1]
(closed interval) are homeomorphic: indeed, if we remove a single point, then
S1 always stays connected, (0, 1) never, and [0, 1] sometimes stays connected
and sometimes not. (Can you see other ways of proving any of these non-
homeomorphisms?)

Bizarre spaces and general topology. So far we may have made the im-
pression that all topological spaces look more or less like subspaces of Euclidean

1The literature is not quite unified concerning the question of whether the empty topological
space is connected. It should be according to the general definition, but for many purposes it
is better to define that it is not.
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spaces, but this is very far from the truth—they need not even look like metric
spaces.

A topological space X whose topology can be obtained from some metric is
called metrizable. A traditional subfield of topology called general topology
or point-set topology studies mainly various properties of topological spaces
more general than metrizability, relations among them, conditions making a
space metrizable, etc.

Let us list several examples taken from the vast supply built in general
topology over the years. We will not prove any properties for them, except
possibly in exercises—the intention is to give the reader some feeling for the
possible pathologies occurring in arbitrary topological spaces, as well as a supply
of candidate counterexamples for refuting too general claims. The reader may
at least want to check in passing that these are indeed topological spaces.

All of the examples except for (A) are non-metrizable, which in several cases
is nontrivial to prove.

(A) Any setX, such as the real numbers, can be given the discrete topology,
in which all subsets are open. Note that the integers Z inherit such a
topology as a subspace of R with the standard topology, but discrete
topology becomes more exotic if the ground set is uncountable.

(B) Let X be an infinite set. The topology of finite complements has open sets
∅ and X \ B for all B ⊆ X finite. Similarly one can define the topology
of countable complements on an uncountable set.

(C) We recall that an algebraic variety in Rn (or, for that matter, in Kn for any
field K) is the set of common zeros of a set of n-variate polynomials. The
open sets of the Zariski topology on Rn has all complements of algebraic
varieties as open sets. The reader may want to check that for n = 1 we get
the topology of finite complements. This is a (somewhat rare) example
of an exotic topology used heavily outside the field of general topology,
namely, in algebraic geometry.

(D) The two-point space {1, 2} in which open sets are ∅, {1}, and {1, 2}:

Here the closure of the singleton set {1} is {1, 2}, while 1 is not in the
closure of {2}, which probably cannot be considered good manners.

(E) The Sorgenfrey line is R with the topology whose base are all half-open
intervals [a, b). The Sorgenfrey plane is the product of the Sorgenfrey line
with itself (products will be introduced soon); explicitly, this is R2 with
the topology whose base are half-open rectangles [a, b)× [c, d).

(F) Let ω1 be the first uncountable ordinal (assuming that the reader knows
or looks up what ordinal numbers are). The set L = ω1 × [0, 1) is or-
dered lexicographically, and then given the topology whose base are all
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open intervals in this linear ordering. The resulting topological space is
called the long ray ; locally it looks like R with the standard topology, but
globally it is “too long” to be metrizable.

Separation axioms. One class of properties intended to measure how close
a given space is to metrizability are traditionally called the separation axioms.
The most popular ones are called T0, T1, T2, T3, T3 1

2
, T4 in the order of increasing

strength (T abbreviates the German Trennungsaxiom, i.e., separation axiom),
and one can also find T2 1

2
, T5, and T6 in the literature, plus a number of others

not quite fitting the Ti scale. Metrizable spaces have all of these properties.
Probably the most important to remember is T2: a space X is T2 or Haus-

dorff if for every two distinct points x, y ∈ X there are open sets U 3 x and
V 3 y with U ∩ V = ∅. Briefly, distinct points can be separated by open sets:

x y
U V

Decent topological spaces are at least Hausdorff (possibly with the honorable
exception of the Zariski topology); examples (B)–(D) above are not.

For illustration, we also mention that a T3 or regular space is one that is
T2 and in which every closed set F can be separated from every point x 6∈ F
by open sets, while a T4 or normal space is T2 and disjoint closed sets can be
separated by open sets:

x
U

F

V

F

V

GF

U

There are examples showing that all of the hierarchy is strict, i.e., Ti does
not imply Tj for i < j. Sometimes these are quite sophisticated, the hardest
being one showing T3 6⇒ T3 1

2
. As far as our examples above are concerned, the

Sorgenfrey plane is T3 1
2

but not T4.

We conclude this brief mention of the separation axioms by a warning: The
literature is far from unified concerning terminology. The main difference is
in whether, for the higher separation axioms like T3 or T4, one automatically
assumes T1 (or, equivalently, T2) or not. Indeed, the modern usage seems to
prefer “normal” to mean “disjoint closed sets separable by open sets” while T4

means “normal+T1.” So it is advisable to check the definitions carefully.

Cardinality restrictions. A very important notion is that of a dense subset:
a set D ⊆ X is dense in a topological space X if clD = X.

A space X is separable if it has a countable dense set. The space Rn with
the standard topology is separable because the set Qn of all rational points is
dense in it, and so is every subspace.

Exercise 2.1. (a) Show that the Sorgenfrey plane in (E) above is separable,
but it has a non-separable subspace.

(b) Prove that a subspace of a separable metric space is separable.
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A notion with less importance outside topology is a space with countable
base (meaning a base for its topology as introduced earlier), which for histor-
ical reasons is often called a second-countable space. This is a property much
stronger than separability.

Polish spaces. In many fields of mathematics, when one wants to work only
with “sufficiently nice” topological spaces, one makes assumptions even stronger
than metrizability. The most frequent such concept is perhaps a Polish space,
which is a separable completely metrizable space.

Here one needs to know that a complete metric space is one in which every
Cauchy sequence2 converges to a limit. For example, the Euclidean metric on
R is complete, but on (0, 1) it is not. The definition of Polish space requires the
existence of at least one complete metric inducing the topology; so, for example,
(0, 1) is a Polish space.

Let us conclude this section with two examples of nice basic theorems of
general topology. The first one we state without proof:

Theorem 2.2 (Tietze extension theorem). Let X be a metric space, or more
generally, a T4 topological space, let A ⊆ X be closed, and let f : A → R be a
continuous map. Then there exists a continuous extension f : X → R of f , for
which we may moreover assume supx∈X |f(x)| ≤ supa∈A |f(x)|.
Theorem 2.3 (Urysohn metrization theorem). Every T3 topological space with
a countable base is metrizable.

We present a proof, assuming for convenience T4 instead of just T3.

Exercise 2.4. Prove that a T3 space with a countable base is also T4.

The proof of Theorem 2.3 contains a very useful and general trick (appear-
ing, e.g., in the theory on low-distortion embeddings of finite metric spaces, a
recent hot topic in computer science, all the time).

The countable base assumption, as well as Tietze’s extension theorem, are
used in the next lemma.

Lemma 2.5. For every T4 space X with a countable base there exists a count-
able sequence (f1, f2, . . .) of continuous functions X → [0, 1] such that for every
point x ∈ X and every open set U with x ∈ U there is an fi that is 0 outside U
and 1 in x.

Proof. For every pair (B,B′) of the assumed countable base B of X with clB′ ⊂
B, we use the Tietze extension theorem to get a function X → [0, 1] that equals
1 on clB′ and equals 0 on X \B. These are the desired fi.

To check that this works, we consider x ∈ U as in the lemma. We find B ∈ B
with x ∈ B ⊆ U , and then we use the T3 property to separate x from X \B by
disjoint open sets V 3 x and W ⊇ X \ B. It follows that clV ⊆ X \W ⊆ B.
Finally we shrink V to some B′ ∈ B still containing x.

We now have x ∈ B′ ⊆ clB′ ⊆ B ⊆ U , and it is clear that the separating
function made above for (B,B′) is 1 at x and 0 outside U .

2A sequence (x1, x2, . . .) is Cauchy if for every ε > 0 there is n such that for all i, j ≥ n we
have dX(xi, xj) < ε.
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Proof of Theorem 2.3 under the T4 assumption. Let H, the Hilbert cube, be
the metric space of all infinite sequences x = (x1, x2, . . .), xi ∈ [0, 1

i ], i = 1, 2, . . .,

with the `2 metric, meaning that the distance of x and y is
(∑∞

i=1(xi−yi)2
)1/2

.
We will show that the space X as in the theorem is homeomorphic to a

subspace of H. Then the metrizability of X will be clear.
We define a mapping f : X → H by

f(x) :=
(

1
1f1(x), 1

2f2(x), 1
3f3(x), . . .

)
where the fi are as in the lemma (this definition is the main trick!).

Exercise 2.6. Check that f is continuous (this uses nothing but the continuity
of the fi) and injective.

It remains to verify that the inverse mapping f−1 : f(X)→ X is continuous.
To this end it suffices to check that for every U ⊆ X open and every x ∈ U ,
there is an ε > 0 such that f(U) contains the ε-ball around f(x) (ball in f(X),
not in all of H, that is).

As expected, we fix i with fi(x) = 1 and fi zero outside U , and we let ε := 1
2i .

Now we suppose that y ∈ X is such that f(x) and f(y) have distance at most ε
in H; we want to conclude y ∈ U . We have, in particular, 1

i |fi(x)− fi(y)| ≤ ε,
so fi(y) ≥ 1

2 , and thus fi(y) 6= 0. Hence y ∈ U as needed.

3 Compactness

One of the most important and most applied topological properties is compact-
ness. Intuitively, a compact space is one that does not have too much room
inside. The topological definition is quite simple:

Definition 3.1. A topological space X is compact if for every collection
U of open sets in X whose union is all of X, there exists a finite U0 ⊆ U
whose union also covers all of X. In brief, every open cover of X has a finite
subcover.

A set C ⊆ X is a compact set in X if C with the subspace topology is a
compact space.

The notion of compactness was first developed in the metric setting, with
a different definition, which is still presented in many introductory courses.
Namely, a metric space X is compact if every infinite sequence (x1, x2, . . .)
contains a subsequence (xi1 , xi2 , . . .), i1 < i2 < · · · , that is convergent.

Exercise 3.2. Prove that if X is a metric space that is compact according
to Definition 3.1, then every infinite sequence has a convergent subsequence.
Hint: construct an open cover by balls “witnessing” that there is no convergent
subsequence.

Diligent readers may also do the opposite implication for metric spaces, but
this is more difficult.
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While one can naturally define convergent sequences in a topological space,
and thus transfer the definition with sequences to topological spaces, one obtains
a different, and much less well behaved, notion of sequential compactness. From
this point of view, the topological approach, as opposed to the metric one,
greatly clarified the essence of the notion.

Mainly in order to show typical proofs in general topology, we will now
develop some properties of compactness, culminating in two extremely useful
results concerning compact sets.

Lemma 3.3.

(i) A closed subset of a compact space is compact.

(ii) A compact subset in a Hausdorff space is closed.

(iii) If f : X → Y is continuous and K ⊆ X is compact, then f(K) is compact
(and hence closed if Y is Hausdorff).

To appreciate (iii), one should realize that continuous maps need not map
closed sets to closed sets in general.

Proof. In (i), let X be compact and F ⊆ X be closed. Consider an open cover
U of F , and for every U ∈ U , fix an open set Ũ in X with Ũ ∩K = U . Then
Ũ := {Ũ : U ∈ U} ∪ {X \ F} is an open cover of X. From a finite subcover of
Ũ we obtain a finite subcover of U by restricting everything back to F .

For (ii), let X be Hausdorff and K ⊆ X be compact. It suffices to show that
for every x /∈ K there is an open Ux such that Ux ∩K = ∅. For every y ∈ K we
can fix, by the Hausdorff property, disjoint open sets Vy 3 x and Wy 3 y. The
Wy for all y ∈ K form an open cover of K, so we select a finite subcover, say
Wy1 , . . . ,Wyn , and we set Ux :=

⋂n
i=1 Vyi .

xK

Wy1

Wy2

Wy3

Vy1

Vy2

Vy3

Finally, (iii) is easy based on the observation that if U is an open cover of
f(K), then {f−1(U) : U ∈ U} is an open cover of K.

Here is the first often-applied result.

Theorem 3.4. Let K be compact, and let f : K → R be a continu-
ous function. Then f attains its minimum: there exists x0 ∈ K with
f(x0) = infx∈K f(x). In particular, a continuous function on a compact
set is bounded, and a function on a compact set that is never zero is bounded
away from 0; that is, there is ε > 0 such that |f(x)| ≥ ε for all x ∈ K.
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Proof. By Lemma 3.3(iii), Y := f(K) ⊆ R is compact. Set m := inf Y , choose
a sequence (y1, y2, . . .), yi ∈ Y , converging to m, and set Ui := (yi,∞).

If the Ui do not cover Y , then this can be only because they all avoid m,
and in particular, m ∈ Y . So we suppose that {Ui} is an open cover of Y ,
and we select a finite subcover Ui1 , . . . , Uin . Let y∗ := min{yi1 , . . . , yin}. Then
Y ⊆ ⋃n

j=1 Uij = (y∗,∞), but this is a contradiction since y∗ ∈ Y .

Products. The product of two topological spaces (X,OX) and (Y,OY ) is
defined in an expected way, with the ground set X × Y and the collection
{U × V : U ∈ OX , V ∈ OY } of open rectangles as a base of the topology.

The definition of a product of infinitely many spaces is trickier (but of-
ten needed): we do not take all open rectangles, but only those having only
finitely many coordinates in which the open set is not the whole space. Thus,
if (Xi,Oi)i∈I is a collection of spaces indexed by an arbitrarily large set I,
then the product space

∏
i∈I(Xi,Oi) has ground set

∏
i∈I Xi, and a base of the

topology is {∏
i∈I

Ui : Ui ∈ Oi, |{i ∈ I : Ui 6= Xi}| <∞
}
.

For example, the product of countably many copies of the two-point discrete
space {0, 1} turns out to be homeomorphic to the Cantor set C, and the product
of countably many copies of {0, 1, 2, . . .}, again with the discrete topology, is
homeomorphic to the set of all irrational numbers with the standard topology
inherited from R (ambitious readers may want to prove these).

Exercise 3.5. Prove that a product of Hausdorff spaces is Hausdorff.

Theorem 3.6 (Tychonoff’s theorem). The product of an arbitrary collection
of compact topological spaces is compact.

Exercise 3.7. (a) Prove that if X × Y is a product of two topological spaces
such that every open cover of X × Y by open rectangles (i.e., sets of the form
U×V , U open in X, V open in Y ) has a finite subcover, then X×Y is compact.

(b) Prove Tychonoff’s theorem for products of two spaces.

The proof of Tychonoff’s theorem for infinitely many factors needs more
work, and more significantly, it relies on the axiom of choice—Tychonoff’s the-
orem is actually one of the important theorems equivalent to the axiom of
choice.

Instead of a proof, we will demonstrate a typical combinatorial application
(similar considerations underlie compactness principles in logic and elsewhere).
We recall that a graph G = (V,E) is k-chromatic if there is a mapping (coloring)
c : V → [k] := {1, 2, . . . , k} such that f(u) 6= f(v) whenever {u, v} is an edge
of G.

Proposition 3.8. Let G be an infinite graph. If every finite subgraph of G is
k-chromatic, then G is k-chromatic.

For countable graphs there is an elementary inductive proof. Tychonoff’s
theorem provides a quick proof in general.
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Proof. For every vertex v ∈ V , let Xv be a copy of the discrete topological
space [k], and let X :=

∏
v∈V Xv. Since the Xv are (trivially) compact, X is

compact.
A point of X can be identified with a mapping f : V → [k]. For every edge

e = {u, v} ∈ E, let Fe ⊆ X consist of those mappings f : V → [k] for which
f(u) 6= f(v). We want to prove that

⋂
e∈E Fe 6= ∅.

What we know is that whenever E0 ⊆ E is a finite set of edges, we have⋂
e∈E0

Fe 6= ∅. This is because the finite graph consisting of the edges of E0

and their vertices is assumed to be k-chromatic.
By the definition of the product topology, it is easy to see that every Fe is

closed. So it suffices to verify the following claim: If F is a collection of closed
sets in a compact space X such that every finite subcollection has a nonempty
intersection, then F has a nonempty intersection. But this is a reformulation
of the definition of compactness—just consider U := {X \ F : F ∈ F}.

Compact subsets of Rn. Now we can easily establish the following well-
known characterization.

Theorem 3.9. A subset A ⊆ Rn with the standard topology is compact if and
only if it is both closed and bounded.

Proof. First we assume A compact. Then A is closed by Lemma 3.3(ii), and
boundedness follows by considering the open cover by balls B(0, n), n = 1, 2, . . ..

For the other direction, it suffices to prove that the cube [−m,m]n is com-
pact for every m,n, since then the case of a general A follows by Lemma 3.3(i).

The crucial part is in proving the interval [0, 1] compact; the rest follows by
re-scaling and by Tychonoff’s theorem. The compactness of closed intervals is
built deeply in the construction of the reals, and it is more or less a rephrasing
of the fact that every subset of R has a supremum.

So let U be an open cover of [0, 1], and let s be the supremum of those a ≤ 1
for which [0, a] can be covered by finitely many members of U .

Clearly s > 0. If 0 < s < 1, then there is ε > 0 such that [s − ε, s + ε] is
covered by some U ∈ U . Together with the assumed finite cover of [0, s − ε],
this U forms a finite cover of [0, s+ ε]—a contradiction.

Exercise 3.10. The previous result shows, in particular, that the Euclidean
unit ball in Rn is compact.

(a) Consider the (infinite-dimensional Hilbert) space `2 consisting of all in-

finite sequences x = (x1, x2, . . .) of real numbers such that ‖x‖ :=
(∑∞

i=1 x
2
i

)1/2
is finite. Regard it as a topological space with topology induced by ‖.‖, i.e., by
the metric given by d(x, y) = ‖x−y‖. Show that the unit ball {x ∈ `2 : ‖x‖ ≤ 1}
is not compact.

(b) Explain where the proof above, showing that Bn is compact, fails for the
unit ball in `2.

Paracompactness. There are many variations on compactness, most of
them weaker than compactness, and none as significant. We mention just one
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notion, paracompactness, which often occurs among assumptions in other fields
of mathematics.

We do not give the standard definition but an equivalent property which
is most often used in applications. So let us assume that X is a Hausdorff
space; then X is paracompact if every open cover U of X admits a partition
of unity subordinated to U . Here a partition of unity subordinated to U is a
collection, finite or infinite, (fi)i∈I of continuous functions fi : X → [0, 1] such
that, first, for every x ∈ X, the sum

∑
i∈I f(x) has only finitely many nonzero

terms and equals 1, and second, for every i ∈ I there is U ∈ U such that fi is
zero everywhere outside U .

