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Abstract

We consider several basic problems of algebraic topology, with connections to combi-
natorial and geometric questions, from the point of view of computational complexity.

The extension problem asks, given topological spaces X,Y , a subspace A ⊆ X, and a
(continuous) map f : A→ Y , whether f can be extended to a map X → Y . For computa-
tional purposes, we assume that X and Y are represented as finite simplicial complexes,
A is a subcomplex of X, and f is given as a simplicial map. In this generality the problem
is undecidable, as follows from Novikov’s result from the 1950s on uncomputability of the
fundamental group π1(Y ). We thus study the problem under the assumption that, for
some k ≥ 2, Y is (k − 1)-connected; informally, this means that Y has “no holes up to
dimension k − 1” (a basic example of such a Y is the sphere Sk).

We prove that, on the one hand, this problem is still undecidable for dimX = 2k. On
the other hand, for every fixed k ≥ 2, we obtain an algorithm that solves the extension
problem in polynomial time assuming Y (k − 1)-connected and dimX ≤ 2k − 1. For
dimX ≤ 2k− 2, the algorithm also provides a classification of all extensions up to homo-
topy (continuous deformation). This relies on results of our SODA 2012 paper, and the
main new ingredient is a machinery of objects with polynomial-time homology, which is a
polynomial-time analog of objects with effective homology developed earlier by Sergeraert
et al.

We also consider the computation of the higher homotopy groups πk(Y ), k ≥ 2, for
a 1-connected Y . Their computability was established by Brown in 1957; we show that
πk(Y ) can be computed in polynomial time for every fixed k ≥ 2. On the other hand,
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Anick proved in 1989 that computing πk(Y ) is #P -hard if k is a part of input, where
Y is a cell complex with certain rather compact encoding. We strengthen his result to
#P -hardness for Y given as a simplicial complex.

1 Introduction

This survey summarizes the results of the three papers [12, 5, 4]. Together these comprise well
over 100 pages, and they deal with numerous moderately advanced topological concepts, as
well as many algorithmic notions and results. Here we provide an overview of the background,
results, and some of the main concepts and ideas. It is aimed at computer scientists with
interest in topological questions.

1.1 The topological questions

We are going to talk about topological spaces or simply spaces. This is a very general notion
but for algorithmic questions we are concerned only with spaces that can be represented as
subspaces of finite-dimensional Euclidean spaces Rn. Moreover, the considered spaces are
locally nice and have a combinatorial description: each can be given as a finite simplicial
complex ; informally, this means that the space can be built from finitely many simplices of
various dimensions by gluing some of them face-to-face. (Actually, we are using simplicial
complexes mainly for public relations purposes, since we assume that most readers have
heard about them. Our algorithms really work with the more flexible and more sophisticated
notion of simplicial sets, to be introduced later, and some of the spaces encountered in the
computations will even be infinite-dimensional.)

All maps up to homotopy. One of the central themes in algebraic topology is understand-
ing the structure of all continuous maps X → Y , for given spaces X and Y (all maps between
topological spaces in this paper are assumed to be continuous). The set of all such maps is
usually uncountable, but in algebraic topology, the maps are divided into equivalence classes
according to homotopy : two maps f, g : X → Y are homotopic if one can be continuously
deformed into the other.1 The set of all homotopy classes of maps X → Y is denoted by
[X,Y ], and in many cases of interest it exhibits interesting structure.

The simplest nontrivial example is [S1, S1], self-maps of the unit circle. Up to homotopy,
a map S1 → S1 is uniquely described by its winding number, which is an integer (positive,
negative, or zero) counting how many times the image goes around the target S1. This is
generalized by a famous result of Hopf from the 1930s, asserting that the homotopy class of a
map f : Sn → Sn, between two spheres of the same dimension, is in one-to-one correspondence
with an integer parameter, the degree of f , which counts how many times the image “wraps
around” the target. Another great discovery of Hopf, with ramifications in modern physics
and elsewhere, was a map η : S3 → S2, now called by his name, that is not homotopic to a
constant map.

Homotopy groups. These are early results in the theory of higher homotopy groups, which
belong among the most important invariants of a space. We recall that the kth homotopy
group πk(Y ) of a space Y is defined as the set of all homotopy classes of pointed maps

1More precisely, f and g are defined to be homotopic, in symbols f ∼ g, if there is a continuous F : X ×
[0, 1] → Y such that F (·, 0) = f and F (·, 1) = g. With this notation, [X,Y ] = {[f ] : f : X → Y }, where
[f ] = {g : g ∼ f} is the homotopy class of f .
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f : Sk → Y , i.e., maps f that send a distinguished point s0 ∈ Sk to a distinguished point
y0 ∈ Y (and the homotopies F also satisfy F (s0, t) = y0 for all t ∈ [0, 1]).2 The group
operation in πk(Y ) will be defined at the end of Section 2 below. The fundamental group
π1(Y ) need not be commutative, while for k ≥ 2, the πk(Y ) are commutative (Abelian).

One of the important challenges propelling the research in algebraic topology has been
the computation of the homotopy groups of spheres πk(S

n). Many ingenious insights and
amazing methods have been developed for this purpose, see, e.g., [19, 11], but still the πk(S

n)
remain among the most puzzling objects of mathematics.3

The extension problem. This is another very basic topological question: given spaces
X,Y , a subspace A ⊆ X, and a map f : A→ Y , can f be extended to a map X → Y ?

For example, the famous Brouwer fixed-point theorem can be re-stated as non-extendability
of the identity map Sn → Sn to the ball Dn+1. A number of topological concepts and results,
some of which may look quite advanced and esoteric to a newcomer, were motivated by
attempts at a stepwise solution of the extension problem. In particular, cohomology theory was
born in the study of [Xk, Sk], where Xk is a k-dimensional space, investigating [Xk+1, Sk] led
to the discovery of Steenrod squares, and [Xk+2, Sk] motivated Adém’s operation and deeper
study of the Steenrod algebra. We refer to [32] for a lucid exposition of early developments in
this direction.

The equivariant setting. A Z/2-space can be defined as a pair (X, ν), where ν : X → X
is a homeomorphism satisfying ν2 = idX (which defines an action of the group Z/2 on X—
whence the name). A primary example of a Z/2-space is a sphere Sk with the antipodal
action x 7→ −x. An equivariant map between Z/2-spaces (X, ν) and (Y, ω) is a continuous
map f : X → Y such that f commutes with the Z/2-actions, i.e., fν = ωf .