Partitions of unity are a useful technical tool for gluing “locally defined”
objects on X into a global object. Paracompactness is a relatively weak prop-
erty: in particular, every compact space is paracompact, and all metric spaces
are paracompact (which is a hard result). A non-paracompact example is the
long ray introduced in (F) above.

4 Homotopy and homotopy equivalence

So far we have considered two topological spaces equivalent (the same) if they
are homeomorphic. But finding out whether two given spaces are homeomorphic
is a very ambitious and generally hopeless task, since it is known that the
algorithmic problem, given two spaces X and Y , decide whether X ∼= Y , is
algorithmically unsolvable. (At the same time, homeomorphism can be decided
in many specific settings, and topology is full of remarkable results of this kind.
For example, later we will see that Rm 6∼= Rn for m 6= n, which is well known
but quite nontrivial.)

Even stronger undecidability claims hold; for example, it is undecidable
whether a given space X is homeomorphic to the 5-dimensional sphere S5, a
very simple-looking space.

An attentive reader might wonder how a topological space, a highly infinite
object in general, is given to an algorithm that can accept only finite inputs.
This question will be discussed later, but for the moment, one may think of the
input X to the question of homeomorphism with S5 as a space living in some
Rn and built of finitely many 5-dimensional Lego cubes, for example.

Algebraic topology, a branch which we are now slowly entering, considers
topological spaces with a coarser equivalence, called homotopy equivalence. For
example, as we will see, all of the spaces Rn, n = 1, 2, . . ., are homotopy equiv-
alent, and actually homotopy equivalent to a one-point space.

While deciding homotopy equivalence is still undecidable in general, chances
of success in concrete cases are much better than for homeomorphism. The
reason is that there are many wonderful tools (the reader may have heard
keywords like fundamental group, homotopy groups, homology and cohomology
groups, etc.) that cannot distinguish between two homotopy equivalent spaces,
but they can often prove homotopy non-equivalence.

Homotopy of maps. Homotopy equivalence is a somewhat sophisticated
concept, which needs some time to be digested. We begin with an analogous
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but simpler notion for maps.

Definition 4.1. Two (continuous) maps f, g : X → Y between the same
spaces are called homotopic, written f ∼ g, if there exists a continuous
map H : X× [0, 1]→ Y , a homotopy between f and g, satisfying H(., 0) = f
and H(., 1) = g.

Intuitively, f and g are homotopic if f can be continuously deformed into g.
The homotopy H specifies such a deformation: we can think of the second
coordinate t as time, and for every point x ∈ X, the mapping hx(t) = H(x, t)
specifies the trajectory of the image of x during the deformation: it starts in
f(x) at time t = 0, moves continuously, and reaches g(x) at time t = 1. The
continuity of H implies that this trajectory is continuous for every x, and also
that close points must have close trajectories.

The next picture shows three maps of S1 into the annulus (a part of the
plane with a hole).

S1

f

g

h

We have f ∼ g (imagine an appropriate deformation). But h is not homotopic
to either of f, g—this is quite intuitive, since h goes once around the hole, while
f and g do not go around, in a suitably defined sense, but proving it rigorously
is nontrivial, and we will leave it without proof for now.

Exercise 4.2. (a) Is the mapping f : S1 → R3 that maps S1 to a geometric
circle homotopic to a mapping g : S1 → R3 sending the circle to a knot, such as
the trefoil? Answer before reading further!

(b) Let X be a space. Prove that every two maps X → Bn are homotopic.
(c) Prove that every two maps Bn → X are homotopic, provided X is path-
connected.

It is not difficult to show that being homotopic is an equivalence relation
(writing down the proof of transitivity may take some work, but the idea is
absolutely straightforward). We write [X,Y ] for the set of all homotopy classes
of continuous maps X → Y .
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While there are usually uncountably many maps X → Y , [X,Y ] is countable
for spaces normally encountered in applications, sometimes even finite, and in
many cases of interest it is well understood.

As a simple example we mention, again without proof, that the homotopy
classes of maps of S1 into the annulus are in a bijective correspondence with Z,
where each mapping is assigned the number of times the image winds around
the hole, in positive (counterclockwise) or negative (clockwise) direction.

A map homotopic to a constant map X → Y (i.e., mapping all of X to a
single point) is called, with a bit illogical-looking terminology, nullhomotopic.

Homotopy equivalence. Now we come to spaces. The usual definition of
homotopy equivalence is not very intuitive but good to work with.

Definition 4.3. Two spaces X and Y are homotopy equivalent, written
X ' Y , if there are continuous maps f : X → Y and g : Y → X such that the
composition fg : Y → Y is homotopic to the identity map idY and gf ∼ idX .

The map g as in the definition is called a homotopy inverse to f (and vice
versa).

Similar to homotopy of maps, it is a simple exercise to show that homotopy
equivalence is transitive. A class of homotopy equivalence of spaces is called a
homotopy type.

Exercise 4.4. (a) Show that the dumbbell and the letter θ are homotopy
equivalent.

(b) (This is a very basic fact.) Check that Rn \ {0} ' Sn−1.

A way of visualizing homotopy equivalence uses the notion of deformation
retract. Let X be a space and Y a subspace of X (this is important). A
deformation retraction of X onto Y is a continuous map R : X × [0, 1] → X
such that R(., 0) is the identity map idX , R(t, y) = y for all y ∈ Y and all
t ∈ [0, 1] (Y remains pointwise fixed), and R(x, 1) ∈ Y for all x ∈ X. We say
that Y is a deformation retract of X if there is a deformation retraction as
above.

The deformation retraction R describes a continuous motion of points of X
within X such that every point ends up in Y and Y remains fixed all the time.
Here is an example, with X a thick figure 8 and Y a thin one:

Now it is a theorem that two spaces X,Y are homotopy equivalent if and
only if there exists a space Z such that both X and Y are deformation retracts
of Z. The direction which helps us with visualization, i.e., being deformation
retracts of the same space implies homotopy equivalence, is exercise-level, and
the other, with a right idea, is simple as well.
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Exercise 4.5. Take an S2 in R3 and connect the north and south poles by a
segment, obtaining a space X. Take another copy of S2 and attach a circle S1

to the north pole by a single point, which yields Y . Show that X ' Y (you may
use deformation retracts).

A space that is homotopy equivalent to a single point is called contractible.
Some spaces are “obviously” contractible, such as the ball Bn, but for others,

contractibility is not easy to visualize. An example is Bing’s house, one of
the puzzling and beautiful objects of topology:

Bing’s house is a hollow box with a wall inside separating it into two rooms,
left and right. Each room has its own entrance, but by the architect’s caprice,
the entrance to the right room goes through a tunnel inside the left room (but
is not accessible from the left room), and vice versa. Each of the tunnels is also
attached to the ceiling by a vertical wall, which assures contractibility.

To check contractibility, one can visualize a deformation retraction of a solid
cube onto Bing’s house. If the cube is made of clay, one can push in a hole from
the left and hollow out the right room through the hole, and similarly for the
left room.

5 The Borsuk–Ulam theorem

Here we interrupt our gradual introduction of basic topological notions and
ideas, and we present the Borsuk–Ulam theorem, which is arguably one of the
most useful tools topology has to offer to non-topologists. (Another theorem of
comparable fame and usefulness is Brouwer’s, which we will treat later.)

We begin by stating three versions, easily seen to be equivalent. The follow-
ing notion will be useful: Let X ⊆ Rm and Y ⊆ Rn be antipodally symmetric
sets; that is, x ∈ X implies −x ∈ X. We call a continuous mapping f : X → Y
an antipodal map if f(−x) = −f(x) for all x ∈ X (so an antipodal map is
automatically assumed continuous).

Theorem 5.1 (Borsuk–Ulam). (i) For every continuous mapping f : Sn → Rn
there is a point x ∈ Sn with f(x) = f(−x).

(ii) Every antipodal map g : Sn → Rn maps some point x ∈ Sn to 0, the
origin in Rn.

(iii) There is no antipodal mapping Sn → Sn−1.

Exercise 5.2. Prove the equivalence (i)⇔ (ii)⇔ (iii).

Exercise 5.3. (Harder) Derive the following from Theorem 5.1: An antipodal
map Sn → Sn cannot be nullhomotopic.
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The Borsuk–Ulam theorem comes from the 1930s and many different proofs
are known. Unfortunately, conceptual proofs providing deeper insight require
topological machinery beyond our scope, and the more elementary proofs we
are aware of are often nice and clever, but one needs to spend considerable time
with inessential technicalities. So we refer to the literature for a proof (e.g.,
[Mat03] or references therein), and instead we derive yet another, different-
looking version.

Theorem 5.4 (Lyusternik–Schnirel’man). Let A1, . . . , An+1 ⊆ Sn be n+ 1 sets
that together cover Sn, and let us assume that, for each i, Ai is either open or
closed. Then some Ai contains a pair of antipodal points, x and −x.

This theorem is traditionally presented either with all Ai closed or all Ai
open, but allowing for a mixture can be useful, as we will see.

Exercise 5.5. (a) Construct a covering of Sn with n + 2 closed sets, none
containing an antipodal pair.

(b) Cover Sn with two sets, neither containing an antipodal pair.

Proof of Lyusternik–Schnirel’man from Borsuk–Ulam. First we assume that all
the Ai are closed, and we define a continuous map f : Sn → Rn by f(x)i =
dist(x,Ai), the Euclidean distance of x from Ai. By the Borsuk–Ulam theorem
there is x ∈ Sn with f(x) = f(−x). If f(x)i = 0 for some i, then x ∈ Ai (here
we use the closedness), as well as −x ∈ Ai, and we are done. If, on the other
hand, f(x)i > 0 for all i, then x and −x do not belong to any of A1, . . . , An,
and so they both lie in An+1, the set which was seemingly neglected in the
definition of f .

Next, let the Ai be all open. It suffices to show that there are closed F1 ⊂
A1,. . . , Fn+1 ⊂ An+1 that together still cover Sn, since then we can use the
version with the Ai closed.

The proof of the last claim is a typical application of compactness. For every
x ∈ Sn we choose i = i(x) such that x ∈ Ai, and an open neighborhood Ux of x
whose closure is contained in Ai(x). The Ux form an open cover of Sn, so we can
choose a finite subcover, say Ux1 , . . . , Uxm . Then we set Fi :=

⋃
j:i(xj)=i

clUxj .
Finally, let A1, . . . , Ak be open and Ak+1, . . . , An+1 closed. We proceed by

contradiction, supposing that no Ai contains an antipodal pair. Then, for each
i ≥ k+ 1, Ai has some positive distance εi > 0 from −Ai, and we let A′i be the
open (εi/3)-neighborhood of Ai. We still have A′i ∩ (−A′i) = ∅, and hence the
open sets A1, . . . , Ak, A

′
k+1, . . . , A

′
m+1 contradict the version of the theorem for

open sets proved above.

Exercise 5.6. Derive the Borsuk–Ulam theorem from the Lyusternik–Schnirel’man
theorem. Hint: use Exercise 5.5(a).

Kneser graphs. For integers n and k, the Kneser graph KGn,k has all
k-element subsets of some fixed n-element set X as vertices. Two such subsets
F1, F2 are connected by an edge in KGn,k if they are disjoint.

A Kneser graph is typically quite large; it has
(
n
k

)
vertices. As a small

example, we note that KG5,2 is isomorphic to the famous Petersen graph:
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There are several reasons why Kneser graphs constitute an extremely interesting
class of graph-theoretic examples (recently they have also been used in computer
science in connection with the PCP theorem). Perhaps the most remarkable
property is that they have a significantly large chromatic number, but their
chromatic number is not explained by any of the “usual” reasons, as we will
indicate below.

We have already mentioned k-chromatic graphs in connection with Propo-
sition 3.8; here we just add that the chromatic number χ(G) of a graph G is
the smallest k such that G is k-chromatic.

The following celebrated result was conjectured by Kneser and proved by
Lovász:

Theorem 5.7 (Lovász–Kneser). For n ≥ 2k, we have χ(KGn,k) ≥ n− 2k + 2.

The chromatic number of KGn,k actually equals n−2k+2; finding a coloring
is an elementary but nice exercise.

The perhaps most common general lower bound for χ(G) is χ(G) ≥ |V (G)|/α(G),
where α(G), the independence number of G, is the size of a maximum indepen-
dent set in G. This lower bound has a simple reason, since an equivalent
definition of a k-chromatic graph is that the vertex set can be covered by k
independent sets.

Now KGn,k has quite large independent sets, of size
(
n−1
k−1

)
, corresponding

to the collection of all k-element sets containing a given point of the ground
set. Setting n = 3k − 2, for example, we see that χ(KG3k−2,k) = k, while the
|V (G)|/α(G) lower bound yields less than 3.

Even more strongly, KG3k−2,k also has the fractional chromatic number
less than 3, where the fractional chromatic number χf (G) can be compactly
defined as the infimum of fractions a

b such that V (G) can be covered by a
independent sets so that every vertex is covered at least b times. The fractional
chromatic number is an important graph parameter, and examples with a large
gap between χf and χ are very rare.

Many proofs of the Lovász–Kneser theorem are known, but all of them are
topological, or at least strongly inspired by the topological proofs. We present
a particularly short and neat one.

Proof of the Lovász–Kneser theorem. The Kneser graph KGn,k needs an n-element
ground set X; we choose X as an n-point set in Rd+1 in general position, where
d = n− 2k+ 1, and where general position means that no d+ 1 points of X lie
on a common hyperplane passing through the origin.

For contradiction, we suppose that there is a proper coloring of KGn,k by at
most n−2k+1 = d colors. We fix one such proper coloring and we define sets
A1, . . . , Ad ⊆ Sd: For a point x ∈ Sd, we have x ∈ Ai if there is at least one
k-tuple F ⊂ X of color i contained in the open halfspace H(x) := {y ∈ Rd :
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〈x, y〉 > 0} (i.e., x is a unit normal of the boundary of H(x) and points into
H(x)). Finally, we put Ad+1 = Sd \ (A1 ∪ · · · ∪Ad).

Clearly, A1 through Ad are open sets, while Ad+1 is closed. By our version
of the Lyusternik–Schnirel’man theorem, there exist i ∈ [d+1] and x ∈ Sd such
that x,−x ∈ Ai.

If i ≤ d, we get two disjoint k-tuples colored by color i, one in the open
halfspace H(x) and one in the opposite open halfspace H(−x). This means
that the considered coloring is not a proper coloring of the Kneser graph.

If i = d+1, then H(x) contains at most k−1 points of X, and so does H(−x).
Therefore, the common boundary hyperplane of H(x) and H(−x) contains at
least n−2k+2 = d+1 points of X, and this contradicts the choice of X.

6 Operations on topological spaces

We have seen the product of topological spaces as an operation creating new
spaces from old ones. Here we introduce some more operations.

Quotient. Given a topological space X and a subset A ⊂ X, we can form a
new space by “shrinking A to a point.” Two spaces can be “glued together” to
form another space. A space can be factored using a group acting on it. Here
is a general definition capturing all of these cases.

Definition 6.1. Let X be a topological space and let ≈ be an equivalence rela-
tion on the set X. The points of the quotient space X/≈ are the classes of
the equivalence ≈, and a set U ⊆ X/≈ is open if q−1(U) is open in X, where
q : X → X/≈ is the quotient map that maps each x ∈ X to the equivalence
class [x]≈ containing it.

If A is a subspace of X, one writes X/A for the quotient space X/ ≈, where
the classes of ≈ are A and the singletons {x} for all x ∈ X \A. This formalizes
the “shrinking of A to a single point” mentioned above.

More generally, if (Ai)i∈I is a collection of disjoint subspaces, the notation
X/(Ai)i∈I is used, with the expected meaning (each Ai is shrunk to a point).

It is not hard to see, even rigorously, that [0, 1]/{0, 1} ∼= S1. Here are
examples requiring more of mental gymnastics:

Exercise 6.2. Substantiate, at least on an intuitive level, the following home-
omorphisms:

(a) (Sn × [0, 1])/(Sn × {0}) ∼= Bn+1.
(b) Bn/Sn−1 ∼= Sn.
(c) [0, 1]2/≈ ∼= S1 × S1, where ≈ is given by the following identification of

the sides of the square:

a

a

b b

The picture means that each point of an arrow labeled a is to be identified with
the corresponding point of the other a-arrow, and similarly for the b-arrows
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(so, in particular, all four corners are glued together). This is a well-known
construction of the torus.

The following identification of the sides of a triangle leads to a mind-boggling
space called the dunce hat, with properties similar to those of Bing’s house.
The dunce hat can be made in R3, even from cloth, for example, but it is quite
hard to picture mentally.

a

a
a

We should warn that if a quotient space is made in an irresponsible manner,
we can obtain a badly-behaved topology even if we start with a nice space. For
example, the quotient R2/B2 can be shown to be homeomorphic to R2, but
R2/(intB2) is not even Hausdorff. Generally speaking, under normal circum-
stances, only closed subspaces should be shrunk to a point, but even that does
not always guarantee good behavior.

If A is a closed subspace ofX that is contractible, examples suggest thatX/A
should be homotopy equivalent to X (why not homeomorphic?). This, unfor-
tunately, is not true in general, but it works for cases one is likely to encounter.
Technically, an assumption guaranteeing that X/A ' X for contractible A is
called the homotopy extension property of the pair (X,A). We will not define it
here; it suffices to say, with a forward reference to the next section, that if X is
a simplicial or CW complex and A is a contractible subcomplex, then X/A ' X
holds.

Join. While various products and quotients are encountered in many mathe-
matical structures, joins appear more specific to topology (joins in lattices or in
database theory are similar to joins in topology only by name). The join X ∗Y
of spaces X and Y is obtained by taking the Cartesian product X × Y , “fat-
tening” it by another product with [0, 1], and finally, collapsing the initial and
final slices X×Y ×{0} and X×Y ×{1}: in the former, each copy X×{y}×{0}
of X is collapsed to a point, while in the latter, the copies {x} × Y × {1} of Y
are collapsed. After these collapses, X×Y ×{0} becomes homeomorphic to Y ,
and X × Y × {1} to X. Here is an illustration with X and Y segments:

∗ = ∼=

X Y t = 0 t = 1

The formal definition goes as follows.

Definition 6.3. The join X ∗ Y of spaces X and Y is the quotient space (X ×
Y × [0, 1])/≈, where ≈ is given by (x, y, 0) ≈ (x′, y, 0) for all x, x′ ∈ X and all
y ∈ Y (“for t = 0, x does not matter”) and (x, y, 1) ≈ (x, y′, 1) for all x ∈ X
and all y, y′ ∈ Y (“for t = 1, y does not matter”).
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We observe that X ∗ Y contains the product X × Y , e.g., as the “middle
slice” X×Y ×{1

2}. The join may look more complicated than the product, but
in many respects it is better behaved; some of the advantages will be mentioned
later.

There is a nice geometric interpretation of the join. Namely, suppose that X
is represented as a bounded subspace of some Rm, and Y of some Rn. We then
further insert Rm and Rn into Rm+n+1 as skew affine subspaces, concretely
{x ∈ Rm+n+1 : xn+1 = · · · = xn+m+1 = 0} and {y ∈ Rm+n+1 : x1 = · · · =
xn = 0, xn+1 = 1} (so for m = n = 1 we have two skew lines in R3). With this
placement of X and Y in Rm+n+1 it can be verified that X ∗Y is homeomorphic
to the subspace

⋃
x∈X,y∈Y xy of Rm+n+1, where xy is the segment connecting x

and y. The point of placing X and Y into skew affine subspaces is to guarantee
that two segments xy and x′y′, x, x′ ∈ X, y, y′ ∈ Y never intersect, except
possibly at one of the endpoints.

The join is commutative up to homeomorphism, but unfortunately not asso-
ciative in general (although some of the literature claims so). For our purposes,
though, it is amply sufficient that it is associative (up to homeomorphism of
course) on the class of all compact Hausdorff spaces.

Cone and suspension. These are two popular special case of the join.
The cone of a space X is CX := X ∗ {p}, the join with a one-point space.
Geometrically, the cone is the union of all segments connecting the points of X
to a new point. We can also write CX as another quotient space, simpler than
the one for a general join: (X×[0, 1])/(X×{1}).

One of the simple ways of proving contractibility of a space Y is to show
that Y is the cone of another space.

The join with a two-point space, X ∗ S0, is called the suspension of X
and denoted by SX. It can be interpreted as erecting a double cone over X.
(Readers who find S0 as two-point space puzzling may want to think it over—S0

is used quite frequently.)

Exercise 6.4. (a) Show SSn ∼= Sn+1.
(b) Prove Sk ∗ S` ∼= Sk+`+1. Hint: use (a) and associativity of the join.

While the cone operation makes every space homotopically trivial, i.e.,
contractible, the suspension more or less preserves the topological complex-
ity, only pushing it one dimension higher. Very roughly speaking, it converts
“k-dimensional holes” in X into “(k + 1)-dimensional holes” in SX.

6.1 Note on categorical definitions

The topology of the quotient X/≈ can also be defined as the finest one for
which the quotient map q : X → X/≈ is continuous. Here a topology O′ is finer
than O if O ⊆ O′. In the definition earlier we described explicitly what the
open sets are, but the formulation just given is equivalent.

The definition of the product topology on the Cartesian product X :=∏
i∈I Xi in Section 3 can be rephrased similarly using the projection maps

pi : X → Xi, where pi maps an |I|-tuple (xi)i∈I ∈ X to its ith component
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xi. Namely, the product topology is the coarsest topology on X that makes all
of the pi continuous (a topology O is coarser than O′ if O ⊆ O′) of open sets
is inclusion-minimal among all topologies making the pi continuous).

This is not only equivalent to the definition of Section 3, but it also explains
one possibly ad-hoc looking aspect of that definition, namely, why we admit
only finitely many nontrivial factors in the open rectangles.

Exercise 6.5. Check the equivalence of both of the definitions of the product
topology.

Disjoint union. There is another, rather simple operation, which can be
defined in a similar way. Namely, given a collection, finite or infinite, (Xi)i∈I of
topological spaces, their disjoint union (or sometimes disjoint sum)

∐
i∈I Xi

corresponds to the intuitive notion of putting disjoint copies of the Xi “side by
side.”

The ground set of
∐
i∈I Xi is the disjoint union of the sets Xi. Concretely,

we may take
⋃
i∈I Xi×{i}, so that the elements of Xi are marked with i. This

time we have the inclusion maps ιi : Xi →
∐
i∈I Xi, and the topology of the

disjoint union is the finest one making all the ιi continuous. Of course, it is
not hard to describe the open sets explicitly as well: a set in

∐
i∈I Xi is open

exactly if its intersection with each Xi is open.

The categorical approach. Here “categorical” is not related to Immanuel
Kant but rather to the mathematical field of category theory, which studies
general abstract structures in all mathematics.

Why do we feel obliged to say something about categories in an introductory
text on topology? First, category theory was invented by algebraic topologists,
it has greatly helped cleaning up some unmanageably complicated, and thus
potentially wrong, proofs in topology, facilitated much progress in the field, and
it is heavily used in topology both as a language and as a tool.

Second, even if one does not intend to learn much about category theory,
there are several basic principles definitely worth knowing about. In almost
any field of mathematics or computer science, even a little bit of category-
theory thinking can prevent one from re-inventing the wheel, or from riding on
octagonal wheels where round ones are available.

Objects and morphisms. One of the starting points of category theory is
that mappings between mathematical objects deserve at least equal status as
the objects. Moreover, knowing all mappings into an object and from it often
gives enough information about the object, so that we need not consider the
object’s internal structure at all.

For example, in the category Top of topological spaces, we take all topo-
logical spaces as objects. We do not consider just any old mappings between
spaces, but the “right” structural maps, namely, all continuous maps.

In category theory, the maps of the “right kind” for a given type of objects
are called morphisms. When studying some type of mathematical objects,
what the morphisms are is not God-given, but it is to be user-defined. But
for many standard cases the morphisms are clear. For the category Set of sets
they are arbitrary mappings, for the category Grp of groups they are group
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homomorphisms, and for the category Gra of (simple, undirected) graphs they
are graph homomorphisms.

Exercise 6.6. Recall as many mathematical structures as you can, and think
what morphisms between them should be.

The next conceptual step in creating the category Top of topological spaces
is to forget what are the ground set and open sets of each space, and where indi-
vidual points are sent by the various maps. What is left? Well, a (tremendously
infinite) directed multigraph. The spaces are the vertices, and each morphism
(continuous map) f : X → Y gives rise to one arrow from X to Y . Importantly,
information about composition of morphisms is also retained: given two arrows
f : X → Y and g : Y → Z, we know which of the arrows X → Z corresponds
to the composition gf .

In general, a category is just that, a directed multigraph with an associative
composition rule (or, if you prefer an algebraic language, a partial monoid). In
more detail, a category C consists of the following data:

• A class3 Ob(C) of objects.

• For every two objects X,Y ∈ Ob(C), a class Hom(X,Y ) of morphisms
from X to Y (with Hom(X,Y ) ∩ Hom(U, V ) = ∅ whenever (X,Y ) 6=
(U, V )).

• For every X ∈ Ob(C), a unique identity morphism idX ∈ Hom(X,X).

• A composition law assigning to every f ∈ Hom(X,Y ) and g ∈ Hom(Y,Z)
an h ∈ Hom(X,Z), written as h = gf .

The composition is required to be associative, f(gh) = (fg)h, and satisfies
f idX = idY f = f for every f ∈ Hom(X,Y ).

Surprisingly many properties and constructions can be expressed solely in
terms of objects and morphisms. Take the concepts of injectivity, surjectivity,
and isomorphism. In category theory, the counterparts are:

• A monomorphism, which is a left-cancellable morphism f : X → Y , in
the sense that fg1 = fg2 implies g1 = g2 for any two morphisms into X.

• An epimorphism is a right-cancellable morphism f : X → Y , with g1f =
g2f implying g1 = g2.

• An isomorphism is a morphism f : X → Y that has a two-sided inverse;
i.e., g : Y → X with fg = idY and gf = idX . An isomorphism is is
both a monomorphism and an epimorphism, but these conditions are not
sufficient in general.

3We cannot say set because of Russell’s paradox. For example, if every set is an object
of C, we cannot form the set of all sets, as Russell tells us. This is why the word class is
used. Informally, a class is “like a set but possibly bigger”; for a mathematical foundation for
working with classes see, e.g., [AHS06]. Categories whose class of objects is a set are called
small.
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Exercise 6.7. (a) Check that in the category Set, monomorphisms and epimor-
phisms correspond to injective and surjective maps, respectively.

(b) Consider the category Haus of all Hausdorff topological spaces with con-
tinuous maps as morphisms. Let us consider the rationals Q as a subspace of R
with the standard topology, and let f : Q→ R be the standard inclusion. Is f an
epimorphism? Can you characterize what epimorphisms are in this category?

Products revisited. Products, for example, have a general categorical
definition. Given objects X and Y in a category C, this definition identifies the
product of X and Y , if one exists, up to isomorphism.

Namely, the productX×Y in C is an object P plus morphisms pX : P → X
and pY : P → Y with the following universal property : whenever P ′ is an object
and p′X : P ′ → P and p′Y : P ′ → Y are morphisms, there is a unique morphism
f : P ′ → P with p′X = pXf and p′Y = pY f . Or, expressed in a way category
theorists and topologist prefer, there is a unique f making the following diagram
commutative:

P ′

p′X

~~

f
��

p′Y

  

X P
pXoo

pY // Y

It is easy to see that such a P , if it exists, is unique up to isomorphism. The
definition for the product of arbitrarily many objects is entirely analogous. As
we have already indicated, not every category has products, but many do.

This definition may very well look nonintuitive and difficult to work with,
and certainly it takes time and training to get used to that kind of reasoning.
For specific categories, it may take some work to figure out what the product
“looks like.” On the other hand, the categorical approach maintains that once
we know that a product exist, the defining property above is the only one we
really need for working with it, and that we may never need to figure out the
specific structure, especially if we are working in some less common category.

Exercise 6.8. (a) Check that the product of topological spaces satisfies the
categorical definition.

(b) Take Gra, graphs with graph homomorphisms. Describe the categorical
product (for two graphs) concretely, in terms of vertices and edges.

Limits. The product construction is a special case of categorical limit. That
definition tells us what is the limit of a given (commutative) diagram in a given
category C. Since we do not want to define diagrams in general, let us give just
an example.

We consider three objects A,X, Y with morphisms f : X → A and g : Y →
A. The limit of the diagram

X

f
��

Y
g
// A
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is an object T plus morphisms pX : T → X and pY : T → Y making the following
digram commutative

T

pY
��

pX //

pA

  

X

f
��

Y
g
// A

and satisfying the universality property: whenever T ′ and p′A, p′X , p′Y is another
completion to a commutative diagram, there is a unique morphism u : T ′ → T
such that p′A = pAu, p′X = pXu, and p′Y = pY u.

For this particular diagram, the limit is called the pullback.
The same definition of a limit works for any commutative diagram in C; the

morphisms pX go from the limit object to every object in the diagram. The
product is the special case of a limit where the diagram has just objects and no
morphisms.

Exercise 6.9. Work out what the pullback looks like in Set.

Opposite category and conotions. For every category C we can immedi-
ately form a new category Cop by reversing all arrows. This, of course, would be
highly problematic for actual mappings, since how should one invert a mapping
that is not bijective, but it is no problem for a category theorist, who regards
morphisms as abstract arrows.

For every categorical notion, we can form a “dual” notion by reversing all
arrows. From product we get coproduct, which for topological spaces turns
out to be just the disjoint union. (Here and in many other categories, the
coproduct is rather dull, but for example, in the groups category Grp it is
the free product of groups.) From limit we get colimit, etc., the prefix co-
expressing the dual nature of the notion. (This terminology has some common
sense exceptions, such as epimorphism instead of comonomorphism and pushout
instead of copullback. But physicists may have missed an opportunity here with
their bra and ket terminology.)

Category theory has a number of general constructions and theorems, and
many concrete constructions get simplified by observing that they are but spe-
cial realizations of these general abstract results. In topological and other
proofs, references to such general categorical considerations are often (proudly)
prefixed by the phrase “by abstract nonsense it follows that. . . .”

7 Simplicial complexes and relatives

7.1 Simplicial complexes and simplicial maps

We have already touched upon the question, how can interesting topological
spaces be described in a finite way? Simplicial complexes provide the simplest
systematic way. Real topologists often frown on them and consider them old-
fashioned as a theoretical tool and not economical enough compared to other
tools. These are perfectly valid concerns, but for computer-science and combi-
natorial uses, simplicial complexes may often be the winners because of their
combinatorial simplicity.
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As a combinatorial object, a simplicial complex is simply a hereditary system
of finite sets:

Definition 7.1. A simplicial complex is a system K of finite subsets of
a (possibly infinite) set V , with the property that if F ∈ K and F ′ ⊂ F ,
then F ′ ∈ K as well. The set V , called the vertex set of K and denoted by
V (K), is the union of all sets of K.

In rare cases, it may be useful to also admit, unlike in the definition above,
points of V that do not belong to any F ∈ K.

The definition implies, in particular, that ∅ ∈ K whenever K 6= ∅; in some
of the literature, though, the empty set is not regarded as a member of K.

The sets in K are called the simplices of K. The vertex set is sometimes
also called the ground set.

There is some formal ambiguity in using the term vertex of a simplicial
complex: it may mean a point v of the vertex set V or a singleton set {v},
which is a simplex of K. But in practice this does not lead to confusion.

A subcomplex of a simplicial complex K is a simplicial complex L ⊆ K.
We say that L is an induced subcomplex of K if L = {F ∈ K : F ⊆ V (L)},
i.e., every simplex of K living on the vertex set of L also belongs to L.

The dimension of a simplicial complex K is dimK := supF∈K(|F | − 1).
The “−1” in this definition is logical, of course, since, e.g., a three-point F ∈ K
will correspond to a geometric triangle, which is 2-dimensional, but it is an
eternal source of potential confusion.

A useful example to keep in mind are 1-dimensional simplicial complexes,
which can be regarded as simple graphs: the 0-dimensional simplices correspond
to vertices and 1-dimensional ones to edges. Historically, the study of graphs
has for some time been regarded as a part of topology.

Finite and infinite simplicial complexes. A simplicial complex is finite if
it has a finite ground set. By definition, a simplicial complex can also be infinite,
for a good reason: as we will see, finite simplicial complexes can describe only
compact subspaces of some Rn, which excludes spaces like (0, 1) or Rn itself.

On the other hand, only finite simplicial complexes can naturally serve
as inputs to algorithms, which was one of our main motivations for consid-
ering simplicial complexes. Moreover, for many purposes, including most of
computer-science related applications, finite simplicial complexes suffice. In-
finite simplicial complexes originally served as a theoretical tool for building
algebraic topology, but in that role they have been replaced by other, more
modern tools.

We will restrict ourselves to finite simplicial complexes, except for a couple
of remarks.

Simplicial maps. By now the reader may be impatient to see what is the
topological space described by a simplicial complex, but before explaining that,
we will still want to say what are the appropriate maps (morphisms in the
categorical jargon newly introduced above) between simplicial complexes.
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Definition 7.2. A simplicial map of a simplicial complex K into a simplicial
complex L is a map s : V (K) → V (L) of the vertex sets that maps simplices
to simplices, i.e., s(F ) ∈ L for every F ∈ K. An isomorphism of simplicial
complexes is a bijective simplicial map with simplicial inverse.

Isomorphism, similar to many other mathematical structures, means that
the simplicial complexes have identical structure and differ only by renaming
vertices.

We note that simplicial maps for 1-dimensional simplicial complexes are not
the same as graph homomorphisms, since unlike homomorphisms, they allow
for edges to be collapsed to vertices. But isomorphism is the same notion for
graphs and 1-dimensional simplicial complexes.

7.2 Geometric realization and polyhedra

Now we want to say what the topological space described by a (finite) simplicial
complex K is.

First we recall that a (geometric) simplex is the convex hull of a set of
affinely independent points4 in some Rn; simplices of dimension 0, 1, 2, 3 are
points, segments, triangles, and tetrahedra, respectively.

k = 3
k = 1

k = 2
k = 0

The faces of a simplex σ are the convex hulls of subsets of the vertex set.
For example, a tetrahedron has 16 faces: itself, 4 triangles, 6 edges, 4 vertices,
and the empty set. The faces of dimension one lower than σ are called the
facets of σ; a k-dimensional simplex has k + 1 facets.

Definition 7.3. A geometric simplicial complex is a collection ∆ of geo-
metric simplices of various dimensions satisfying the following two conditions:

(i) (Hereditary) If σ ∈ ∆ and σ′ is a face of σ, then σ′ ∈ ∆.

(ii) (Intersecting in faces) For every σ, σ′ ∈ ∆, σ ∩ σ′ is a face of both σ
and σ′.

Somewhat informally, the simplices in a geometric simplicial complex may
be glued only along common faces:

GOOD BAD

4Points p0, p1, . . . , pk ∈ Rn (k+1 of them) are called affinely independent if the k vectors
p1 − p0, . . . , pk − p0 are linearly independent.
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A geometric simplicial complex ∆ defines a simplicial complex K = K(∆)
in the sense of Definition 7.1 in an obvious way: we set V (K) = V (∆), the
latter denoting the set of all vertices of the simplices in ∆, and the simplices of
K are vertex sets of the simplices in ∆.

Now the geometric simplicial complex ∆ is called a geometric realization
of this K, and also of any simplicial complex K ′ isomorphic to K.

Proposition 7.4. Every finite simplicial complex K has a geometric realiza-
tion; if k = dimK then the realization can be taken in R2k+1.

Sketch of proof. A geometric realization ofK in some Rn is fully specified by the
placement of the vertex set. Thus, we seek an (injective) mapping ρ : V (K)→
R2k+1.

The condition we need is that, for every two simplices F,G ∈ K, conv(ρ(F ))∩
conv(ρ(G)) = conv ρ(F ∩ G), where conv(.) denotes the convex hull. A suffi-
cient condition for this is that ρ(F ∪ G) be affinely independent, since then
conv ρ(F ∪ G) is a geometric simplex, both conv ρ(F ) and conv ρ(G) are faces
of it, and they intersect in the (possibly empty) face conv ρ(F ∩ G) as they
should.5

So it suffices to show that for every n there is an n-point set in R2k+1

in which every 2k + 2 points are affinely independent (because 2k + 2 is the
maximum possible size of F ∪G). This we leave as an exercise for the readers
not familiar with the trick.

Exercise 7.5. Verify that every d + 1 distinct points on the moment curve
{(t, t2, . . . , td) : t ∈ R} ⊂ Rd are affinely independent. Hint: a polynomial of
degree at most d has at most d roots.

Now, finally, we define the space associated with a simplicial complex.

Definition 7.6. Let ∆ be a geometric simplicial complex, and suppose that all
simplices of ∆ are contained in Rn. The polyhedron of ∆ is the topological
subspace of Rn induced by the union of all simplices of ∆. A polyhedron of a
finite simplicial complex K is the polyhedron of a geometric realization of K.

The polyhedron of K is not defined uniquely, but as we will soon see, all
polyhedra of K are homeomorphic. The polyhedron of K is usually denoted
by |K|, but often one writes K for the polyhedron as well, and one has to
distinguish from the context whether the combinatorial object or the geometric
one is meant.