Our original motivation for working on the problems discussed in this paper was the
computation of the Z/2-index (or genus) ind(X) of a Z/2-space X, i.e., the smallest k such
that X can be equivariantly mapped into Sk.

This problem arises, among others, in the problem of embeddability of topological spaces,
which is a classical and much studied area (see, e.g., the survey [29]). One of the basic
questions here is, given a k-dimensional finite simplicial complex K, can it be (topologically)
embedded in Rd? The celebrated Haefliger–Weber theorem from the 1960s asserts that,
in the metastable range of dimensions, i.e., for k ≤ 2

3d − 1, embeddability is equivalent to
ind(K2

∆) ≤ d− 1, where K2
∆ is a certain Z/2-space constructed from K (the deleted product).

Thus, in this range, the embedding problem is, computationally, a special case of Z/2-index
computation; see [14] for a study of algorithmic aspects of the embedding problem, where the
metastable range was left as one of the main open problems.

The Z/2-index also appears as a fundamental quantity in combinatorial applications of
topology. For example, the celebrated result of Lovász on Kneser’s conjecture can nowadays
be re-stated as χ(G) ≥ ind(B(G)) + 2, where χ(G) is the chromatic number of a graph G,
and B(G) is a certain simplicial complex constructed from G (see, e.g., [13]).

2Strictly speaking, one should really write πk(Y, y0) but for a path-connected Y , the choice of y0 does not
matter.

3A dream project would be to show some kind of hardness for computing πk(Sn); at the moment we do
not see any promising approach, though.
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1.2 Computational complexity

We are interested in the computational complexity of the problems from the previous section.
First of all, we should point out that, by classical uncomputability results in topology,

most of these problems are algorithmically unsolvable if we place no restriction on the space Y .
Indeed, given a finite simplicial complex Y , which may even be assumed to be 2-dimensional,
it is undecidable whether π1(Y ) is trivial (by a result of Adjan and of Rabin; see, e.g.,
the survey [31]). The triviality of π1(Y ) is equivalent to [S1, Y ] having only one element,
represented by the constant map, and so [S1, Y ] is uncomputable in general. Moreover, by
the Boone–Novikov theorem, it is undecidable whether a given pointed map f : S1 → Y is
homotopic to a constant map, and this homotopy triviality is equivalent to the extendability
of f to the 2-dimensional ball D2. Therefore, the extension problem is undecidable as well.
(For undecidability results concerning numerous more loosely related topological problems we
refer to [31, 18, 17] and references therein.)

In these undecidability results, all the difficulty stems from the intractability of the fun-
damental group of Y . Thus, a reasonable restriction is to assume that π1(Y ) is trivial (which
in general cannot be tested, but in many cases of interest it is known), or more generally, that
Y is (k− 1)-connected, meaning that πi(Y ) is trivial for all i ≤ k− 1. A basic and important
example of a (k − 1)-connected space is the sphere Sk.

For a long time, the only positive result concerning the computation of [X,Y ] was that
by Brown [2] from 1957. He showed that [X,Y ] is computable under the assumption that
Y is 1-connected and all the higher homotopy groups πi(Y ), 2 ≤ i ≤ dimX, are finite (this
is a strong assumption, not satisfied by spheres, for example). Then he went on to show
computability of πk(Y ), k ≥ 2, for all 1-connected Y .

In the 1990s, three independent collections of works appeared with the goal of making
various more advanced methods of algebraic topology effective (algorithmic): by Schön [26],
by Smith [30], and by Sergeraert, Rubio, Dousson, and Romero (e.g., [27, 23, 21, 24]; also
see [25] for an exposition). New algorithms for computing higher homotopy groups follow
from these methods; see Real [20] for an algorithm based on Sergeraert et al. The problem
of computing [X,Y ] and the extension problem were not addressed in those papers, but we
rely on methods developed by Sergeraert et al. in implementing numerous operations in our
algorithms.

In a previous paper [3], we gave an algorithm that computes [X,Y ] under the restriction
that, for some k ≥ 2, Y is (k− 1)-connected and dimX ≤ 2k− 2. More precisely, it is known
that [X,Y ] has a canonical structure of an Abelian group under these conditions, and the
algorithm computes its isomorphism type. We conjectured that the algorithm can be made
to run in polynomial time for every fixed k, and here we prove this conjecture (Corollary 1.4
below).

1.3 New results

Higher homotopy groups. For k fixed, πk(Y ) is polynomial-time computable:

Theorem 1.1 For every fixed k ≥ 2, there is a polynomial-time algorithm that, given a 1-
connected finite simplicial complex Y , computes (the isomorphism type of) the kth homotopy
group πk(Y ).
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Here and in the sequel, the size of a simplicial complex is measured as the number of
simplices. The isomorphism type of the Abelian group πk(Y ) is represented as a direct sum
of cyclic groups.

If k is a part of input, computing πk(Y ) is #P -hard:

Theorem 1.2 The following problem is #P-hard: Given a finite 4-dimensional 1-connected
simplicial complex Y and an integer k coded in unary, compute rank(πk(Y )), i.e., the number
of direct summands of πk(Y ) isomorphic to Z.

This looks very similar to a result of Anick [1], but there is an important difference: his
input Y is a cell complex, rather than a simplicial complex, and if one converts his Y into a
simplicial complex in a standard manner, the number of simplices is going to be exponentially
large in the input size of the original cell complex, thus rendering the #P-hardness result
meaningless for simplicial complexes. We devise another way of converting Anick’s Y into a
simplicial complex, which produces only polynomially many simplices.4 The idea is simple,
but there are several technical issues to be worked out; we refer to [4] for the derivation of
Theorem 1.2 from Anick’s result.

Computing a Postnikov system. The algorithm for computing πk(Y ) in Theorem 1.1
is a by-product of an algorithm for computing the first k stages of a (standard) Postnikov
system for Y . In this respect it is similar to the algorithm of Brown [2].

A Postnikov system of a space Y is, roughly speaking, a way of building Y (or rather, a
space homotopy equivalent to Y ) from “canonical pieces”, called Eilenberg–MacLane spaces,
whose homotopy structure is the simplest possible. A Postnikov system has countably many
stages P0, P1, . . ., where Pk reflects the homotopy properties of Y up to dimension k, and in
particular, πi(Pk) ∼= πi(Y ) for all i ≤ k, while πi(Pk) = 0 for i > k. The isomorphisms of
the homotopy groups for i ≤ k are induced by maps ϕi : Y → Pk, which are also part of the
Postnikov system. Moreover, there is a mapping ki defined on Pi, called the ith Postnikov
class; together with the group πi+1(Y ) it describes how Pi+1 is obtained from Pi, and it is
of fundamental importance for dealing with maps from a space X into Y . We will say more
about Postnikov systems later on; now we state the result somewhat informally.