Remark on infinite simplicial complexes. As we have mentioned above,
defining the polyhedron of an infinite simplicial complex is somewhat more
demanding. An immediate trouble is that all of the geometric simplices may
not fit in the same Rn, for example if the dimension is unbounded.

The solution uses quotient spaces. First we assign a k-dimensional geometric
simplex ρ(F ) to every k-dimensional F ∈ K, possibly each ρ(F ) in a different

5Obvious as it may seem, this fact still needs a little proof, which we allow ourselves to
omit. Here we are basically asserting that the set of all faces of a geometric simplex constitutes
a geometric simplicial complex.
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Euclidean space. Then we introduce a suitable equivalence relation ≈ on the
disjoint union of these simplices, which amounts to identifying, for every G ⊂ F ,
the simplex ρ(G) with the appropriate face of the simplex ρ(F ) (some care is
needed in saying how exactly these identifications are performed; it is helpful
to fix a linear ordering of the vertices of K first). Finally, |K| is defined as the
quotient of the disjoint union by ≈.

How simplicial maps yield continuous maps. Let K and L be a simplicial
complexes, and let s : V (K)→ V (L) be a simplicial map. There is a canonical
continuous map |s| : |K| → |L| of the polyhedra associated to s.

One often says that |s| is a linear extension of s on the simplices of |K|
(although, strictly speaking, it is an affine extension). To define |s| precisely,
we need to recall that if σ is a geometric simplex with vertices v0, . . . , vk, then
every point x ∈ σ can be uniquely written as x =

∑k
i=0 tivi, where t0, . . . , tk ≥ 0

and
∑k

i=0 ti = 1. Here (t0, . . . , tk) is called the barycentric coordinates of x; ti
is the height of x above the facet of σ not containing vi, scaled so that vi has
height 1:

x

v0 v1

v21

t2

0

So let us fix geometric realizations ∆ and ∆′ of K and L, respectively, and
regard s as a map V (∆) → V (∆′). For a point x in the polyhedron of ∆
we choose a lowest-dimensional simplex σ containing x (such a σ is called the
support of x in ∆ and it is determined uniquely). We have x =

∑k
i=0 tivi,

where v0, . . . , vk are the vertices of σ, and we set

|s|(x) :=
k∑
i=0

tis(vi).

The sum is well defined because, by the definition of a simplicial map, {s(vi) :
i = 0, 1, . . . , k} is the vertex set of some simplex in ∆′.

Note that, since simplicial maps are allowed to map higher-dimensional
simplices to lower-dimensional ones, the image of a k-dimensional simplex under
|s| may have any dimension ` ≤ k.

One needs to check that |s| is continuous when we go from the interior of
some simplex towards a point of a facet, but this is straightforward.

It is also not hard to see that if s is injective, then so is |s|, and if s is
an isomorphism, then |s| is a homeomorphism. From this we immediately
get that isomorphic simplicial complexes have homeomorphic polyhedra. In
particular, the polyhedron of a simplicial complex is uniquely defined, upto a
homeomorphism.

Triangulations. A simplicial complex K is called a triangulation of a space
X if X ∼= |K|. Naturally not all topological spaces possess a triangulation:
some for reasons of local pathology, such as not being Hausdorff, but some

29



others are non-triangulable in spite of being locally very nice. The perhaps
most striking example is a 4-dimensional compact manifold (the Freedman E8
manifold ; manifolds will be introduced later).

The simplest triangulation of the sphere Sn−1 is the boundary of an n-
dimensional simplex, with n simplices of dimension n− 1 but 2n − 1 simplices
in total. Combinatorially, denoting the vertices by 1, 2, . . . , n, the simplicial
complex is {F ⊆ [n] : F 6= [n]}. Another, more symmetric triangulation will be
mentioned soon.

It can be shown that every triangulation of the torus must have at least
7 vertices and at least 14 triangles, and here is one attaining these minimal
numbers:

7 3 4 7

1

2

7 3 4 7

5

6

2

1

The triangulation is drawn as a square, but the sides of the square should be
identified as in Exercise 6.2(c)—this is also indicated by the numbering of the
vertices.

It may be worthwhile if the reader draws her own triangulation of a torus,
trying to get a small number of triangles, and notes the pitfalls in such an
enterprise.

The study of triangulations is a major and fast-growing area, but here we
leave it aside, referring to [DLRS10].

Simplicial joins. The join operation can also be done on the level of simplicial
complexes in a straightforward way.

Let K,L be simplicial complexes, and first assume V (K)∩V (L) = ∅. Then
the simplicial join K ∗ L is {F ∪G : F ∈ K,G ∈ L}, on the vertex set V (K) ∪
V (L). If the vertex sets are not disjoint, we must first replace L, say, with an
isomorphic simplicial complex whose vertex set is disjoint from V (K).

It is not hard to show that |K ∗L| ∼= |K| ∗ |L|. The main step is in checking
that the join of a geometric k-simplex and `-simplex is a (k + ` + 1)-simplex,
which is easy using the interpretation of join with skew affine subspaces.

We saw (Exercise 6.4) that Sn ∼= (S0)∗(n+1), the (n + 1)-fold join of the 0-
dimensional sphere, or two-point space. If we do this join simplicially, we obtain
the following triangulation of Sn: the vertex set is {a1, b1, . . . , an+1, bn+1}, and
a set of vertices forms a simplex exactly if it does not contain a pair {ai, bi} for
any i.

The geometric realization is the boundary of the crosspolytope, a regular
octahedron for n = 2 (just identify ai with ei, the ith vector of the standard
basis of Rn+1, and bi with −ei). One often speaks of the octahedral sphere.
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7.3 Combinatorial examples

A great feature of simplicial complexes is that they give a way of assigning
a topological space to all kinds of combinatorial objects: whenever we have
a system of finite sets, we can close it under taking subsets, if it is not yet
hereditary by itself, and we have a simplicial complex. Sometimes this topology
connection is fruitful, sometimes not so much, but definitely there is something
to study. We list several cases where this approach has been used with great
success; many others can be found in the literature.

Clique (or flag) complexes of graphs. Given a (simple, undirected)
graphG, we define a simplicial complex C = C(G) on the vertex set V (G) whose
simplices are sets of vertices forming a clique (every two vertices connected by
an edge). This C has several common names: clique complex, flag complex,
Whitney complex, and probably others. A similar complex I(G) whose simplices
are independent sets in G is the independence complex of G.

Clique complexes, besides constituting an interesting subclass of simplicial
complexes, carry lot of information about the underlying graph in their topol-
ogy. They feature, for example, in a proof by Meshulam [Mes01] of a general-
ization of a lovely theorem of Aharoni and Haxell [AH00], a Hall-type theorem
for hypergraphs. The Aharoni–Haxell theorem was later used for proving a
tantalizing combinatorial conjecture known as the tripartite Ryser conjecture
[Aha01]. In computational geometry one finds a special case of the clique com-
plex as the Vietoris–Rips complex.

Order complex. Let (X,�) be a partially ordered set. Its order complex
lives on the vertex set X and the simplices correspond to chains, i.e., subsets
of X linearly ordered by �. (Equivalently, this is the clique complex of the
comparability graph of (X,�).)

There is an extensive topological theory of order complexes; see, e.g., [Bjö95,
Wac07]. For example, there is a famous fixed-point theorem for posets of Ba-
clawski and Björner, which has a combinatorial statement but only topological
proofs. Deep connections were found to questions in algebra and Lie theory.

Nerve. Let F = {F1, F2, . . . , Fn} be a family of sets, so far arbitrary. The
nerve N (F) of F is the simplicial complex with vertex set [n], the set indices,
and simplices corresponding to nonempty intersections:

N (F) =
{
I ⊆ [n] :

⋂
i∈I

Fi 6= ∅
}
.

Here is a remarkable theorem.

Theorem 7.7 (Nerve theorem). Let K1,K2, . . . ,Kn be subcomplexes of a finite
simplicial complex K that together cover K (each simplex of K is in at least
one Ki). Suppose that the intersection

⋂
i∈J |Ki| is empty or contractible for

each nonempty J ⊆ [n]. Then the (polyhedron of the) nerve of {|K1|, . . . , |Kn|}
is homotopy equivalent to |K|.

This often allows one to simplify a simplicial complex drastically while keep-
ing the homotopy type.
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There are many variations of the nerve theorem in the literature. For exam-
ple, a useful geometric setting where a nerve theorem holds is when F1, . . . , Fn
are closed convex sets in a Euclidean space. This result, and various gener-
alizations, are closely related to Helly-type theorems in geometry (see, e.g.,
[CdVGG12] for recent progress).

The usual proofs of nerve theorems use somewhat more machinery than we
are going to develop here, so we refer, e.g., to Björner [Bjö03] for a relatively
simple and elementary proof which also yields a powerful generalization.

7.4 Simplicial sets and cell complexes

In geometric simplicial complexes, the simplices can be glued only in a some-
what rigid face-to-face manner. For example, we are not allowed to glue two
triangles by two sides without actually making them identical, although geomet-
rically, such a construction makes perfect sense. Other descriptions of spaces
used in topology allow for more flexible gluing, and some of them use building
blocks other than simplices.

Cell (or CW) complexes. This is perhaps the most popular way in topology,
but it does not provide a finite description of a space, so we mention it only
briefly.

The building blocks here are topological balls of various dimensions, called
cells, which can be thought of as being completely “flexible” and which can be
glued together in an almost arbitrary continuous fashion. Essentially the only
condition is that each n-dimensional cell has to be attached along its boundary
to the (n−1)-skeleton of the space, i.e., to the part that has already been built,
inductively, from lower-dimensional cells.

Here are some pictorial examples:

The left one is a B2 made of a 0-cell (point), 1-cell, and 2-cell. The middle
shows an S2 made from one 0-cell and one 2-cell (whose boundary is shrunk
to a point), and the right picture is the torus from a 0-cell, two 1-cells, and
a single 2-cell. It is also perfectly legal to glue something to the middle of an
edge, for example:

We refer to standard textbooks for a formal definition of a cell complex.

Simplicial sets. Although the name may suggest the opposite, simplicial
sets are more complicated than simplicial complexes.
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Intuitively, a simplicial set, similar to simplicial complexes, is made by gluing
simplices of various dimensions together. The gluing is still face-to-face but
much more permissive than for simplicial complexes. For example, one may
have several 1-dimensional simplices connecting the same pair of vertices, a 1-
simplex forming a loop, two edges of a 2-simplex identified to create a cone, or
the boundary of a 2-simplex all contracted to a single vertex, forming an S2.

The features mentioned so far are also shared by Delta-complexes, as used, e.g.,
in Hatcher [Hat01]. They ensure both the possibility of a finite combinatorial
description (assuming finitely many simplices), and also considerable economy
of description, at least in small cases: the torus can be described as a simplicial
set with two triangles, as opposed to the minimum of 14 for simplicial complexes,
or Sn needs only one 0-dimensional and one n-dimensional simplex, as opposed
to at least 2n simplices for a simplicial complex.

There is still another feature of simplicial sets, which looks peculiar at first
sight: degenerate simplices. If σ is a simplex in a simplicial set X, say two-
dimensional with vertices v0, v1, v2, then X also contains the degenerate sim-
plex, denoted by s0σ, which we can think of as simplex that geometrically
coincides with σ but in which the vertex v0 has been duplicated (and it is actu-
ally considered 3-dimensional). Not only that, X also has to contain s1σ, s2σ,
s0s0σ, and so on, degeneracies of σ of all possible orders.

We thus see that every nonempty simplicial set must have infinitely many
simplices, which seems to ruin the purpose of finite description. Fear not: the
degenerate simplices can be represented implicitly, since, as it turns out, every
degenerate simplex can be specified by some nondegenerate starting simplex
and a canonical sequence of the degeneracy (“vertex-duplicating” operators)
si. So the degenerate simplices need not be stored explicitly. If a simplicial set
has finitely many nondegenerate simplices, then it has a (quite efficient) finite
encoding; this holds, in particular, when a finite simplicial complex is converted
to a simplicial set.

After this misty introduction, what about a formal definition of a simplicial
set? The preferred one in modern texts goes as follows: A simplicial set is
a contravariant functor ∆ → Set, where ∆ denotes the category of nonempty
finite linearly ordered sets, with (non-strictly) monotone maps as morphisms.

This kind of definition may be one of the reasons why people find modern
algebraic topology inaccessible. Even if one knew what a contravariant functor
is (which will be mentioned here later on), it seems rather hard without long
training to make any intuitive sense of this definition, and see how it may
correspond to the things discussed informally above (of course, there may be
exceptions among our readers).

Fortunately, there is a friendly pictorial treatment of simplicial sets by Fried-
man [Fri12], where one can also find a still rigorous but more descriptive refor-
mulation of the above concise definition.
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This section can be taken as an advertisement of simplicial sets, which, un-
like simplicial complexes, seem to remain almost unknown in computer science.
One of their remarkable uses is theoretical.

According to a theory worked out mainly by Kan, using sufficiently rich
(necessarily infinite) simplicial sets, one can capture all homotopy classes of
continuous maps between spaces by simplicial maps among the corresponding
simplicial sets, similarly for homotopy classes of homotopies, etc. In this way,
“continuous” homotopy theory can be imitated purely discretely in the category
of simplicial sets with simplicial maps, and these ideas also allow one to do
homotopy theory in, say, algebraic categories with no notion of continuity.

Simplicial sets do not appear outside topology with the spontaneity of
simplicial complexes, yet they have also found impressive algorithmic uses.
They constitute the main data structure in algorithms for computing homo-
topy groups or homotopy classes of continuous maps. We refer to [RS12] for
nice lecture notes on this subject and to [ČKM+14] for a sample of such algo-
rithms.

8 Non-embeddability

One of the first questions addressed in basic graph theory is, which graphs are
planar? A planar graph is one that can be drawn in the plane without edge
crossings. In topological terms, we have a 1-dimensional simplicial complex G
and we ask whether its polyhedron |G| can be embedded in R2.

In general, if X and Y are topological spaces, an embedding of X in Y is
a mapping f : X → Y that is a homeomorphism of X with the image f(X). In
other words, we are looking for a subspace of Y homeomorphic to X.

Let us remark that if X is compact Hausdorff, as is the case for polyhedra
of finite simplicial complexes and for finite graphs in particular, then we only
need to look for an injective continuous map X → Y ; the inverse is continuous
automatically.

Graph theory has a number of very satisfactory answers to the question
above. One of them is Kuratowski’s theorem, asserting that a graph is planar
if and only if it does not contain a subdivision of K3,3 or K5, which are thus
the basic nonplanar graphs:

The planarity question has obvious generalizations, where we consider higher-
dimensional simplicial complexes K and we ask whether they embed in Rd for
some given d. (Of course, one can be even much broader and go beyond Eu-
clidean spaces as targets, etc.) One of the classical facts very often mentioned
when discussing 2-dimensional surfaces is that while the torus, whose quotient-
space construction is recalled below on the left, obviously embeds in R3, neither
the Klein bottle (middle picture) nor the projective plane (right) do.
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Various cases of the embeddability question has been an important topic in
topology for many decades, and lots of very interesting partial results are known.
However, it is clear that Kuratowski’s theorem is a great positive exception—
there cannot be any comparably conclusive results about embeddability of k-
dimensional simplicial complexes in Rd for any k ≥ 2. In particular, it is
known that the algorithmic question, does a given finite 4-dimensional simplicial
complex embed in R5, is undecidable, and so there is no hope at reasonable
characterization theorems.

There is another point which should be stressed before we leave this general
introduction. For planar graphs, a remarkable theorem of Fáry tells us that
every planar graph has a straight-edge planar drawing, or in other words, that
every 1-dimensional simplicial complex embeddable in R2 also has a geometric
realization in R2, in which the simplices are straight.

For simplicial complexes of dimension 2 and higher, these two notions (em-
beddability in Rd and having a geometric realization in Rd), are completely
different in general. Here we will talk exclusively about (topological) embed-
dability.

In the rest of the section we want to demonstrate a single nonembeddability
result, where we show an interesting general method, as well as some of the
notions and tools introduced earlier in action.

Van Kampen–Flores complexes. We saw in Proposition 7.4 that every
k-dimensional finite simplicial complex K embeds in R2k+1. Here we will prove
a complementary and classical result.

Theorem 8.1 (Van Kampen; Flores). For every k = 1, 2, . . ., there are k-
dimensional finite simplicial complexes that cannot be embedded in R2k.

Thus, the bound of 2k+1 of Proposition 7.4 cannot be improved in general.
We can also see that the question of embeddability of a k-dimensional simplicial
complex in Rd is nontrivial in general for k ≤ d ≤ 2k.

Let D3 denote the simplicial complex with three isolated vertices. The
complex for which we prove non-embeddability in R2k is the (k + 1)-fold join

D
∗(k+1)
3 . More graphically, we think of the vertex set of D

∗(k+1)
3 as k + 1 rows

with 3 vertices each, and the simplices are the subsets that use at most one
vertex per row. In particular, for k = 1 we get K3,3, one of the two Kuratowski
graphs.

An abstract version of antipodality. In order to prove non-embeddability
of a simplicial complex K in Rd, we consider a hypothetical continuous injective
map f : |K| → Rd, and we want to derive a contradiction. But the injectivity
condition, f(x) 6= f(y) for x 6= y, does not appear very suitable to work with
directly.

Instead, we are going to use a surprising trick of general importance: from
|K| and from Rd we construct new, more complicated-looking spaces, and the
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given f yields a mapping between these new spaces. The key advantage is
that this new mapping satisfies a more global and convenient condition: it is

antipodal in a suitable sense, and for our particular simplicial complex D
∗(k+1)
3

and for d = 2k we will be able to use the Borsuk–Ulam theorem to conclude
that the new map cannot exist.

The first thing to do is generalizing the definition of antipodal maps suitably.
The definition of antipodal maps Rm → Rn given earlier relies on the particular
map, one for each Rn, sending x to −x. The important properties are that
this map is a self-homeomorphism of Rn, and that applying it twice gives the
identity.

We thus define a Z2-space as a pair (X, ν), where X is a topological space
and ν : X → X is a homeomorphism with νν = idX . (Here Z2 refers to the
(only) two-element group {0, 1} with addition modulo 2, indicating that our
considerations could be generalized to G-spaces with G a finite group or a
topological group, but we will not pursue this direction in this introductory
treatment.) The homeomorphism ν is often called the Z2-action of the consid-
ered Z2-space.

With Z2-spaces as objects, we also want to define the corresponding maps
(morphisms). A Z2-map between Z2-spaces (X, ν) and (Y, ω) is a continuous
map f : X → Y with fν = ωf ; this is the analog of f(−x) = −f(x) for
antipodality.

Deleted product and the Gauss map. We return to the earlier setting
with an injective continuous f : |K| → Rd. From the space |K| we construct
the deleted product |K|2∆, where for an arbitrary space X we have

X2
∆ := {(x, y) : x, y ∈ X,x 6= y}.

This is a subspace of the product X ×X, and the subscript ∆ should suggest
that we delete the diagonal ∆ := {(x, x) : x ∈ X}. Moreover, we can naturally
consider X2

∆ as Z2-space, with the Z2-action (x, y) 7→ (y, x).
Based on f , we define a Z2-map f̃ : |K|2∆ → Sd−1, where the sphere on the

right is considered with the usual antipodality x 7→ −x, as follows:

f̃(x, y) :=
f(x)− f(y)

‖f(x)− f(y)‖ .

This is sometimes called the Gauss map; note that it is well defined only
because the deleted product contains only pairs with x 6= y and because f is
assumed to be injective..

We have thus arrived at the following sufficient condition for non-embeddability:

Proposition 8.2. Let K be a finite simplicial complex, and suppose that there
is no Z2-map |K|2∆ → Sd−1. Then |K| cannot be embedded in Rd.

There is no obvious reason to expect the condition to be also necessary;
after all, it is hard to imagine why every possible Z2-map should look like the
Gauss map for some embedding f . The condition indeed may not always be
necessary, but remarkably enough, for a wide range of parameters it turns out
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to be necessary. This is the statement of a celebrated theorem of Haefliger an
Weber, which asserts that, for dimK ≤ 2

3d− 1, the proposition actually holds
as equivalence: |K| embeds in Rd if and only if a Z2-map |K|2∆ → Sd−1 exists.
The proof, unlike for Proposition 8.2, is difficult and we will not say anything
more about it.

Deleted joins. The reader might reasonably expect that we will now use
Proposition 8.2 to establish the Van Kampen–Flores theorem, but the problem
with this is that the deleted product of our specific complexes is not so easy to
work with, at least by elementary means. Instead, we first derive a variant of
the proposition in which deleted products are replaced by deleted joins.

We need an analogy of the Gauss map for joins: a Z2-map from the twofold
join X∗2, with something like the diagonal deleted, into a sphere, a reasobable
guess being Sd instead of Sd−1 as before, since the join has dimension one larger
than the product. We recall that points of X∗2 are triples (x, y, t), x, y ∈ X,
t ∈ [0, 1], with appropriate identifications for t = 0 and t = 1. After some
experimenting one can arrive at the following Gauss-like map formula:

f̃(x, y, t) :=
(tf(x)− (1− t)f(y), 2t− 1)

‖(tf(x)− (1− t)f(y), 2t− 1)‖ ∈ S
d.

On the right-hand side, (tf(x) − (1 − t)f(y), 2t − 1) is a (d + 1)-component
vector with the first d components given by tf(x) − (1 − t)f(y) and the last
one by 2t− 1. The formula is well-defined unless both tf(x) = (1− t)f(y) and
2t−1 = 0, or in other words, unless f(x) = f(y) and t = 1

2 . So it is sufficient to
delete all triples (x, x, 1

2) from X∗2, which gives us a (somewhat ad-hoc) notion
of deleted join.

Some care is needed to check continuity of f̃ ; we need to see that it respects
the identifications in the definition of the join as a quotient space. Actually,
the definition of f̃ has been reverse-engineered to obey these identifications.
Finally, we can see that f̃ is a Z2-map if the Z2-action on X∗2 is given by
(x, y, t) 7→ (y, x, 1− t), a natural choice.

Simplicial deleted join. In our setting, where X = |K| is the polyhedron
of a simplicial complex, the join |K|∗2 is, as we recall, the polyhedron of the
simplicial complex K∗2. However, deleting the points (x, x, 1

2) as above destroys
this structure; look, for example, what happens if K is a segment (1-dimensional
simplex).

We will thus define a simplicial version of the deleted join, in which we
delete more points but keep a nice simplicial structure. Let K ′ and K ′′ be two
vertex-disjoint copies of K, and for a simplex F ∈ K, let us write F ′ and F ′′

for the corresponding simplices in K ′ and K ′′, respectively. Then the simplicial
deleted join of K is

K∗2∆ := {F ′ ∪G′′ : F,G ∈ K,F ∩G = ∅}.

We thus delete all joins of intersecting pairs of simplices.
The polyhedron |K∗2∆ | is again a Z2-space, with the same Z2-action as the

one for the join. Moreover, it is contained, usually strictly, in the deleted join
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of |K| as a space, as announced. Instead of a general proof, we invite the reader
to work out an example or two, to see what is going on.

Exercise 8.3. Describe/visualize the deleted join of the 3-cycle and of the 4-
cycle (understood as 1-dimensional complexes). Check that it does not contain
any points of the usual join of the form (x, x, 1

2).

By the above considerations, we thus have the following analog of Proposi-
tion 8.2 with deleted joins.

Proposition 8.4. Let K be a finite simplicial complex, and suppose that there
is no Z2-map |K∗2∆ | → Sd. Then |K| cannot be embedded in Rd.

Proof of Theorem 8.1. We need to understand the deleted join (D
∗(k+1)
3 )∗2∆ .

Exercise 8.5. (a) Work out what the simplicial deleted join of D3 is (the k = 0
case).

(b) Check that the join and deleted join commute: (K ∗ L)∗2∆
∼= K∗2∆ ∗ L∗2∆ .

Using this, check that (D
∗(k+1)
3 )∗2∆ is isomorphic to the join of k + 1 copies of

S1 (represented as 6-cycles), and hence its polyhedron is an S2k+1; see Exercise
6.4.

Now we know that the deleted join is homeomorphic to S2k+1. With some
more care, it can be verified that the homeomorphism obtained in this way is
also a Z2-map; we omit this part here, since it is not very instructive (moreover,
it can be shown that every two Z2-actions on Sn without fixed points, i.e., with
ν(x) never equal to x, are equivalent, in the sense that there is a Z2-map between
the resulting Z2-spaces in both directions).

Thus, a Z2-map of the deleted join into S2k yields an antipodal map S2k+1 →
S2k, which contradicts the Borsuk–Ulam theorem (Theorem 5.1(iii)).

9 Homotopy groups

We start introducing two fundamental concepts of algebraic topology: homotopy
groups of a space on the one hand, and homology groups and the closely related
cohomology groups on the other hand.

Rudiments of these notions go back to a theory of integration along curves
in the complex plane in the 19th century. Homotopy and homology groups
were explicitly introduced by Poincaré at the beginning of the 20th century, in
a form somewhat different from the modern one. They were the key concepts
that have made a large part of topology algebraic, in the sense of associating
algebraic structures with topological spaces.

For both homotopy and homology, we can take as a starting point the
question, what makes a disk topologically different from a disk with a hole,
i.e. an annulus A? The first impulse may be to say that A has a hole and a
disk does not, but then, what is a hole? Apparently in the annulus case it is
something outside A, and to think of such a hole, one must imagine the annulus
as a subspace of something else, say the plane. But what happens to the hole
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if we think of A as the surface of a cylinder in R3, for example? We need an
intrinsic notion, talking only about the space itself.

Both in homotopy and homology, we look at loops in the considered space
X. From the homotopy point of view, we consider a loop as a mapping S1 → X.
Every loop in the disk is nullhomotopic, i.e., can be continuously shrunk to a
point, but the annulus has nontrivial loops, ones that are not nullhomotopic
(left picture):

nullhomotopic a boundarynot nullhomotopic not a boundary

On the other hand, thinking homologically, we consider a loop just as the
image of the map S1 → X, i.e., a point set,6 and we ask, is the considered
loop the boundary of something 2-dimensional7 in X? Again, every loop is a
boundary in the disk, but not so in the annulus—see the right picture (these
claims should be quite intuitive, but we have not proved them).

Here is an example showing that these two notions of triviality of a loop,
being nullhomotopic and being a boundary, are different. We believe that ex-
periencing this early and hands-on is important for developing some intuition
about homology later on. So now we consider a disk with two holes, and the
self-intersecting loop as in the picture:

The loop is the boundary of the indicated region. But it is not nullhomo-
topic; again we do not prove this but we can perhaps recommend the reader a
physical experience with a string and a bar with two sticks or something similar.

Pointed everything. We postpone further discussion of homology and focus
on homotopy groups.

The idea of looking at homotopy classes of loops in the considered space still
needs a refinement: we want only loops that begin and end in some distinguished
point, called the basepoint, x0 ∈ X, since such loops can be composed. The

6This applies to “baby” homology over a 2-element field, which we will mostly deal with in
this text. In more “grown-up” homology with integer coefficients, normally used in textbooks
and in many applications, we would need to consider loops also with orientation and possibly
with multiplicity.

7Here the meaning of “boundary” is somewhat different from the definition in general
topology; we want the boundary of a 2-dimensional disk in R3 to be a circle.
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composition of loops a and b is the loop a.b obtained by first traversing a
and then b. More formally, if a is represented by a map a : [0, 1] → X with
a(0) = a(1) = x0, and similarly for b, then c = a.b is given by

c(t) =

{
a(2t) 0 ≤ t ≤ 1

2
b(2t− 1) 1

2 ≤ t ≤ 1.

In order to do everything consistently, it is good to work in the category of
pointed spaces. A pointed space is a pair (X,x0), where X is a topological
space and x0 ∈ X is a basepoint. The appropriate morphisms are pointed
maps, i.e., continuous maps sending the basepoint to the basepoint. Here are
some other “pointed” notions:

• A pointed homotopy H of pointed maps f, g : (X,x0) → (Y, y0) is a
homotopy that, moreover, fixes the basepoint all the time, i.e., H(x0, t) =
y0 for all t ∈ [0, 1]. Let [f ]∗ denote the pointed homotopy class of a
pointed map f (the star usually refers to the pointed setting), and let
[(X,x0), (Y, y0)]∗ be the set of all such classes for given (X,x0) and (Y, y0).

• The wedge X ∨ Y of pointed spaces X and Y is obtained by taking
the disjoint union and identifying the basepoints (and similarly for any
number of spaces). This is actually the coproduct in the category of
pointed spaces (while the product has an obvious unique basepoint, and
so no change is needed).

• More as an interesting illustration than something we would actually need,
we mention that the pointed analog of the suspension SX is the reduced
suspension ΣX, obtained from SX by collapsing the two segments above
the basepoint of X to a new basepoint (we are thinking of SX as a double
cone over X).

Let us remark that it is very convenient and technically useful to extend
pointed spaces to pairs (X,A), where X is a space and A is a subspace of X
(usually assumed to sit nicely in X, say as a subcomplex of a finite simplicial
complex). A map of pairs f : (X,A) → (Y,B) is a continuous map X → Y
with f(A) ⊆ B—a very simple concept but with large expressive power, and
a basis of notions such as relative homotopy or homology groups, which are
important tools for working with the usual homotopy and homology groups.
For example, now we can also think of a pointed map S1 → X as a map of
pairs ([0, 1], {0, 1})→ (X, {x0}).
The fundamental group. We are ready to introduce the first homotopy
group π1(X) of a pointed space, one of the great inventions of Poincaré, also
called the fundamental group.

Definition 9.1. Let (X,x0) be a pointed space. The fundamental group
π1(X,x0) has the ground set [(S1, s0), (X,x0)]∗ of pointed homotopy classes
of pointed loops in X, and the group operation is given by composition of
loops, i.e., [a]∗[b]∗ = [a.b]∗.
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Exercise 9.2. (a) Check that the operation is well defined.
(b) Show that it is associative (a proper picture makes this quite obvious).
(c) Take a disk with two holes and find an example of loops a, b witness-

ing noncommutativity of the fundamental group. The example should be just
informal since we have not built the tools for showing nontriviality of any loop.

The basepoints in the notation are annoying and one would like to get rid
of them as soon as possible. Unfortunately, for different basepoints x0, x

′
0 the

groups π1(X,x0) and π1(X,x′0) are certainly not equal (they are disjoint as
sets). But, under reasonable circumstances, they are at least isomorphic, which
gives us a good enough reason to ignore the basepoint.

Exercise 9.3. Let X be a space, and let x0, x
′
0 be two points connected by a

path γ (a map [0, 1]→ X with γ(0) = x0, γ(1) = x′0). Exhibit an isomorphism
π1(X,x0) ∼= π1(X,x′0). Hint: The Hobbit, full title.

A space X with a trivial fundamental group (i.e. with no nontrivial loops),
which is usually written as π1(X) = 0, is called simply connected.8

Functors. From every pointed map f : (X,x0) → (Y, y0), we obtain a map
f∗ : π1(X,x0) → π1(Y, y0) of the fundamental groups: if you think of it, there
is only one possible definition of f∗, namely, f∗([a]∗) = [fa]∗—just look at
the loop’s image under f . Routine check shows that this is well defined, and
moreover, one finds easily that f∗ is a group homomorphism. Finally, the
construction respects composition of maps: (fg)∗ = f∗g∗.

Because of these wonderful properties, π1 is called a functor, more precisely,
a functor from the category of pointed spaces to the category of groups. A
functor is yet another key notion of category theory we wanted to mention, but
we have been waiting for a good enough example.

A functor F in general is something like a morphism of categories (but it
must not be called that way). If F goes from a category C to a category D, then
it assigns an object F (X) ∈ Ob(D) to every X ∈ Ob(C) and a morphism F (f) ∈
Hom(F (X), F (Y )) to every morphism f ∈ Hom(X,Y ) in C, so that identity
morphisms are mapped to identity morphisms and F respects composition,
F (fg) = F (f)F (g).

Another example of a functor we have met is the polyhedron of a finite
simplicial complex, from the category of finite simplicial complexes with sim-
plicial maps to topological space with continuous maps (or, strictly speaking,
equivalence classes of homeomorphic topological spaces).

If we take a commutative diagram of pointed spaces with pointed maps
and apply a functor, such as π1, we automatically obtain another commuta-
tive diagram, in this case with groups and homomorphisms. Since many things
can be expressed by commutativity of suitable diagrams, some steps in proofs
become almost mechanical, once one gets used to this approach. When con-
sidering some construction taking objects of some kind and producing objects

8Often this also includes the assumption that X is path-connected, but not in all sources.
On the other hand, the fundamental group can “see” only the path-connected component
containing the basepoint.
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of another kind, say simplicial complexes from graphs, it may be worth asking
whether it is a functor, or if it can be adjusted to behave functorially.

The preservation of commutative diagrams by functors might perhaps sug-
gest that functors should preserve limits, such as products, but this is not the
case in general—the problem is with the uniqueness requirement in the defini-
tion of limit.

On the uncomputability of the fundamental group. Most of the ele-
mentary texts on algebraic topology cover basic properties of the fundamental
group and tools for working with it, such as covering spaces, as well as rigor-
ous computations of the fundamental group of S1 and of compact 2-dimensional
surfaces. Here we do not go in this direction, mainly because in many computer-
science uses of topology, spaces with a nontrivial fundamental group are difficult
or impossible to deal with, while interesting things can be done once we assume
a simply connected space.

The basic difficulty with π1(X) is that almost nothing about it is algorithmi-
cally computable. These uncomputability results all go back to uncomputability
results for groups.

A group G is said to be finitely presented by generators and relations if we
are given a list g1, . . . , gn of elements of G that together generate G, plus a finite
list of relations such as g3g5g

7
4g
−3
2 = e, e the unit element of G. For example,

the free group on 2 generators may have the generator list a, b and no relations,
while adding the relation aba−1b−1 = e yields the Abelian group Z2, etc.

Practically everything about groups presented in this way is uncomputable
in general, such as nontriviality (does G have an element distinct from e?), or
the word problem (do the defining relations of G imply a given relation?).

Given a group G finitely presented by generators and relations, one can al-
gorithmically construct a 2-dimensional simplicial complex having G as the fun-
damental group. The idea is extremely simple: given the generators g1, . . . , gn,
we make a wedge of n circles, each corresponding to one generator. Then, for
every relation, say g1g

2
2g
−1
1 = e, we take a new disk and glue its boundary to

the loops, as is illustrated below, so that it does not intersect anything else
from the space constructed so far:

g1 g2

g3
x0

g1

g2
g2

g1

This usually cannot be pictured in R3, but the resulting space is well defined.
It should also be clear that it has a finite triangulation.

Basic results about the fundamental group (the Seifert–Van Kampen theo-
rem) immediately imply that the fundamental group of the resulting space is
isomorphic to G, since it has the same generators and relations. So the non-
triviality of π1(K), already for a 2-dimensional finite simplicial complex K, is
algorithmically undecidable!
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There are numerous other, more difficult uncomputability results, such as
the impossibility of recognizing an S5 mentioned earlier. These usually re-
quire refinements of the basic results above both on the group side (proving
uncomputability for groups of some restricted type) and on the topological side
(implanting such groups as fundamental groups in restricted classes of spaces,
such as 4-dimensional manifolds).

Fortunately, while testing simple connectedness is hopeless in general, in
many concrete cases it may have simple reasons and be easy to check (or be
known).

So how can we prove the nontriviality of a loop? We have said that
we will not develop the theory of the fundamental group, but we cannot resist
sketching one of the basic tricks at least informally. We consider the annulus A
with basepoint x0 and a pointed loop a going around once, and we would like
to prove that a cannot be nullhomotopic.

We think of A as a corridor in the ground (0th) floor, and we consider a
spiral staircase Ã that winds above A and also below it, in infinitely many loops
(the geometric shape of A is called a helicoid ; we ignore the stairs and regard Ã
as smooth surface). The staircase Ã reaches the ground floor A exactly at the

basepoint x0, and above x0, we have exactly one point x̃
(k)
0 ∈ Ã in each floor,

k ∈ Z, with x̃
(0)
0 = x0.

x0

x̃
(1)
0

There is a mouse following the loop a in A: at time t ∈ [0, 1] it is in a(t),
starting and ending in x0. A cat starts at x0 at time 0 as well, but moves along
Ã, not along A (we do not address a practical solution of how the mouse can
freely cross Ã and the cat A, but we do not let this issue distract us from the
essence). The cat always stays precisely vertically above the mouse (or below
it).

It seems plausible that the cat’s path ã is determined uniquely (although
proving this rigorously is one of the technical parts we wanted to avoid), and

for the particular loop a, the cat ends up at x̃
(1)
0 , one floor above the mouse.