Theorem 1.3 (informal) For every fixed k ≥ 2, given a 1-connected space Y represented
as a finite simplicial complex, a suitable representation of the first k stages of a Postnikov
system for Y can be constructed in polynomial time, in such a way that each of the mappings
ϕi, i ≤ k, and ki, i ≤ k − 1, can be evaluated in polynomial time.

Some of the tools and methods from the proof are sketched in Section 3, and for a full
proof we refer to [5].

Computing the structure of all maps. In the algorithm for computing [X,Y ] from our
previous paper [3] mentioned above, the stage P2k−2 of the Postnikov system of Y is used as an
approximation to Y , since for every 1-connected Y and every X of dimension at most 2k− 2,

4The simplicial complex is only homotopy equivalent to Y . We recall that spaces X and Y are homotopy
equivalent if there are maps f : X → Y and g : Y → X such that the compositions fg ∼ idY and gf ∼ idX .
Equivalently, homotopy equivalence of X and Y can be thought of as follows: there is another space Z
that can be “continuously shrunk” to both X and Y (the technical term for continuous shrinking here is
deformation retraction). As far as questions “up to homotopy” are concerned, homotopy equivalent X and Y
are indistinguishable, and in particular, πk(X) = πk(Y ) for all k ≥ 0.
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there is an isomorphism [X,Y ] ∼= [X,P2k−2], induced by the composition with the mapping
ϕ2k−2 : Y → P2k−2. At the same time, the continuous maps X → P2k−2 are easier to handle
than the maps X → Y : each of them is homotopic to a simplicial, and thus combinatorially
described, map, and it is possible to define (and implement) a binary operation on P2k−2

which induces the group structure on [X,P2k−2]. This, in a nutshell, explains the usefulness
of the Postnikov system for dealing with maps into Y .

As a direct consequence of the main result of [3] and of Theorem 1.3, we obtain the
following.

Corollary 1.4 (based on [3]) For every fixed k ≥ 2 there is a polynomial-time algorithm
that, given finite simplicial complexes X,Y , where dim(X) ≤ 2k−2 and Y is (k−1)-connected,
computes the isomorphism type of [X,Y ] as an Abelian group.

The extension problem. Here polynomial-time decidability can be pushed even by one
dimension of X higher, compared to Corollary 1.4.

Theorem 1.5 Let k ≥ 2 be fixed. Then there is a polynomial-time algorithm that, given finite
simplicial complexes X and Y with Y (k − 1)-connected and dimX ≤ 2k − 1, a subcomplex
A ⊆ X, and a simplicial map5 f : A → Y , decides whether f admits an extension to a map
( not necessarily simplicial) X → Y .

This is a simple extension of Corollary 1.4, presented in [5]; for dimX ≤ 2k − 2, the
algorithm even finds a certain description of the set of all possible extensions up to homotopy.

Undecidability. Next, we present results showing that the assumption of Y (k − 1)-
connected and dimX ≤ 2k−1 in Theorem 1.5, which may look artificial at first sight, is sharp,
in the sense that for dimX = 2k the extension problem becomes undecidable. Moreover, we
show that either X or Y can be fixed once and for all, and undecidability still holds.

Theorem 1.6 Let k ≥ 2 be fixed.

(a) There is a fixed (k−1)-connected finite simplicial complex Y = Yk such that the following
problem is algorithmically unsolvable: given finite simplicial complexes X and A, A ⊆
X, with dimX = 2k, and a simplicial map f : A → Y , decide whether there exists a
continuous map X → Y extending f . For k even, Yk can be taken as the sphere Sk.

(b) There exist fixed finite simplicial complexes A = Ak and X = Xk, with A ⊆ X and
dimX = 2k, such that the following problem is algorithmically unsolvable: given a
finite (k − 1)-connected simplicial complex Y and a simplicial map f : A → Y , decide
whether there exists a continuous map X → Y extending f .

A proof is given in [4], and some of the ideas are outlined in Section 4.
While most of the previous undecidability results in topology rely on the word problem in

groups and its relatives, our proof of Theorem 1.6 relies on undecidability of Hilbert’s tenth
problem, which is the solvability of a system of polynomial Diophantine equations, i.e., the
existence of an integral solution of a system of the form

pi(x1, . . . , xn) = 0, i = 1, 2, . . . ,m, (1)

5A simplicial map A → Y maps each simplex of A onto a simplex of Y of the same or lower dimension.
It is fully specified by a map of the vertex set of A into the vertex set of Y , and thus it provides a finite
representation of a continuous map.
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where p1, . . . , pm are n-variate polynomials with integer coefficients.

Remark on the equivariant setting. In a forthcoming paper, which is not discussed
in this survey, we extend some of the results presented above to the equivariant setting. In
particular, we show that ind(X) can be computed if dimX ≤ 2 ind(X)−1. On the other hand,
we conjecture that, for every k ≥ 2, the question “Does ind(X) = k?” for a (2k)-dimensional
Z/2-space X is undecidable.

2 Topological preliminaries

Simplicial sets. A simplicial set is a way of specifying a topological space in purely
combinatorial terms. We refer to [7, 28] for a more comprehensive introduction.

Similar to a simplicial complex, a simplicial set is a space built of vertices, edges, triangles,
and higher-dimensional simplices, but simplices are allowed to be glued to each other and to
themselves in more general ways. For example, one may have several 1-dimensional simplices
connecting the same pair of vertices, a 1-simplex forming a loop, two edges of a 2-simplex
identified to create a cone, or the boundary of a 2-simplex all contracted to a single vertex,
forming an S2.

Another new feature of a simplicial set, in comparison with a simplicial complex, is the
presence of degenerate simplices. For example, the edges of the triangle with a contracted
boundary (in the last example above) do not disappear, but each of them becomes a degenerate
1-simplex.