Moreover, by technically very similar considerations one can prove that if a and
b are pointed-homotopic loops, then the corresponding cat’s paths ã and b̃ are
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homotopic too, with homotopy fixing each of the x̃
(k)
0 . In particular, the cat

ends up in the same floor for both ã and b̃.
We can already see that our particular loop a cannot be nullhomotopic,

since for the constant (unmoving) loop the cat keeps sitting in x0.
The space Ã is an example of a covering space, and the vertical projection

Ã→ A is called a covering map. The method of covering spaces allows one to
compute, e.g., the fundamental groups of all compact 2-dimensional surfaces.

Higher homotopy groups. Higher homotopy groups πk(X), k = 2, 3, . . .,
were first introduced by Čech, long after the fundamental group π1(X). Čech
actually withdrew his paper on the advice of senior colleagues, who believed
that, unlike the groups in his definition, the true higher homotopy groups should
not be commutative in general.

The definition is now the accepted one, though, and in spite of being “only”
Abelian, higher homotopy groups belong among the most challenging objects in
mathematics. As we will see, the reason why π1(X) need not be commutative
but all higher homotopy groups always are is that the 1-dimensional sphere
S1 is like a rail track where moving points cannot pass one another without
colliding, while in Sk, k ≥ 2, there is enough room for points to move around
without collisions.

To define πk, we must again consider a pointed space (X,x0). The elements
of πk(X) are easy to define with the notation we already have: they are pointed
homotopy classes of pointed maps (Sk, s0) → (X,x0) (where s0 is a basepoint
in Sk, say the north pole).

Understanding the group operation is a bit more challenging. A good way
is to regard Sk as the quotient Ik/∂Ik of the k-dimensional cube Ik, I = [0, 1],
by its boundary ∂Ik (we saw this representation of the sphere, with Bk instead
of Ik, in Exercise 6.2). Then a pointed map f : (Sk, s0) → (X,x0) can also be
regarded as a map of pairs (Ik, ∂Ik)→ (X,x0), i.e., a map from the cube that
sends all of the boundary to x0.

Let us now consider two elements [f ]∗ and [g]∗ of πk(X,x0), and let us think
of the representing maps f, g as maps of the cube as above. Then the map h
representing [f ]∗ + [g]∗ (the operation in πk(X), k ≥ 2, is usually written as
addition) is constructed as follows: We split Ik into the left and right half along
the x1 coordinate, we squeeze the cube on which f is defined twice and put it
over the left half, and similarly the cube with g is squeezed twice and identified
with the right half. Then h equals the squeezed f on the left half and the
squeezed g on the right half.

f g f g

Note that this directly generalizes the way we have introduced the operation
in the fundamental group.
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Definition 9.4. For a pointed space (X,x0), the kth homotopy group
πk(X,x0) is the set [(Sk, s0), (X,x0)]∗ of pointed homotopy equivalence
classes of pointed maps of the k-sphere into (X,x0), with the addition op-
eration described above, “putting f on the left half-cube and g on the right
half-cube.”

Exercise 9.5. Describe the addition in π2 directly using pointed maps, rather
than maps of the cube.

Exercise 9.6. How does one get the inverse of [f ]∗?

One again has to verify, routinely, that the operation is well defined (the
result does not depend on the choice of representatives), associative, and has
inverses. It is also easy to show that for a path-connected X, all choices of
the basepoint x0 give isomorphic πk(X,x0). Moreover, for every k ≥ 2, πk is a
functor from pointed spaces to Abelian groups—this is not really different from
the k = 1 case, with the exception of commutativity, which we now explain.

We want to show that the representative of [f ]∗+ [g]∗ constructed as above
is homotopic to the representative of [g]∗ + [f ]∗. The homotopy, in the setting
of maps from the cube, is illustrated below:

gf f g

value x0

f

g

fg g f

Homotopy groups of spheres. Contractible spaces, such as balls, have all
homotopy groups zero. One would think that the next simplest example should
be the spheres. So what is πk(S

n)?
First, for k < n, it is 0. This looks quite plausible if you think of the image

of S1 in S2, say; one should be able to pick a point of S2 not in the image, take
it as the north pole and let northern wind contract the image continuously to
the south pole. There is a technical difficulty with this, since the image could
be a space-filling curve covering all of S2, but this can be dealt with, as we will
see later (Corollary 11.3).

Good; now for k = n we have πn(Sn) = Z for all n ≥ 1. This hides a nice
theorem of Hopf, stating that two maps Sn → Sn are homotopic if and only if
they have the same degree. A rigorous definition of degree can be given using
homology. Here is an informal explanation: We think of S2 in R3, and color it
green from inside and red from outside. Then we map it to another S2 by a
map f . If f is locally sufficiently nice and we look at a generic point x of the
target S2, there are locally several sheets of the red-green S2 over x, some of
them are green when we look from inside the target S2 and others red. The
degree of f is the number of green ones minus the number of red ones. For
k = 1 this is the winding number – number of times f “goes around” the target
S1.

How about the case k > n? Historically it came as a great surprise that
πk(S

n) can be nonzero in this situation. The first instance was discovered by
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Hopf, who found a nontrivial map η : S3 → S2 (i.e., not nullhomotopic). It
is now called the Hopf map and it belongs among a handful of key examples
in topology (and also with uses in quantum physics and elsewhere). The Hopf
map has a one-line definition using complex numbers, but a longer explanation
and pictures are needed to see what is going on—not speaking of a proof of
nontriviality, which needs considerable apparatus. So we refer to the literature.

A concise answer to the question of what the πk(S
n) are, after many decades

of research, is—nobody knows. Many deep and interesting facts have been
proved. For example, for k > n, the πk(S

n) are finite, with the sole exception
of the cases π4n−1(S2n). One of the perhaps most remarkable phenomena is
stability : for all n > i+ 1 the homotopy groups πn+i(S

n) depend only on i.
But these stable homotopy groups of spheres, for instance, are known only

up to i = 64, and known part of the table looks fairly chaotic; just to give a
taste, we have πn+35(Sn) = Z8 ⊕ Z2

2 ⊕ Z27 ⊕ Z7 ⊕ Z19 for all n ≥ 37.
Let us stress that these mysterious homotopy groups are, in principle, com-

putable. There are algorithms that, given k and a simply connected finite sim-
plicial complex K, outputs a description of πk(K); some of the more recent
ones might even be practically usable for k very small.

But so far such general algorithms have been useless for the problem of
homotopy groups of spheres. Researchers have developed a number of very
sophisticated methods tailor-made for the case of spheres; this problem has
helped to keep algebraic topology progressing for several decades.

Perhaps surprisingly, most of the known πk(S
n) were actually computed by

hand. This illustrates that, given a sufficiently structured problem and enough
interest, mathematical theory can usually beat supercomputers.

10 Homology of simplicial complexes

Here we begin considering homology groups. They are more difficult to intro-
duce than homotopy groups, and in some respects they carry less information,
but from a computer-science perspective, they offer an immense advantage:
They are efficiently computable, both in theory (polynomial-time algorithms)
and in practice (reasonably large instances can be dealt with). With a bit
of exaggeration one can say that in topology, whatever can be inferred from
homology is efficiently computable, and almost nothing else is.

Coefficients for homology. For every integer k ≥ 0, we want to assign an
Abelian group Hk(X) to a topological space X, the kth homology group of X.
More precisely, the construction has a parameter R, which is a commutative
ring (ring as in algebra); then we speak of homology with coefficients in R and
write Hk(X;R).

The most standard choice is R = Z, the ring of integers—the notation
Hk(X) refers to this default case. Other common choices are R = Q, the field
of the rationals, and R = Zp, the finite field with p elements, p a prime. It is
known that the homology groups with integer coefficients collectively encode
all the information contained in homology with coefficients in any other ring
R, so in a sense they are the best one can get, but other choices of coefficients
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may sometimes be easier to work with.
Here, in the interest of simplicity, we are going to work with coefficients

in Z2, the two-element field. This brings two distinct kinds of simplification
compared to integer coefficients.

First, we have −1 = 1 in Z2, and this relieves us from having to keep track
of orientations of simplices and signs in formulas. Handling these issues is not
conceptually difficult at all, although error-prone, but it is pleasant to ignore
them at first encounter.

Second, Z2 is a field, and working with homology over a field is basically
linear algebra—in particular, the homology groups Hk(X;Z2) are really vector
spaces. On the other hand, if R is not a field, then vector spaces have to be
replaced with R-modules, a probably much less familiar concept (in particular,
Z-modules can be regarded as Abelian groups).

Simplicial homology. We will follow more or less the historical route of
developing homology: first we define homology groups for a finite simplicial
complex, and then we will say that the homology of a triangulable space X is
the homology of a triangulation of X. For this to make sense, we must show
that the result is the same for all possible triangulation, and this takes quite a
bit of work.

Modern topology textbooks often prefer a different way, the so-called singu-
lar homology.9 This is defined very quickly and compactly, if not too intuitively,
directly for a space without a detour through triangulations, and some of the
general properties are immediately obvious. However, it is difficult to compute
the singular homology of almost anything, and if one wants a computational
tool, some version of simplicial homology is needed anyway.

Chains, cycles, boundaries. Let K be a finite simplicial complex, and let
k ≥ 0 be an integer. Let us write Kk for the set of all simplices of dimension
precisely k in K.

First we define a vector space Ck(K;Z2). Its vectors are all formal linear
combinations of simplices in Kk. In more detail, we fix a vector space over
Z2 of dimension |Kk|, we fix a basis in it, and we identify the basis elements
bijectively with the k-simplices of K. The vectors of Ck(K;Z2) are called the
k-chains of K, and typically they are denoted by c, or ck if we want to stress
which k we have in mind.

In the very special case of Z2, we can also think of k-chains as subsets of Kk:
for a k-chain c, the subset consists of those simplices in Kk that have coefficient
1 in c.

Next, we define a linear map ∂ = ∂k : Ck(K;Z2) → Ck−1(K;Z2) called
the boundary operator. It suffices to define the values of a linear map on
basis vectors, and in our case we just specify the value of ∂k on each k-simplex
F ∈ Kk. Namely, ∂kF is the sum of all (k − 1)-simplices that are facets of F ;
formally, and recalling that we regard simplices of a simplicial complex as finite

9There are actually many ways of defining homology groups, which may differ in generality
of the considered spaces or in various fine points, so many that already in 1945 Eilenberg and
Steenrod found it desirable to put all the various homology theories on an axiomatic footing,
in order to isolate essential properties common to all of them.
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sets, we can thus write ∂kF =
∑

v∈F F \ v.
The left picture illustrates this definition for k = 2, while the right picture

shows the boundary of a more complicated 2-chain.

∂ = ∂ =

The boundary operator in the Z2 case can also easily be described combi-
natorially: a (k − 1)-dimensional simplex G belongs to ∂kc for a given k-chain
c exactly if it is contained in an odd number of the simplices of c.

We also make the convention that ∂0 = 0; i.e., vertices have no boundary.
(Sometimes it is technically convenient to change this convention slightly, which
leads to the so-called reduced homology groups H̃k, but we do not consider these
here—the difference is minor anyway, and only in the 0th homology group.)

Exercise 10.1. (Trivial) To see that there is no mystery in the boundary op-
erator, write down the matrix of ∂2 and of ∂1 for the simplicial complex from
the right picture above.

Starting from the boundary operators, we now obtain the homology groups
of K by pure linear algebra. We define two vector subspaces of Ck(K;Z2):

• Zk(K;Z2) consists of all k-chains whose boundary is zero (empty); con-
cisely, Zk(K;Z2) = ker ∂k. The vectors of Zk(K;Z2) are called k-cycles
(Z is for the German word Zyklus).

• Bk(K;Z2) consists of all boundaries of (k + 1)-chains; i.e., Bk(K;Z2) =
im ∂k+1. Its vectors are k-boundaries.

A key observation in homology is this.

Observation 10.2. The composition ∂k∂k+1 is zero (every boundary has zero
boundary). Thus, Bk(K;Z2) ⊆ Zk(K;Z2) (all boundaries are cycles).

Proof. It suffices to prove ∂k∂k+1F = 0 for every (k + 1)-simplex F . This is
immediate since every (k−1)-dimensional faceG of F is contained in exactly two
k-dimensional faces of F , namely, F \{a} and F \{b}, where F \G = {a, b}.

Definition 10.3. The kth homology group Hk(K;Z2) of a simplicial com-
plex K is the quotient vector space Zk(K;Z2)/Bk(K;Z2), “cycles modulo
boundaries.”

If we are interested only in the isomorphism type of Hk(K;Z2), then a single
number suffices: the dimension, which equals dimZk(K;Z2) − dimBk(K;Z2).
We trust that the reader can imagine how the computation of these dimensions,
withK as input, could be programmed using basic subroutines for linear algebra
(Gaussian elimination, say)—if not, we recommend to spend a couple of minutes
on that.

48



For some applications, though, the isomorphism type may not suffice; we
may also be interested in seeing the k-cycles representing elements of some basis
of Hk(K;Z2). These are also easily computed.

The elements of the quotient vector space Hk(K;Z2) are equivalence classes
of k-cycles, of the form z + Bk(K;Z2). They are called homology classes. In
general, two k-chains c and c′ are called homologous if c− c′ is a boundary.

Here we come back to the geometric intuition sketched when we mentioned
homology for the first time: the nonzero elements of the k-th homology group
correspond to the k-dimensional cycles (e.g., in the 1-dimensional case, loops
and linear combinations of loops) that cannot be expressed as boundaries of
(k + 1)-dimensional “things.”

Enough definitions—it is time to practice a little.

Exercise 10.4. Regard a simple graph as a 1-dimensional simplicial complex.
Describe k-cycles and k-boundaries in graph-theoretic terms, k = 0, 1. What is
the meaning of H0 and H1?

The next, very basic exercise should show that, unlike homotopy groups,
the homology groups of spheres are very simple and predictable.

Exercise 10.5. (a) Consider the n-dimensional simplex as a simplicial complex
(all subsets of [n+1]). Compute all of the homology groups with Z2 coefficients.

(b) Now remove the simplex itself from the simplicial complex, leaving only
its boundary (this is a triangulation of Sn−1). What changes in the homology
groups?

Functors. We would like to see that, for every k, the assignment of the kth
homology group to a finite simplicial complex behaves as a functor (we still
work with Z2 coefficients but this applies to any coefficient ring, and later on
we will of course want an analog for spaces instead of simplicial complexes).
Given simplicial complexes K,L and a simplicial map f : K → L (these are the
morphisms), we want a linear map f∗k : Hk(K;Z2)→ Hk(L;Z2)—what should
it be?

Short reflection shows that there is not much choice. First we define a linear
map f#k : Ck(K;Z2) → Ck(L;Z2) by specifying the values on the usual basis
of k-simplices. Namely, the image f(F ) of a simplex F ∈ K is a simplex of L,
which can be of dimension dimF or smaller. We set

f#k(F ) :=

{
f(F ) if dim f(F ) = dimF,
0 otherwise.

Now the map f∗k of the homology group is defined by taking a representative
k-cycle z of a homology class h = z + Bk(K;Z2) and defining f∗k(h) as the
homology class f#k(z) + Bk(L;Z2). Two things could possibly go wrong with
this definition; the reader is invited to check that they do not.

Exercise 10.6. (a) Check that f#(k−1)∂k = ∂kf#k, and consequently, that the
image of a cycle under f#k is a cycle and the image of a boundary is a boundary.

(b) Verify that (gf)∗k = g∗kf∗k for simplicial maps f : K → L and g : L →
M .
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Chain complexes. It is useful to isolate an intermediate algebraic object
between a simplicial complex (or space) and its homology groups. A chain
complex C is an infinite sequence of vector spaces (in our case of field coeffi-
cients) connected by linear maps, which are also called boundary operators:

· · · ∂3 // C2
∂2 // C1

∂1 // C0
∂0 // C−1

∂−1
// · · ·

The sole axiom is ∂k−1∂k = 0 for all k ∈ Z, exactly the property of the boundary
operators that allowed us to define homology groups. So we can define homology
groups for an arbitrary chain complex C in the same way.

Of course, a primary example of a chain complex is one obtained from a
simplicial complex, with Ck = Ck(K;Z2) (where Ck = 0 for k < 0 by conven-
tion). But chain complexes proved useful in many other contexts, and they are
the object of study of homological algebra.

A morphism f# : C → D of chain complexes, called a chain map, is modeled
after the maps f#k constructed above; we just postulate the property we needed
so that f# induce a map of the homology groups. Namely, f# = (f#k)k∈Z is a
sequence of linear maps f#k : Ck → Dk satisfying ∂kf#k = f#(k−1)∂k, where ∂k
on the left is the boundary operator in C, while ∂k on the right comes from D.

What is the point of this exercise with defining chain complexes? Besides
general applicability already mentioned, there is a specific advantage for our
later considerations: even between chain complexes derived from simplicial com-
plexes, we will have useful and fairly obvious chain maps that do not come from
any simplicial map, though.

What changes for Z instead of Z2? For integer coefficients, first of all, we
must assign every simplex of K some orientation. A simple way is to number
the vertices of K from 1 to n and then orient every simplex “from left to right”.
Now the definition of the boundary operator involves signs, so the boundary of
a triangle is no longer the sum of its edges, but something like “the first edge
minus the second edge plus the third one.”

The oriented simplices appear with arbitrary integer coefficients in k-chains.
The k-chains, k-cycles, and k-boundaries are no longer vector spaces, but Z-
modules or Abelian groups. For computing with them we no longer suffice
with linear algebra, but we need to manipulate integer matrices. Most notably,
instead of Gaussian elimination, we use algorithms for computing the Smith
normal form; these are considerably more sophisticated but reasonably well
understood and fast.

The resulting homology group Hk(K;Z) can be an arbitrary Abelian group
(finitely generated for a finite simplicial complex), such as Z17⊕Z6

2⊕Z2
3⊕Z6⊕

Z293. Here 17, the exponent of the infinite cyclic component, is called the kth
Betti number of K (warning: it need not equal dimHk(K;Z2), the kth Z2 Betti
number).

The finite cyclic summands are called the torsion part of Hk(K;Z). They
have no analog for field coefficients, and their geometric meaning is not so
easy to visualize. The simplest case can perhaps be shown for the projective
plane, which can be obtained by taking a disk and identifying every pair of
diametrically opposite points.
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The picture shows a triangulation of the projective plane (the smallest one,
actually; identifications of vertices are indicated by the numbers 1,2,3) with
some chosen orientations of the triangles. The curve drawn thick is a closed
loop, a homological 1-cycle (zero boundary). The curve itself is not a boundary
(with Z coefficients), but if we take it twice, it becomes a boundary of the sum
of all 2-simplices of the projective plane with the given orientations; note that
the orientations of adjacent triangles flip locally exactly along our curve.

Cohomology. First we recall from linear algebra that if V is a vector space
over a field K, then the set of all linear functions f : V → K also forms a vector
space V ∗, called the dual of V . If V is finite-dimensional, then dimV ∗ = dimV ;
given a basis b1, . . . , bn of V , we can form a basis b∗1, . . . , b

∗
n of V ∗, where b∗i

attains value 1 on bi and value 0 on all the other bj .
Every linear map L : V →W determines a linear map L∗ : W ∗ → V ∗ (note

the change of direction; this will be happening all the time here), called the
adjoint of L. There is only one reasonable way of defining L∗, namely, L(f) :=
fL : V → K, f ∈W ∗.

To introduce cohomology with Z2 coefficients (or with any field coefficients,
there is no difference), we apply this kind of duality to the vector spaces
Ck(K;Z2) of k-chains and the boundary operators ∂k. So Ck(K;Z2), the k-
cochains, is the vector space dual to Ck(K;Z2).

How should one think of k-cochains? It is enough to specify the values of a
k-cochain on a basis, in this case the standard basis of the k-chains consisting
of k-simplices—so a k-cochain “looks” precisely like a k-chain.10

Next, the coboundary operator δk : Ck(K;Z2) → Ck+1(K;Z2) now in-
creases dimension by 1, and it is the adjoint of ∂k. The k-cocycles Zk(K;Z2) :=
ker δk and the k-coboundaries Bk(K;Z2) := im δk−1 are defined analogously to
the case of homology, and the kth cohomology group is then

Hk(K;Z2) := Zk(K;Z2)/Bk(K;Z2).

Exercise 10.7. Similar to homology, interpret the coboundary operator, cocy-
cles, and coboundaries in graph-theoretic terms (for 1-dimensional simplicial
complexes).

It turns out that cohomology groups are similar to homology groups in
many respects, and in particular, all cohomology groups of a space X can be
deduced from the knowledge of all homology groups of X. So why bother with
cohomology?

10In the finite-dimensional case, that is. For infinite simplicial complexes, say, a k-chain
may attain only finitely many nonzero values, while a k-cochain may have any number of
nonzeros.
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Perhaps the key reason is that if we look at a simplicial maps f : K → L (or,
later, a continuous map), the induced map in cohomology goes in the opposite
direction, f∗k : Hk(L;Z2) → Hk(K;Z2). This is because of the dual nature of
cohomology, and the reader may want to contemplate the definition of f∗k for
a while.

Category theorist say that cohomology groups are contravariant functors;
all of the functors mentioned so far were covariant. This is often useful, since
cohomology can be pulled in the direction opposite to homology (and homotopy
groups).

One of the most important manifestations of this general phenomenon is the
existence of a product structure on the union of all cohomology groups of a given
space. Namely, one can define the cup product in cohomology (we will not do
this here, because this would take us too far), which assigns to two cohomology
classes cp ∈ Hp(X) and cq ∈ Hq(X) a cohomology class cp ^ cq ∈ Hp+q(X).
This operation makes the union

⋃∞
k=0H

k(X) into a ring, the cohomology ring
of X. For homology this does not work in general, since one of the key maps
needed for defining a product goes in the wrong direction.

The cohomology ring in general carries strictly more information about X
than just all homology groups or all cohomology groups. The cup product is
also used for formalizing intuitive geometric notions such as linking number
(given two images of S1 in R3, how many times are they “linked”?, or similarly
for an image of Sp and an image of Sq in Rp+q+1).

11 Simplicial approximation

We have assigned a sequence of homology groups to a finite simplicial complex.
To make the construction topologically useful, we still need to show that the
homology groups depend only on the considered topological space (and actually,
only on its homotopy type) and not on the chosen triangulation.

We will present a substantial part of a proof. Along the way, we will en-
counter a surprising phenomenon concerning triangulations. As we have men-
tioned earlier, the usual contemporary proof would go via singular homology.
However, the considerations needed to connect singular homology to simplicial
homology are also nontrivial.

In the present section we will not talk about homology, but we prepare
a tool for approximating continuous maps by simplicial maps—the simplicial
approximation theorem. Historically, this kind of statement made possible the
first rigorous (and correct or almost correct) proofs of foundational results such
as that Rm is not homeomorphic to Rn for m 6= n.

Subdivisions, especially barycentric. A geometric simplicial complex ∆′

is called a subdivision of a geometric simplicial complex ∆ if their polyhedra
are the same, |∆′| = |∆|, and every simplex of ∆′ is fully contained in some
simplex of ∆.

The idea of subdivision is that each simplex of ∆ is further sliced into
smaller simplices, but this must be done so that the slicings are compatible
across lower-dimensional faces.
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The main thing about subdivisions one usually needs is that every finite
geometric simplicial complex has arbitrarily fine subdivisions:

Lemma 11.1. Let ∆ be a (finite) geometric simplicial complex, considered as
a subspace of Rn with the Euclidean metric, and let ε > 0 be given. Then there
is a subdivision ∆′ of ∆ in which no simplex has diameter larger than ε.

A two-dimensional picture

might mislead one into considering the lemma trivial. But the “parallel layer
slicing” idea does not work in dimensions 3 and higher. The usual proof of the
lemma, shown below, uses a subdivision which is not very economical for the
purpose of reducing the diameter of the simplices, but very simple to describe.

Sketch of proof. First we define the barycentric subdivision of a simplicial
complex ∆. We formulate the definition recursively.

If dim ∆ = k, we first produce the barycentric subdivision, call it Γ, of
the subcomplex of ∆ consisting of all simplices of dimension at most k − 1
(by induction on k; for k = 0 we do nothing). Then, for every k-dimensional
simplex σ of ∆, we consider the barycenter (center of gravity) vσ of σ, and for
every simplex τ ∈ Γ lying on the boundary of σ, we construct the cone with
base τ and apex vσ (which is a simplex). All of these simplices together with
those of Γ form the barycentric subdivision of ∆.

The picture illustrates the procedure for a single 2-dimensional simplex:

vσ
σ

τ1
2

3

Let us mention in passing that there is also a direct, combinatorial de-
scription: simplices of the barycentric subdivision of ∆ are in one-to-one cor-
respondence with chains of nonempty simplices of ∆ under inclusion. For
example, the darker 2-simplex in the picture above corresponds to the chain
{2} ⊂ {1, 2} ⊂ {1, 2, 3}. This correspondence has several nice uses, but we will
consider barycentric subdivisions only for the purposes of the present proof.

For us it is important that if we apply the barycentric subdivision to a
simplex of diameter at most 1, then each simplex in the subdivision has diameter
at most 1 − 1

n+1 (this is not so hard to verify, but we will accept it as a fact
without proof). Hence if we start with a given complex ∆ and iterate the
barycentric subdivision sufficiently many times, we are guaranteed to get the
diameter of all simplices as small as needed.
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Now we state the main theorem of this section. Exceptionally, it contains an
undefined term “simplicial approximation”; we prefer to develop the definition
later. Even ignoring this term the theorem still contains a highly interesting
statement.

Theorem 11.2 (Simplicial approximation theorem). Let f : |K| → |L|
be an arbitrary continuous map of polyhedra of two finite simplicial com-
plexes. Then there is a subdivision K ′ of K and a simplicial approximation
s : V (K ′) → V (L) of f . In particular, s is a simplicial map such that the
affine extension |s| : |K ′| → |L| is homotopic to f .

Note that only the “source” complex K is subdivided, while L stays as is.
The mapping |s| need not be close to f in metric sense; we are only guaranteed
that they are homotopic.

Here is a nontrivial consequence:

Corollary 11.3. Every continuous map f : Sn−1 → Sn is nullhomotopic.

Proof. If we have a point y not in the image of f , the argument is obvious:
we continuously push the image of f away from y until all of it ends up in the
opposite point −y.

But the catch is that f may be surjective, like a space-filling curve. Then
the simplicial approximation theorem comes to rescue: We consider Sn−1 and
Sn as polyhedra of K and L, respectively, and obtain a simplicial map |s| from a
subdivision of K into L that is homotopic to f . Such an |s| cannot be surjective,
because its image in L consists of simplices of dimension at most n− 1.

Elementary homotopies and stars. We still need to define the meaning
of “simplicial approximation.” First we formulate a simple condition for two
continuous maps f, g : |K| → |L| to be homotopic. Namely, if we assume “for
every x ∈ K, f(x) and g(x) share a simplex of L,” then surely f ∼ g, since
then the desired homotopy can be obtained by moving f(x) towards g(x) along
a segment within the simplex containing both of these points. Let us say that
f and g satisfy the elementary homotopy condition.

Next, we state a rather different-looking condition. Let K be a simplicial
complex and let v be a vertex of it. The open star st◦v in K is defined as |K|
minus the union of all simplices of K that do not contain v.11.

v

Let f : |K| → |L| be a continuous map of polyhedra and let s : V (K)→ V (L)
be a map of the vertex sets of the underlying simplicial complexes; at this

11The standard definition in the literature looks different, but from our version it is clear
that the open star is an open set, which is far from clear for the standard formulation.
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moment we (exceptionally) do not apriori assume s simplicial. We say that f
and s satisfy the star condition if for every vertex v ∈ V (K) we have

f(st◦v) ⊆ st◦(s(v)).

Interestingly, the elementary homotopy condition and the star condition
turn out to be equivalent, and if one of them holds (and hence both) for a
continuous map f : |K| → |L| and a simplicial map s : V (K ′) → V (L), we say
that s is a simplicial approximation of f .

Exercise 11.4. (a) Assuming that f and s satisfy the star condition, prove
that s is necessarily simplicial.

(b) Show that if f and s satisfy the star condition, then f and |s| satisfy the
elementary homotopy condition.

(c) (Optional) Prove that, conversely, if f and |s| satisfy the elementary ho-
motopy condition, where s is simplicial, then f and s satisfy the star condition.

A simple but very useful observation is that simplicial approximations re-
spect composition: if f : |K| → |L| and g : |L| → |M | are continuous, s : V (K)→
V (L) is a simplicial approximation of f , and t : V (L) → V (M) is a simplicial
approximation of g, then ts is a simplicial approximation of gf .

Exercise 11.5 (Lebesgue covering lemma). Let X be a compact metric space,
and let U be an open cover of X. Prove that there exists δ > 0 (the Lebesgue
number of the covering U) such that for every x ∈ X, there is U ∈ U that
contains x together with its open δ-neighborhood.

Proof of Theorem 11.2. Given a map f : |K| → |L| as in the theorem, we con-
sider the open cover U of |K| with preimages of open stars in L: U := {Uw =
f−1(st◦w) : w ∈ V (L)}. We let δ > 0 be a Lebesgue number of this cover, and
let K ′ be a refinement of K in which simplices have diameter below δ.

We want to construct s so that f and s satisfy the star condition. For a
vertex v ∈ V (K), the open star st◦v is contained in the δ-neighborhood of v,
and hence in some U = Uw ∈ U . So f(st◦v) ⊆ st◦w. It suffices to put s(v) := w
(choosing arbitrarily if there are several possibilities); then f and s satisfy the
star condition.

12 Homology does not depend on triangulation

In the subsequent considerations we stick to the Z2 coefficients in the notation,
but the arguments work for any coefficients.

The case of a subdivision. First we consider the setting where K is a
finite simplicial complex and K ′ is a subdivision of it. As expected, there is an
isomorphism Hk(K;Z2) ∼= Hk(K

′;Z2) (for every k), but this is not completely
easy to prove.

Let us describe the mappings inducing this isomorphism and its inverse.
In the direction K → K ′, there seems to be no reasonable simplicial map
to use, but there is a very natural chain map. Namely, for every k, we let
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λ#k : Ck(K;Z2)→ Ck(K
′;Z2) be the linear map that assigns to every k-simplex

σ of K the sum of all simplices τ ∈ K ′ that are contained in σ. It is easy to
check that this is indeed a chain map, and so it induces homomorphisms λ∗k in
homology.

For the other direction, we use a simplicial map γ : V (K ′)→ V (K). Namely,
as in the proof of the simplicial approximation theorem (Theorem 11.2), we
obtain γ as a simplicial approximation to the identity id : |K ′| → |K|. For this,
it suffices to observe that whenever v ∈ V (K ′) is a vertex, we can find a vertex
w ∈ V (K) with st◦v ⊆ st◦w; then we set γ(v) := w and the star condition
holds.

We leave the following result without proof (referring, e.g., to Munkres
[Mun84]).

Fact 12.1. The homomorphisms λ∗k : Hk(K;Z2)→ Hk(K
′;Z2) and γ∗k : Hk(K

′;Z2)→
Hk(K;Z2) are mutually inverse, and thus isomorphisms.

The proof uses two additional tools, chain homotopy and the method of
acyclic carriers, which we prefer not to discuss here for space reasons. Inter-
estingly, the proof is easier if K ′ is the barycentric subdivision of K. This case
is actually sufficient for the proof that homology does not depend on triangula-
tion, since it is enough to have arbitrarily fine subdivisions, but their structure
does not matter.

Later we will need the following (easier) statement, which is proved using
chain homotopy as well, and whose proof we also omit.

Fact 12.2. Let f : |K| → |L| be a continuous map of polyhedra and let s, t : V (K)→
V (L) be two simplicial approximations of f . Then they induce the same homo-
morphism in homology: s∗ = t∗.

(In accordance with our earlier notation, we should write s∗k and t∗k, but
since all of the considerations are valid for every k, from now on we will mostly
use the simpler notation.)

The Hauptvermutung. Once topologists proved that a simplicial complex
and a subdivision of it have isomorphic homology groups, they hoped to obtain
the independence of homology of the triangulation by establishing the following
conjecture, which became known as the Hauptvermutung (main conjecture,
from 1908): Every two triangulations of a triangulable topological space have a
common refinement.

However, the conjecture was much more resistant to attacks than expected,
and after some time researchers found a way of bypassing it (which will be
presented below). Much later it turned out that the difficulty in proving the
conjecture has a good reason: as shown by Milnor in 1961, the Hauptvermutung
is actually false.

By now there are many examples and a great related theory concerned
mainly with triangulations of manifolds (the Kirby–Siebenmann classification
of manifolds and related developments), but the failure of the Hauptvermutung
remains one of the truly mind-boggling phenomena in geometric topology. (See,
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e.g., Rudyak [Rud01] for a somewhat advanced exposition; unfortunately, we
are not aware of any treatment easily accessible to beginners.)

Functorial properties. In order to bypass the Hauptvermutung, we will
consider the homomorphisms induced by continuous maps in homology.

For a continuous map f : |K| → |L|, we can define the induced homomor-
phism f∗ in homology using the simplicial approximation theorem. Namely,
we choose a subdivision K ′ of K such that there is a simplicial approximation
s : V (K ′)→ V (L) of f , and we set

f∗ := s∗λ∗ = s∗γ
−1
∗ ,

where λ∗ and γ∗ are the mutually inverse isomorphisms of Hk(K;Z2) and
Hk(K

′;Z2) as in Fact 12.1.
The next complicated-looking statement tells us that this definition of f∗

does not depend on K ′.

Lemma 12.3. Let K ′ and K ′′ be subdivisions of K, let γ′ : V (K ′)→ V (K) and
γ′′ : V (K ′′) → V (K) be simplicial approximations of the identity, and let s′, s′′

be simplicial approximations of f : |K| → |L|, where s′ is defined on K ′ and s′′

on K ′′. Finally, let f ′∗ = s′∗(γ
′
∗)
−1 and f ′′∗ = s′′∗(γ

′′
∗ )
−1 be the homomorphisms

in homology as above. Then f ′∗ = f ′′∗ .

Proof. First we assume that there is a simplicial approximation γ : V (K ′′) →
V (K ′) of the identity map id: |K ′′| → |K ′| (this does not mean that K ′′ is a
refinement of K ′!); later we will see how to arrange this. Here is a diagram
summarizing the situation:

K ′′ γ
//

γ′′

))

s′′
!!

K ′
γ′
//

s′

��

K

f
~~

L

We use Fact 12.2 twice: first, s′γ and s′′ are both simplicial approximations of
f defined on K ′′, and so s′∗γ∗ = s′′∗, and second, γ′γ and γ′′ are both simplicial
approximations of the identity defined on K ′′, and thus γ′∗γ∗ = γ′′∗ .

Then we calculate quite mechanically

f ′′∗ = s′′∗(γ
′′
∗ )
−1 = s′∗γ∗(γ

′′
∗ )
−1 = s′∗γ∗(γ

′
∗γ∗)

−1

= s′∗γ∗(γ∗)
−1(γ′∗)

−1 = s′∗(γ
′
∗)
−1 = f ′∗.

Now in the general case, with K ′ and K ′′ arbitrary, we fix a subdivision K ′′′

such that the identity has simplicial approximations γ1 : V (K ′′′)→ V (K ′) and
γ2 : V (K ′′′) → V (K ′′). Then we use the result of the first part twice, once on
K ′′′ → K ′ → K and once on K ′′′ → K ′′ → K.

Exercise 12.4. Do the second step (the general case) in the above proof care-
fully in detail. How exactly do we get K ′′′?

Theorem 12.5 (Functoriality of homology).
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(i) Let id : |K| → |K| be the identity map. Then the induced homomorphism
in homology id∗ is the identity.

(ii) Let f : |K| → |L| and g : |L| → |M | be continuous maps of polyhedra.
Then (gf)∗ = g∗f∗.

Part (i) is immediate if we use the identity simplicial map V (K) → V (K)
in the definition of id∗. Part (ii) is proved in a way very similar to the proof of
the previous lemma, again using Fact 12.2 twice.

Exercise 12.6. Prove the theorem. Draw a suitable diagram of the maps in-
volved.

The theorem immediately implies that two triangulations of the same space
give the same homology groups, or in other words, that a homeomorphism of
triangulable spaces induces isomorphism in homology. Indeed, if h : |K| → |L|
is a homeomorphism, then we have h∗(h

−1)∗ = (hh−1)∗ = id, and so h∗ has an
inverse.

With some more work, one can show that homotopic maps induce the same
homomorphism in homology: f ∼ g implies f∗ = g∗ (the main idea is to use
a simplicial approximation of the homotopy between f and g). It follows that
not only homeomorphic, but also homotopy equivalent spaces have the same
homology.

13 A quick harvest and two more results about ho-
mology

The sphere Sn has nonzero homology groups exactly in dimensions 0 and n.
Hence Sn is not homotopy equivalent to Sm for m 6= n.

Corollary 13.1. Rm 6∼= Rn for m 6= n.

Proof. A homeomorphism Rm ∼= Rn would yield a homeomorphism Rm \{0} ∼=
Rn\{0}. But Rm\{0} is homotopy equivalent to Sm−1 and Rn\{0} to Sn−1.

Theorem 13.2 (Brouwer’s fixed-point theorem). Every continuous mapping
f : Bn → Bn has a fixed point; i.e., there exists x ∈ Bn with f(x) = x.