A simplicial set X is represented as a sequence (X0, X1, . . .) of mutually disjoint sets,
where the elements of Xk are called the k-simplices of X (unlike for simplicial complexes,
there can be many simplices with the same vertex set). For every k ≥ 1, there are mappings
∂0, . . . , ∂k : Xk → Xk−1 called face operators; the intuitive meaning is that for a simplex
σ ∈ Xk, ∂iσ is the face of σ opposite to the ith vertex. Moreover, for k ≥ 0 there are
mappings s0, . . . , sk : Xk → Xk+1 (opposite direction) called the degeneracy operators; the
approximate meaning of siσ is the degenerate simplex which is geometrically identical to σ,
but with the ith vertex duplicated. A simplex is called degenerate if it lies in the image of
some si; otherwise, it is nondegenerate. There are natural axioms that the ∂i and the si have
to satisfy, but we will not list them here, since we will not really use them.

There is a simple canonical way of converting a simplicial complex into a simplicial set—
essentially we just add degenerate simplices in the only possible way.

Every simplicial set X specifies a topological space |X|, the geometric realization of X. It
is obtained by assigning a geometric k-dimensional simplex to each nondegenerate k-simplex
of X, and then gluing these simplices together according to the face operators; we refer to
the literature for the precise definition.

Product. The product X × Y of simplicial sets X and Y is the simplicial set whose
k-simplices are ordered pairs (σ, τ), where σ ∈ Xk and τ ∈ Yk. The face and degeneracy
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operators are applied to such pairs componentwise. On the level of geometric realizations,
this product corresponds to the usual Cartesian product of spaces.

Simplicial maps. For simplicial sets X,Y , a simplicial map f : X → Y is a sequence (fk)
∞
k=0

of maps fk : Xk → Yk (every k-simplex is mapped to a k-simplex) that commute with the
face and degeneracy operators, i.e., ∂ifk = fk−1∂i and sifk = fk+1si.

Every simplicial map f : X → Y defines a continuous map ϕ : |X| → |Y | of the geometric
realizations. Of course, not all continuous maps are induced by simplicial maps, but there is
a very important class of Kan simplicial sets, with the following crucial property: if Y is a
Kan simplicial set and X is any simplicial set, then every continuous map ϕ : |X| → |Y | is
homotopic to (the geometric realization of) some simplicial map f : X → Y . This is essential
in the algorithmic treatment of continuous maps. Here we omit the definition of a Kan
simplicial set, since we will not directly use it. An example will be given a little later.

Chain complexes and homology. Besides the homotopy groups πk(X), the homology
groups Hk(X) and cohomology groups Hk(X) belong to the most important topological
invariants of a space X. Homology and cohomology are generally considered much easier
to handle than homotopy, and in particular, computationally they are quite well understood
and, for most purposes, they can be regarded as “easy.”

Here we will use homology and cohomology as auxiliary devices, and we will only set up
some basic notation, referring to standard textbooks for an introduction. For our purposes, in
accordance with standard textbooks of topology, a chain complex C∗ is a sequence (Ck)k∈Z of
free Abelian groups, together with a sequence (dk : Ck → Ck−1)k∈Z of group homomorphisms
that satisfy the condition dk−1dk = 0. The Ck are the chain groups, their elements are called
k-chains, and the dk the differentials. We also recall that Zk = Zk(C∗) := ker dk ⊆ Ck is the
group of cycles, Bk = Bk(C∗) := im dk+1 ⊆ Zk is the group of boundaries, and the quotient
group Hk(C∗) := Zk/Bk is the kth homology group of C∗.

With a simplicial set X we associate the normalized chain complex C∗(X), in which the
kth chain group Ck(X) consists of k-chains that are formal sums c =

∑
σ∈Xndg

k
ασ · σ, where

Xndg
k stands for the set of all k-dimensional nondegenerate simplices of X and the ασ are

integers, only finitely many of them nonzero. The differentials are defined in a standard way
using the face operators: for k-chains of the form 1 · σ, which constitute a basis of Ck(X),
we set dk(1 · σ) :=

∑k
i=0(−1)i · ∂iσ (some of the ∂iσ may be degenerate simplices; then they

are ignored in the sum), and this extends linearly to all k-chains. The homology of C∗(X)
coincides with the homology of the geometric realization of X defined in the usual way.

Let C∗ and C̃∗ be two chain complexes. A chain map f : C∗ → C̃∗ is a sequence (fk)k∈Z
of homomorphisms fk : Ck → C̃k satisfying fk−1dk = d̃kfk. A simplicial map f : X → Y of
simplicial sets induces a chain map f∗ : C∗(X)→ C∗(Y ) in the obvious way.

Cohomology. Given a chain complex C∗ and an Abelian group π, we define its kth
cochain group with coefficients in π as Ck(C∗;π) := Hom(Ck, π) (all homomorphisms of Ck
into π) with pointwise addition. Its elements are called k-cochains. The coboundary operator
δk : Ck(C∗;π)→ Ck+1(C∗;π) is given by (δkc

k)(ck+1) := ck(dk+1ck+1) for every k-cochain ck

and every (k + 1)-chain ck+1.
If X is a simplicial set, we abbreviate Ck(C∗(X);π) to Ck(X;π). Here a k-cochain can be

specified by its values on the standard basis of Ck(X), and thus it can be viewed, in a more
pedestrian way, as an arbitrary labeling of the nondegenerate k-simplices of X by elements of
π. If X has infinitely many nondegenerate k-simplices, then a k-cochain is an infinite object,

8



unlike a k-chain.
Given a chain complex C∗, B

k = Bk(C∗;π) := im δk−1 is the group of k-coboundaries,
Zk = Zk(C∗;π) := ker δk the group of k-cocycles, and Hk = Hk(C∗;π) := Zk/Bk is the kth
cohomology group with coefficients in π.

Eilenberg–MacLane spaces, and K(Z, 1) in particular. As was mentioned in the
introduction, Eilenberg–MacLane spaces are basic building blocks of Postnikov systems. For
an Abelian group π and an integer k ≥ 1, the Eilenberg–MacLane space K(π, k) is defined
as a topological space T with πk(T ) ∼= π and πi(T ) = 0 for all i 6= k. In the realm of “nice”
spaces, namely, CW-complexes, this defines K(π, k) uniquely up to homotopy equivalence.

We will work with a standard way of representing K(π, k) as a Kan simplicial set, and we
reserve the symbol K(π, k) for this particular simplicial representation.

Crucially, the maps from a simplicial set X into K(π, k) have a relatively simple de-
scription. Namely, all simplicial maps X → K(π, k) are in one-to-one correspondence with
Zk(X;π), the k-cocycles on X, and homotopy classes of such maps correspond to cohomology
classes on X: [X,K(π, k)] ∼= Hk(X;π).