Proof. The first step appears in almost all proofs of Brouwer’s theorem. As-
suming for contradiction that there is an f with f(x) 6= x for all x, we construct
a mapping r : Bn → Sn−1 as in the picture:

x

f(x)

Bn

Sn−1
r(x)
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That is, we send a ray from f(x) to x, and r(x) is the point where it hits the
boundary of the ball.

The (hypothetical) mapping r is a retraction of the ball onto the sphere,
meaning that r(Bn) = Sn−1 and on Sn−1, r acts as the identity. Using homol-
ogy, we will show that r cannot exist.

Let i : Sn−1 → Bn stand for the inclusion map. The composition ri is the
identity idSn−1 , so we have the following diagram:

Sn−1
i
//

id

((

Bn
r
// Sn−1

Now we apply the (n− 1)st homology group functor Hn−1(.;Z2) and obtain

Hn−1(Sn−1;Z2) = Z2 i∗
//

id
--

Hn−1(Bn;Z2) = 0 r∗
// Hn−1(Sn−1;Z2) = Z2.

But this is impossible, since an isomorphism Z2
∼= Z2 cannot factor through

the trivial group.

Two nice theorems. We conclude our discussion of homology by presenting
two more advanced results, which may be useful to know about.

The first one is a theorem of Hurewicz relating homology and homotopy
groups. We state a somewhat special case of the theorem, which may be easier
to grasp and remember than the usual general statement.

Theorem 13.3 (Hurewicz). If X is a simply connected space (i.e., π1(X) = 0),
then the first nonzero homotopy group and the first nonzero integral homology
group occur in the same dimension and they are isomorphic. That is, for some
k ≥ 2 (possibly k = ∞) we have πj(X) = Hj(X;Z) = 0 for all j < k, and
πk(X) ∼= Hk(X;Z) 6= 0.

Moreover, for every space X, H1(X;Z) is the Abelianization of π1(X), i.e.,
the quotient of π1(X) by its commutator subgroup.

The second result we want to highlight is concerned with a situation where
we have the sphere Sn and a nonempty proper closed subspace X ⊂ Sn, and we
would like to say something about the topological properties of the complement
Sn \X.

The unit circle S1 can be embedded in S3 in the “standard” way, say as a
great circle, but also in various knotted ways, for example as the trefoil knot.
It can be shown that the complements of the unknotted circle and of the tre-
foil are not homeomorphic (for instance, they have nonisomorphic fundamental
groups). Therefore, the topology of X does not determine the topology of the
complement.

Surprisingly, though, all homology groups of Sn \X are determined by X,
and actually by the cohomology groups of X—this is the claim of a theorem
known as the Alexander duality.

We should stress that our definition of homology using finite simplicial com-
plexes is not adequate for this setting, since even if X is triangulable by a finite
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simplicial complex, its complement is an open set, which does not admit a finite
triangulation.

Thus, one has to use other, more general definitions of homology. With
the most usual one, singular (co)homology, we must make an extra assumption
on X, namely, that X be locally contractible (every point has a contractible
neighborhood). To get a general statement, one uses yet another definition, the
Čech cohomology.12

The last remark before the statement of the Alexander duality is that we
need to use reduced homology and cohomology, which is marked by a tilde above
H. It influences only the 0th (co)homology group: while H0(X;Z) is Zc, where
c is the number of path-connected components of X, H̃0(X;Z) is Zc−1.

Theorem 13.4 (Alexander duality). Let X ⊂ Sn be a nonempty proper closed
subset of the sphere. Then we have, for i = 0, 1, . . . , n− 1,

H̃n−i−1(X;Z) ∼= H̃i(S
n \X;Z),

where we need to use Čech cohomology on the left-hand side in general, and
singular homology on the right-hand side.

For example, the Alexander duality implies that the complement of S1 em-
bedded in S2 has two connected components, which is the contents of the famous
Jordan curve theorem.

14 Manifolds

Manifolds constitute the most studied and most often applied class of topolog-
ical spaces. Motivation and examples, besides pure mathematics, come mainly
from physics, where certain kinds of manifolds play essential role.

A seccond-countable Hausdorff topological space M is a manifold if for
every point x ∈ M there exists an open neighborhood Ux of x in M that is
homeomorphic to some Rn.

Simple examples of manifolds are Rn, Sn, the torus, or the projective plane.
A more challenging type of example is SO(R, n), the group of all rotations in
Rn around the origin, which can be represented by the set of all orthogonal
n× n real matrices with unit determinant. Here the condition in the definition
of a manifold is non-obvious.

The number n in the definition above has to be constant for all points in
every path-connected component of M , and it is called the dimension of that
component. Some authors insist that all components have the same dimension
as well (in this case we speak of an n-manifold and sometimes write Mn), while
others admit combining components of different dimensions, but this is just a
matter of convention.

12All of these definitions agree with the simplicial one in the case of triangulable spaces,
and they differ for quite pathological sets.
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The assumption “second-countable and Hausdorff” is made to exclude patholo-
gies such as the long ray of Example (F) in Section 2. Actually, most texts focus
on compact manifolds, where a number of annoying technical difficulties disap-
pear, and we will follow the suit. As examples of non-compact manifolds, one
may think of an infinite cylinder or an infinite string of tori.

A manifold with boundary is defined in almost the same way as a mani-
fold, only the neighborhood Ux is allowed to be homeomorphic either to Rn or
to a closed halfspace in Rn.

The points with a neighborhood homeomorphic to Rn are called interior
points, and the remaining points form the boundary.

An obvious example of a manifold with boundary is the ball Bn. For a more
interesting one, let us consider a knot in S3. Mathematically, a knot is an S1

embedded in S3, but fancier drawings of knots show a thickened S1: we imagine
that we drill a thin non-self-intersecting tunnel in S3 along the embedded S1.

If we consider the tunnel T as an open set, so that S3 \T is closed, then S3 \T
is a 3-manifold with boundary called a knot manifold.

Atlases and additional structures on manifolds. The manifolds we have
defined above are topological manifolds, i.e., topological spaces satisfying an
additional condition. But very often one wants a manifold to carry more struc-
ture, in order to calculate derivatives of functions in given directions, tangent
spaces, curvature, and similar quantities, to integrate real functions or more
complicated quantities, to set up and solve differential equations, or to do all
kinds of other mathematics. Indeed, historically manifolds have emerged as an
abstraction of such situations in various areas, most notably in the geometry of
surfaces, theory of elliptic integrals, complex analysis, and analytical mechanics.

A device for introducing such additional structures on a manifold is an
atlas. An atlas for a manifold Mn is a collection of pairs (Uα, ϕα)α∈Λ, where
each Uα is an open subset of Mn, and ϕα : Uα → Rn is a homeomorphism of
the set Uα with an open subset of Rn. Unlike in atlases of Earth, the pairs
(Uα, ϕα) are called charts, not maps,13 but otherwise, an atlas of Earth gives a
good example. All charts together are required to cover all of Mn.

An important concept is a transition map. It is a mapping that answers
the question, If I am now here on my map, am I also on your map, and where?
More formally, if Uα∩Uβ 6= ∅, the transition map τα,β is the composition ϕβϕ

−1
α ,

which goes from ϕα(Uα ∩ Uβ) to ϕβ(Uα ∩ Uβ), both open sets in Rn.

13Or actually, sometimes the ϕα are also called coordinate maps.
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Rn Rn

Mn

Uα Uβ

ϕα ϕβ

τα,β

An atlas is called differentiable (or smooth) if all of the transition maps are
of the class C∞, i.e., if they have continuous partial derivatives of all orders (this
is well defined since the transition maps are mappings between open subsets
of Rn). A differentiable or smooth manifold is a manifold equipped with
a differentiable atlas. (One also says that the manifold has a differentiable
structure.)

Informally, one can think of the differentiablity of an atlas as follows: a path
that is drawn as a smooth curve on one of the charts must be smooth on all
other charts.

The point of this definition is that on such a manifold, we can define which
real functions are differentiable, and develop a (coordinate-free) calculus for
them (the latter belongs to differential geometry and we will not discuss it
here). Namely, a function f : Mn → R is differentiable if each of the functions
fϕ−1

α is differentiable (C∞) in the usual sense. The assumed differentiability of
the transition maps guarantees that this definition is globally consistent.

In a similar way, one could define a Ck-atlas for given k; we recall that
Ck is the class of functions with continuous partial derivatives up to order k.
However, these are seldom mentioned in the literature.

The reason is a theorem of Whitney, stating that once a manifold has a Ck

structure S, there is a unique C∞ structure S′ on it that is equivalent, as a
Ck-structure, to S. So in this sense, there is only one notion of differentiable
manifold.

What differentiable structures are possible on the most basic manifolds like
Rn or Sn? It seems hard to imagine that there could be any others but the
standard ones, but people studying this question discovered quite strange phe-
nomena.

As for Rn, the differentiable structure is unique for all n except for n = 4,
where there are uncountably many mutually nonequivalent differentiable struc-
tures.

The first exotic sphere, i.e., a sphere with differentiable structure not equiv-
alent to the standard one, was discovered by Milnor in dimension 7, and later
it was found that S7 admits 28 nonequivalent structures. The general picture
is quite complicated and it is, among others, related to the stable homotopy
groups of spheres; in some dimensions there is just one structure, and typically
there are finitely many.

The recipe for defining differentiable manifold is quite general. Once we
require that the transition maps of an atlas belong to some particular class of
mappings, we can say that the corresponding manifold is of that class. The lit-
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erature abounds with such classes; e.g., analytic manifolds, complex manifolds,
symplectic manifolds, or contact manifolds.

Another important class, whose definition does not fit the pattern above,
though, are Riemannian manifolds—see, e.g., the book [Ber03] for interesting
views of Riemannian geometry, which we neglect here completely.

Two, three, four, many. The difficulty of studying manifolds depends very
much on their dimension. And surprisingly, the dependence is not “the higher
dimension, the harder” as one might perhaps expect—it is four-dimensional
manifolds that pose the most tantalizing questions, while dimension 5 and above
are again easier.

Two-dimensional manifolds. This is a classical area presented in many
textbooks. There is a well known complete classification of compact 2-dimensional
manifolds, also known as 2-dimensional closed surfaces.

Up to homeomorphism, they fall into two groups: the orientable ones, con-
sisting of the spere S2, the torus, the double torus, etc. (all are obtained by
attaching handles to the sphere), and the unorientable ones, which are the pro-
jective plane, the Klein bottle, and others that can be constructed by attaching
handles to one of these two. The compact 2-manifolds with boundary are ob-
tained from the ones without boundary by cutting out finitely many disjoint
disks.

Three-dimensional manifolds. Lots of knowledge has been accumulated
about these, although outstanding problems still remain, many of them of al-
gorithmic nature. The techniques are mostly very specific to this area, which
is almost separate from the rest of topology.

A basic tool for three-dimensional manifolds is the theory of normal surfaces,
which was originally developed by Haken in order to get an algorithm for testing
whether a given (piecewise linear) embedding S1 → S3 is knotted.

Let us make a digression and sketch the main ideas of this beautiful algo-
rithm. It is well known that an embedding of S1 in S3 is unknotted exactly if
there is a disk D embedded in S3 such that the embedded S1 is its boundary.
Given an embedded S1, the algorithm considers the corresponding knot mani-
fold M (i.e., S3 minus the slightly thickened knot) and searches for a suitable
embedded disk D in M (such that the boundary of D is contained in the torus
bounding M and goes “once around” it). We assume that M is triangulated,
and that the triangulation has t tetrahedra.

Assuming that such a D exist, we pull it taut within M and then perturb it
slightly. Then the intersection of D with each tetrahedron is of the type shown
in the picture:

Each component of the intersection is either a triangle, one of four possible
types, or a quadrilateral, one of three possible types (where two types of quadri-
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laterals cannot coexist in a single tetrahedron). (A normal surface in general is
a surface in M whose intersections with all tetrahedra have the just explained
form.)

For every tetrahedron τ , we write down 7 nonnegative integers, correspond-
ing to the number of components of the intersection D ∩ τ of each of the 7
possible types, where the types are enumerated in some fixed order. Doing this
for every tetrahedron, we obtain a vector vD ∈ Z7t

≥0, the coordinate vector of D.
The coordinate vector describes D uniquely up to a continuous deformation

within M . Moreover, given a vector v ∈ Z7t
≥0, we can check whether it actually

describes the desired disk D witnessing unknotedness.
Of course, this does not yet give an algorithm, since there are infinitely

many nonnegative integer vectors. We observe that by far not all such vectors
actually describe a surface in M ; one necessary condition is that the vectors
be compatible on the boundaries of the tetrahedra. That is, if T is a triangle
bounding a tetrahedron τ , then the components of the coordinate vector vD
corresponding to τ determine the number and type of segments of D∩T . Since
each triangle, except for those on the boundary of M , bounds two tetrahedra,
it imposes a condition on vD, which can be expressed as several homogeneous
linear equations for the components of vD.

Thus, it suffices to look for the desired coordinate vector vD only among
the (nonnegative) solutions of the linear system expressing the compatibility
conditions.

Now, crucially, it can be shown (nontrivially) that we can restrict the search
to fundamental solutions, where a solution v is fundamental if it cannot be
written as v = v1 + v2, where both v1 and v2 are nonzero solutions.

A basic result in the theory of integral cones asserts that a system of m
linear equations (and possibly inequalities) with n unknowns and with integer
coefficients has only a finite number of fundamental nonnegative solutions, and
this number can be bounded by a function of m,n, and of the size of the
coefficients. The fundamental solutions can also be enumerated algorithmically.

The algorithm thus consists in generating all fundamental solutions and
testing each of them if it provides the desired disk D. We refer to Hass et
al. [HLP99] for a more detailed presentation.

Algorithms obtained by the method of normal surfaces are typically at least
exponential, and the existence of polynomial-time algorithms for some of the
problems (e.g., recognizing whether a given simplicial complex is a triangulation
of S3, or detecting knotedness) presents fascinating questions.

Another, more recent tool for studying 3-mainfolds, comes from Thurston’s
geometrization conjecture. Roughly speaking, the conjecture asserts that every
compact orientable 3-manifold (without boundary) can be cut into finitely many
pieces so that each of the pieces can be endowed with one of 8 very special
geometries.

Here “geometry” basically means metric; more precisely, a Riemannian met-
ric. To give a simple example, let us consider 2-dimensional manifolds first. The
sphere S2 with the geodesic metric (measuring shortest distance along the sur-
face) has constant positive curvature. It turns out that S2 is the only orientable
2-manifold that can be given a geometry of constant positive curvature. The

64



torus, for example, admits a flat (zero-curvature) Euclidean geometry, and the
double torus a hyperbolic, constant negative curvature geometry. The uni-
formization theorem implies that every compact 2-manifold can be endowed
with one of these three types of geometry.

The geometrization conjecture is a similar kind of statement, except that the
3-manifold must in general be cut into “geometrizable” pieces, and that there
are 8 possible geometries, some of them quite exotic-looking. But knowing the
geometry provides very good understanding of the considered manifold.

The geometrization conjecture was proved by Perel’man in 2003, building
on the work of Thurston and Hamilton, by an approach through a nonlinear
partial differential equation (Perel’man’s techniques have also had great impact
in PDE’s).

The most celebrated result of Perel’man, which is a consequence of the
geometrization conjecture but does not need the full strength of it, was a proof
of the Poincaré conjecture.

Poincaré was initially wondering whether the homology groups characterize
the 3-sphere among compact 3-manifolds. Soon he found a counterexample,
known as the Poincaré homology sphere, one of the important and elegant ex-
amples in topology, which has a nontrivial fundamental group and thus cannot
be homeomorphic to S3. So next he asked whether every compact simply con-
nected 3-manifold is homeomorphic to S3, and this is what became known as the
Poincaré conjecture (and one of the Clay Institute’s “Millennium Problems”).

A (nontrivial) reformulation of the Poincaré conjecture is whether every 3-
manifold homotopy equivalent to S3 must also be homeomorphic to S3, and in
this form, it makes sense for every dimension n. This is the generalized Poincaré
conjecture.

Interestingly, the n = 3 was the last case to be solved: the generalized
Poincaré conjecture for n ≥ 5 was proved in the 1960s, and for n = 4 in 1982.

Dimensions 5 and more. Five- and higher-dimensional manifolds were
originally thought to be even more difficult than four-dimensional ones, but after
a breakthrough of Smale in the 1960s, they are now much better understood,
especially in the differentiable case. Smale proved a celebrated result known as
the h-cobordism theorem, claiming that certain kind of equivalence of simply
connected manifolds in dimension at least 5 actually implies homeomorphism.
An immediate consequence was the generalized Poincaré conjecture for n ≥ 5.

Later on, a surgery theory was developed, which provides an algebraic clas-
sification of in these dimensions manifolds. Since homeomorphism of two given
triangulated manifolds of every dimension n ≥ 4 is algorithmically undecidable,
the classification is “inefficient” in a sense, but it has been used with success to
solve various concrete problems. For example, these methods have been used
in the classification of exotic spheres (nonequivalent differential structures in
Sn), as well as in results related to the Hauptvermutung and triangulability of
manifolds mentioned earlier.

Four-dimensional manifolds. These are the most problematic ones. Some
of the higher-dimensional theory was extended, mainly by Freedman, to work
with 4-dimensional topological manifolds (and in this way the generalized Poincaré
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conjecture was also proved for n = 4), but not at all for differentiable manifolds,
and basic questions about them remain unresolved.

Scorpan’s book [Sco05] is devoted to 4-manifolds, has many nice pictures,
and in the first part it also explains material around the h-cobordism theorem,
how things work for dimension 5 and more and why they fail in dimension 4.

15 Literature

A usual source for general topology is Kelley [Kel75]; our favorite book is En-
gelking [Eng89]. For an accessible introduction to combinatorial and algebraic
topology the best recommendation we can provide are two books of Prasolov
[Pra06, Pra07] (in [Pra95] the same author explains quite sophisticated topo-
logical examples almost entirely by intuitive pictorial problems and challenges
[Pra95]). A standard, on-line accessible, and quite readable (not to be confused
with easy) textbook of algebraic topology is Hatcher [Hat01].

For manifolds, differential topology and such the literature is vast, and some
references have already been given earlier. For the beginning it is advisable to
read Milnor; all of his books and lecture notes, although quite old by now, seem
hard to beat in quality and accessibility.

A good, if a bit dated, introduction to knots and 3-dimensional topology is
Rolfsen [Rol90]. Hempel [Hem76] is a book on 3-manifolds. Category theory
is presented in [ML98] by its inventor; another more recent book is Adámek et
al. [AHS06].
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