Here we will not define K(π, k) in general; we will consider only the particular case of
K(Z, 1). It deserves a special attention for reasons given later, and it provides a good example
of a Kan simplicial set.

The k-simplices of K(Z, 1) are represented by k-term sequences σ = [a1 | a2 | · · · | ak] of in-
tegers (the “bar notation” is traditional). Nondegenerate simplices are exactly sequences with
all terms nonzero. The face operators are given by ∂0σ = [a2 | · · · | ak], ∂kσ = [a1 | · · · | ak−1],
and ∂iσ = [a1 | · · · | ai−1 | ai + ai+1 | ai+2 | · · · | ak], 1 ≤ i ≤ k − 1.

Topologically, K(Z, 1) is homotopy equivalent to S1, and thus, in a sense, very simple.
Yet, from an algorithmic point of view, handling it efficiently is one of the most demanding
parts of our development.

Postnikov systems. We will not define a Postnikov system of a space Y precisely, since
this would require too many auxiliary notions. In addition to the properties stated in the
introduction, we mention that the kth stage Pk is defined as a twisted product of Pk−1 with
an Eilenberg–MacLane space:

K(πk(Y ), k)×kk−1
Pk−1,

where P0 and P1 are one-point spaces. (In [5], a slightly different but simplicially isomorphic
representation is used, using pullbacks which we do not want to introduce here.) Twisted
product is a simplicial analog of the topological notion of fiber bundle (this is a generalization
of a vector bundle), which we will now outline to convey some intuition.

Let B, the base space, and F , the fiber space, be two spaces. The Cartesian product F ×B
can be thought of as a copy of F sitting above each point of B; for B the unit circle S1 and
F a segment this is indicated in the left picture:

EF

p
B

b

F

p
B

b

F ×B
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The product F × B is a trivial fiber bundle, while the right picture shows a nontrivial fiber
bundle (a Möbius band in this case). Above every point b ∈ B, we still have a copy of F , and
moreover, each such b has a small neighborhood U such that the union of all fibers sitting
above U is homeomorphic to the product F ×U , a rectangle in the picture. However, globally,
the union of the fibers above all of B forms a space E, the total space of the fiber bundle,
that is in general different from F ×B.

In the Postnikov system setting, we can think of Pk as the total space of a fiber bundle with
base space Pk−1 and fiber K(πk(Y ), k). The way the bundle is “twisted” is determined by the
Postnikov class kk−1, which can be regarded as a simplicial map Pk−1 → K(πk(Y ), k+ 1), or
alternatively, using the correspondence mentioned earlier, as a cocycle in Zk+1(Pk−1, πk(Y )).
Technically, the twisting is achieved by forming the ordinary simplicial product K(πk(Y ), k)×
Pk−1, and then modifying the 0th face operator in it using kk−1—we refer to [5, 15] for the
details.

Lifting a map by one stage. The Postnikov class kk−1 is also crucial if we consider a map
f : X → Pk−1 from some space to a stage of the Postnikov system, and we ask when there is
a map f : X → Pk to the next stage that lifts f , i.e., satisfies f = pkf , where pk : Pk → Pk−1

is the projection. The answer is that f exists iff the composition kk−1f is homotopic to a
constant map. Since this composition goes into K(πk(Y ), k + 1), it can also be interpreted
as a cocycle in Zk+1(X;πk(Y )), and the liftability condition then says that this cocycle must
represent 0 in cohomology, which is algorithmically testable. This result can be regarded as a
version of the classical obstruction theory, and it plays a crucial role in the algorithms of [3].

Mapping cylinder and mapping cone. Let f : X → Y be a map of topological spaces.
Then the mapping cylinder Cyl(f) is obtained by gluing the product (“cylinder”) X × [0, 1]
to Y via the identification of (x, 0) with f(x) ∈ Y , for all x ∈ X. The mapping cone of f is
obtained by contracting the “top copy” X × {1} in the mapping cylinder to a point.

The group operation in higher homotopy groups. We recall how one adds homotopy
classes of maps in πk(Y ). For this, it is convenient to regard Sk as the cube Ik, I = [0, 1], with
the boundary identified to a single point, which is the basepoint s0 of Sk. Then a pointed
map Sk → Y can be represented as a map Ik → Y that sends all of the boundary to the
basepoint of Y . Given two such maps f, g : Ik → Y , we form a new map h of this kind,
representing the sum [f ] + [g] in πk(Y ), by re-interpreting Ik as a stack of two cubes sharing
a facet, and using f on the bottom cube and g on the top one.

3 Polynomial-time homology and Postnikov systems

Locally effective objects. In many areas where computer scientists seek efficient al-
gorithms, both the input objects and intermediate results in the algorithms are finite, and
they can be explicitly represented in the computer memory. In contrast, in the algorithms
considered here, we need to deal with infinite objects. For example, even if the input is a
finite simplicial complex, its Postnikov system is made of Eilenberg–MacLane spaces, such as
K(Z, 1), represented as Kan simplicial sets, and these are necessarily infinite.

For algorithmic purposes, we thus represent a simplicial set X by a collection of several
algorithms, which allow us to access certain information about X (this is also called a black
box or oracle representation of X). Concretely, let X be a simplicial set, and suppose that
some encoding for the simplices of X by strings (finite sequences over some fixed alphabet,
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say {0, 1}) has been fixed. We say that X is a locally effective simplicial set if an algorithm
is available that, given (an encoding of) a k-simplex σ of X and i ∈ {0, 1, . . . , k}, computes
the simplex ∂iσ, and similarly for the degeneracy operators si.

A locally effective chain complex is defined similarly: the addition and subtraction of
chains and the differentials are computable maps. We note that if X is a locally effective
simplicial set, then its chain complex C∗(X) is locally effective automatically.

Computing global information. The locally effective representation of a simplicial set X
is typically insufficient for computing global information about X, such as the kth homology
group Hk(X).

Sergeraert and his co-authors have developed a way of augmenting a locally effective
simplicial set X with homological information, which is captured in the notion of a simplicial
set with effective homology. These simplicial sets allow for computing homology groups, but
they are also equipped with additional information, which makes them stable under a large
repertoire of operations: if we apply some of the “classical” operations, such as product,
classifying space, loop space, etc. to them, the result is again a simplicial set with effective
homology.

Equipping X with effective homology means associating with the chain complex C∗(X),
whose chain groups may have infinite ranks, another, typically much smaller locally effective
chain complex EC ∗, which we can think of as a finitary approximation of C∗(X).

We assume that EC ∗ is (globally) effective in the following sense: there is an algorithm
that, given k, outputs a distinguished basis Bask of the chain group EC k (and in particular,
EC k has a finite rank). Together with the computability of the differential in EC ∗, this
allows us to compute the homology groups of EC ∗, for example (using a Smith normal form
algorithm, as is explained in standard textbooks such as [16]).

Reductions and strong equivalences. Now we discuss the way of associating a “small”
chain complex EC ∗ with a “big” chain complex C∗.

If f, g : C∗ → C̃∗ are two chain maps, then a chain homotopy of f and g is a sequence
(hk)k∈Z of homomorphisms, where hk : Ck → C̃k+1 (raising the dimension by one), such that
gk − fk = d̃k+1hk + hk−1dk. Chain maps and chain homotopies can be regarded as algebraic
counterparts of continuous maps of spaces and their homotopies, respectively. In particular,
two chain-homotopic chain maps induce the same map in homology.

Let C∗ and C̃∗ be chain complexes. A reduction ρ from C∗ to C̃∗ consists of three maps
f, g, h such that f : C∗ → C̃∗ and g : C̃∗ → C∗ are chain maps; the composition fg : C̃∗ → C̃∗
is equal to the identity idC̃∗

, while the composition gf : C∗ → C∗ is chain-homotopic to idC∗ ,
with h : C∗ → C∗ providing the chain homotopy; and fh = 0, hg = 0, and hh = 0. We write
C∗ ⇒⇒ C̃∗ if there is a reduction from C∗ to C̃∗.

A strong equivalence of chain complexes C∗, C̃∗, in symbols C∗ ⇐⇐⇒⇒ C̃∗, means that there
exists another chain complex ˜̃C∗ and reductions C∗ ⇐⇐ ˜̃C∗ ⇒⇒ C̃∗. Strong equivalence is
transitive; this requires a nontrivial argument (see [5, 25]).

Effective homology. A locally effective simplicial set is equipped with effective homology
if there is a globally effective chain complex EC ∗ and a strong equivalence C∗(X)⇐⇐⇒⇒ EC ∗,
such that the intermediate chain complex in the strong equivalence is locally effective and all
of the maps involved in the reductions are computable.

Using the strong equivalence with EC ∗, we can compute the homology groups of X (rep-
resented as abstract Abelian groups, i.e., as direct sums of cyclic groups). Given an element of
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Hk(X), we can also compute a cycle representing this homology class, and conversely. More-
over, given a cycle c representing 0 in Hk(X), we can compute a (k + 1)-chain for which c is
the boundary. With these computational primitives, we can solve most homological problems
for C∗(X) of interest.

Polynomiality and parameterization. In order to define a polynomial-time counterpart
of effective homology, the first natural, but not quite sufficient, idea is to require all the
algorithms (black boxes) involved in the definition of a simplicial sets with effective homology,
i.e., the ones witnessing local effectivity, as well as those for evaluating the maps in the
reductions, to run in polynomial time.

This is fine as long as we deal with an individual simplicial set, such as K(Z, 1). But if,
in some subroutine of our Postnikov system algorithm, we want to deal with K(Zr, 1), for
example, where r is a parameter that depends on the input simplicial complex Y , then we
certainly do not want the black boxes for K(Zr, 1) to run in time nr, where n is the size of
the input to the black box. Instead, the running time should also be bounded polynomially
in r.

As another example, the kth stage Pk = Pk(Y ) of a Postnikov system for an input simpli-
cial complex Y depends on Y , and again we want the size of Y to enter at most polynomially
in the running time of the black boxes for Pk(Y ). In order to deal with this issue, we do
not define polynomial-time homology for individual simplicial sets, but rather for families of
simplicial sets, typically infinite ones.

A parameter set is a set I on which an injective mapping enc : I → {0, 1}∗ is defined,
specifying an encoding of each element of I by a string. An example of a parameter set in
our algorithms is the set of all 1-connected finite simplicial complexes, and another is the set
of all (isomorphism types of) finitely generated Abelian groups.

We define a parameterized simplicial set as a mapping X that, for some parameter set I,
assigns to each I ∈ I a simplicial set X(I). We often write such a parameterized simplicial
set as (X(I) : I ∈ I). We also assume that an encoding of simplices by strings has been fixed
for each of the simplicial sets X(I).

Such an X is a locally polynomial-time simplicial set if, for each k, there is an algorithm
that, given I ∈ I, a k-dimensional simplex σ ∈ X(I)k, and i ∈ {0, 1, . . . , k}, computes ∂iσ in
time polynomial in size(I) + size(σ) (where the polynomial may depend on k), and there is
a similar algorithm for evaluating the degeneracy operators siσ. Here size(I) is the length of
the string encoding I, and similarly for size(σ).

Similarly, for parameterized simplicial sets (X(I) : I ∈ I) and (Y (I) : I ∈ I), a
polynomial-time simplicial map X → Y is a collection (fI)I∈I , where fI is a simplicial map
X(I) → Y (I) and for each k ≥ 0, there is an algorithm that, given I ∈ I and σ ∈ X(I)k,
computes fI(σ) in time polynomial in size(I) + size(σ).

Analogously we define locally polynomial-time chain complex, polynomial-time chain map,
a polynomial-time reduction C∗

P⇒⇒ C̃∗ between parameterized chain complexes, and a polynomial-
time strong equivalence C∗

P⇐⇐⇒⇒ C̃∗ (in which we require all the chain complexes involved
to be locally polynomial-time). A globally polynomial-time chain complex EC ∗ is a locally
polynomial-time chain complex such that, for every fixed k, there is an algorithm that outputs
a distinguished basis Bas(I)k of EC (I)k in time polynomial in size(I).

A locally polynomial-time simplicial set X is equipped with polynomial-time homology if
there is a globally polynomial-time chain complex EC ∗ and a polynomial-time strong equiv-
alence C∗(X)

P⇐⇐⇒⇒ EC ∗. For such an X, we can perform in polynomial time all of the
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homological computations listed above in connection with effective homology (for this, we
need to employ a polynomial-time algorithm for the Smith normal form, which is nontrivial
but known—see [10, 33]).

About half of our paper [5] is devoted to showing that various operations with simplicial
sets preserve polynomial-time homology: if X(1), . . . , X(t) are simplicial sets equipped with
polynomial-time homology and Φ is a “reasonable” way of constructing a new simplicial
set from t old ones, then the simplicial set Φ(X(1), . . . , X(t)) can also be equipped with
polynomial-time homology. This is done by adapting known methods, developed earlier for
effective homology and based on much older work by algebraic topologists. In most cases the
adaptation is straightforward, but there are cases where polynomiality requires extra tricks,
analysis, or assumptions. We omit all of this here.

Polynomial-time homology for K(Z, 1) from a discrete vector field. Let us regard
the Eilenberg–MacLane space K(π, k), with k fixed, as a simplicial set parameterized with
the Abelian group π. Here π is given in the form Z

r ⊕ (Z/m1)⊕ (Z/m2)⊕ · · · ⊕ (Z/ms), as a
direct sum of cyclic groups, and we define its encoding size as r +

∑s
i=1b1 + log2mic. In the

Postnikov system algorithm, we need to equip K(π, k) with polynomial-time homology.
There are general operations on simplicial sets that allow us to obtain polynomial-time

homology for K(π, k+ 1) from that for K(π, k); that for K(π1×π2, 1) from that for K(π1, 1)
and K(π2, 1), and that for K(Z/m, 1) from that for K(Z, 1). This leaves us with K(Z, 1) as
the base case, and here we cannot use the classical way of obtaining effective homology, going
back to Eilenberg and Mac Lane, since it is not polynomial. We thus had to develop a new
way in [12].

Our method uses a suitable discrete vector field on K(Z, 1). Discrete vector fields originate
in discrete Morse theory, developed by Forman [6], and Romero and Sergeraert in the preprint
[22] discovered that a suitable vector field on a simplicial set X can be used to equip X with
effective homology.

We refer to [12, 22] for the general definition of discrete vector fields and deriving effective
or polynomial-time homology from it; here we formulate concretely what a discrete vector field
on K(Z, 1) looks like and what it must satisfy in order to yield polynomial-time homology.

We recall that the nondegenerate simplices σ of K(Z, 1) are sequences [a1| · · · |ak] of
nonzero integers. We want to partition these simplices into three classes S, T , and C (the
source simplices, target simplices, and critical simplices), and construct a bijection V : S → T
(a discrete vector field), such that for every σ ∈ S, we have σ = ∂iV (σ) for exactly one i.

Given such a V , let us consider a simplex σ̃ ∈ S of some dimension k, and let us say
that a simplex τ (of dimension k or k + 1) is reachable from σ̃ if it can be reached from σ̃ by
finitely many moves, where the allowed moves are passing from a current simplex σ ∈ S to the
simplex τ = V (σ) ∈ T , and passing from a current simplex τ ∈ T to a simplex σ = ∂iτ ∈ S∪C
such that τ 6= V (σ), where i ∈ {0, 1, . . . , k + 1}.

With these definitions, we moreover require the following:

(i) For every k, C contains only finitely many k-dimensional simplices.

(ii) Starting with any σ̃, we can never make an infinite sequence of allowed moves; that is,
we can reach only finitely many simplices, and we also cannot get into a cycle.

(iii) For every k-dimensional simplex σ̃, the sum of size(σ) over all σ reachable from σ̃
is bounded by a polynomial (depending on k) in size(σ̃). Here the size of a simplex
σ = [a1| · · · |ak] is the total number of bits in the binary encoding of a1, . . . , ak.
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If all these conditions are met, and V (σ) can be computed from σ in polynomial time, then
we can use V to equip K(Z, 1) with polynomial-time homology.

To illustrate these definitions, let us present a classical vector field VEML due to Eilenberg
and Mac Lane, which satisfies (i) and (ii) (and yields effective homology for K(Z, 1)) but
not (iii). There are only two critical simplices, the 0-dimensional [ ] (the empty sequence) and
the 1-dimensional [1]. The remaining simplices are source or target depending on whether
a1 6= 1 or a1 = 1, respectively.

For σ = [a1| · · · |ak] ∈ S, a1 6= 1, we have VEML(σ) = [1|a1 − 1|a2| · · · |ak] for a1 > 1,
and VEML(σ) = [1|a1|a2| · · · |ak] for a1 < 0. It can be checked that, for any starting σ̃, the
sequence of moves is determined uniquely (there is no branching). It is easy to see that, for
a positive integer a, the sequence of moves starting from [a] is [a] → [1|a − 1] → [a − 1] →
[1|a− 2] → [a− 2] → . . .; there are about a moves, and this is exponential in the number of
bits of a. Thus, condition (iii) above indeed fails.

Next, we define another vector field V that does satisfy (iii). Actually, by an auxiliary
step, we can restrict ourselves only to simplices [a1| · · · |ak] with all the ai positive, and define
the vector field only on them.

The only critical simplices are again [] and [1]. There are two types of source simplices.
The first type are simplices of the form σ =

[
2i1 | 2i2 | · · · | 2iq | b | aq+2 | · · · | ak

]
, where 2i1 ≤

2i2 ≤ · · · ≤ 2iq < b and b is not a power of two. In this case we set

V (σ) :=
[
2i1 | 2i2 | · · · | 2iq | lpow(b) | ltrim(b) | aq+2 | · · · | ak

]
,

where lpow(b) is the largest power of 2 not exceeding b, and ltrim(b) := b− lpow(b). That is,
V (σ) is obtained by splitting b into two components, lpow(b) and ltrim(b); informally, we can
think of this as “chipping off” the leading bit of b.

The second type of source simplices are σ =
[
2i1 | · · · | 2ik

]
with 2i1 ≤ 2i2 ≤ · · · ≤

2ik−1 < 2ik and ik ≥ 1 (this last condition is important only for k = 1). In this case we set
V (σ) :=

[
2i1 | · · · | 2ik−1 | 2ik−1 | 2ik−1

]
; i.e., we split the last component of σ into two equal

halves.
The proof of the required properties is not simple and currently it needs a careful case

analysis; we refer to [12].

Notes on the Postnikov system algorithm. Since we haven’t really defined a Postnikov
system, we will not present the algorithm in any detail either; we refer to [5, Section 4] instead.

The algorithm is similar to the algorithm of Brown [2] (but, unlike Brown’s, it can handle
all Y , not only those with all homotopy groups finite). It works by induction on k, assuming
that the input simplicial set Y comes with polynomial-time homology (this is trivially satisfied
for a finite simplicial complex, but in Theorems 1.1, 1.3, and 1.5, as well as in Corollary 1.4, Y
can actually be any simplicial set with polynomial-time homology), Pk−1 has been constructed
with polynomial-time homology, and ϕk−1 : Y → Pk−1 is a polynomial-time simplicial map
that induces isomorphism of homotopy groups up to dimension k − 1. For starting the
construction, we use that P0 and P1 consist of a single point.

In the inductive step, we first want to compute πk(Y ). For this, we use the Hurewicz
isomorphism, which in its simplest form asserts that, for a 1-connected Y , the first nonzero
homotopy group of Y occurs in the same dimension as the first nonzero homology group and
these two groups are isomorphic. We thus need a construction that “kills” the first k − 1
homotopy groups of Y and leaves the kth one intact. The mapping cone M of ϕk−1 is such a
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construction6; we construct it with polynomial-time homology and compute the isomorphism
type of πk(Y ) as Hk+1(M) (there is a shift by one in dimension).

To get Pk, we need to form the twisted product K(πk(Y ), k) ×kk−1
Pk−1. As was noted

earlier, we can equip K(πk(Y ), k), with polynomial-time homology, and it remains to define
(and implement) kk−1 and ϕk, which we omit here.

The polynomiality of the algorithm follows easily, since we start with Y , which has
polynomial-time homology by assumption, and we make some number of steps, depending
only on k and thus constant, and in each of them we produce K(πi(Y ), i) with polynomial-
time homology, i ≤ k, or take simplicial sets with polynomial-time homology and produce
a new one, by one of the operations from our repertoire. Thus, we end up with Pk with
polynomial-time homology.

4 Undecidability

We sketch the main steps of the proof of the undecidability result, Theorem 1.6. We first
focus on part (a), i.e., fixed target, and on the case of even k—this is technically the simplest
case in the theorem. We show that an algorithm solving the extension problem could be used
to decide the solvability of the quadratic system∑

1≤i<j≤r
a

(q)
ij xixj = bq, q = 1, 2, . . . , s. (2)

in unknowns x1, . . . , xr ∈ Z. The latter is undecidable, as follows from the undecidability of
Hilbert’s tenth problem (1) by an easy reduction.

Given the integer vectors a = (a
(q)
ij )ijq and b = (bq)q, we first describe spaces X,Y,A ⊆ X

and a map f : A→ Y such that f is extendable to X iff (2) is solvable. Then we still need to
work further to convert these spaces into finite simplicial complexes and f into a simplicial
map.

As was mentioned in the theorem, in part (a) and k even we take Y = Sk. The space
X = Xa depends on the vector a. To construct it, we start with r disjoint copies Sk1 , . . . , S

k
r

of the k-dimensional sphere, and we glue all of them together at a single point, forming the
wedge W :=

∨r
i=1 S

k
i ; let ιi : S

k
i →W , i = 1, 2, . . . , r, be the inclusion maps.

Then we take a space A as the wedge of s disjoint copies S2k−1
1 , . . . , S2k−1

s of S2k−1. Let

ϕq : S2k−1
q →W be the map

∑
1≤i<j≤r a

(q)
ij [ιi, ιj ]. The addition and multiplication by integers

in this formula is the group operation on pointed maps in the homotopy group π2k−1(W ),
and [ιi, ιj ] denotes a particular map S2k−1 → Ski ∨ Skj ⊆ W , the Whitehead product of the
inclusions ιi and ιj .

The Whitehead product in general is a binary operation that, for a space Z, assigns to
maps α : Sk → Z and β : S` → Z a map [α, β] : Sk+`−1 → Z. It respects homotopy and
thus it induces a binary operation πk(Z) × π`(Z) → πk+`−1(Z) on homotopy groups, also
denoted by [·, ·]; see, e.g., [8, Example 4.51]. For our particular case of [ιi, ιj ], if we consider
the 2k-dimensional torus T = Ski ×Skj , then T can be obtained by attaching a 2k-dimensional

ball D2k by its boundary sphere S2k−1 to the wedge Ski ∨ Skj , and [ιi, ιj ] is the appropriate
attachment map.

6Mapping cone for a map of spaces was defined at the end of Section 2; in the algorithm, we work with an
appropriate simplicial version.
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Finally, X = Xa is the mapping cylinder7 of the map ϕ : A→W that equals ϕq on S2k−1
q ,

q = 1, 2, . . . , s.
A mapping cylinder is always homotopy equivalent to the target space (range) of the

mapping; in our case, X 'W . The homotopy equivalence is given by the inclusion i : W → X
and by the map h : X → W that is the identity on W and sends a point (a, t) ∈ A × [0, 1)
to ϕ(a).

Thus, homotopy classes of maps f̄ : X → Sk are in one-to-one correspondence with ho-
motopy classes of maps f̃ : W → Sk (the correspondence is given by f̄ 7→ f̃h), and the latter
have a simple description: each class is specified by a vector x = (x1, . . . , xr) ∈ Zr, where xi
is the degree of the restriction of f̃ to the ith sphere Ski in the wedge W .

In a similar vein, each vector b = (b1, . . . , bs) ∈ Zs specifies, up to homotopy, a map
f = fb : A→ Sk, namely, such that the restriction of f to the qth sphere S2k−1

q is (homotopic

to) bq[ι, ι], where [ι, ι] is the Whitehead square of the identity ι : Sk → Sk. It is known that
[ι, ι] is an element of infinite order in π2k−1(Sk), and no two of the fb are homotopic.

Given an instance of the quadratic system (2), we let X = Xa and f = fb : A→ Sk be as
above. It remains to see when a map f̄ : X → Sk specified by x is a solution (up to homotopy)
of the extension problem given by f . In other words, we ask for the homotopy class of the
restriction of f̄ to A. By the above, this restriction can be written as f̃h|A = f̃ϕ, where f̃ is
a map W → Sk of degree xi on Ski , i = 1, 2, . . . , r. Using the definition of ϕ and bilinearity
and naturality properties of the Whitehead product, one can calculate that f̃ϕ is homotopic
to f iff the quadratic system (2) holds.

Now we have the appropriate X,A, Y, f , but we still need to make everything finite and
simplicial. There is a way of doing this using the simplicial approximation theorem, which
can be made algorithmic with some effort (although it does not supply any bound on the
number of simplices). Actually, we can do even better, since an algorithm from the proof of
Theorem 1.2 on #P-hardness can compute a finite simplicial complex homotopy equivalent to
X in polynomial time (although here we don’t really care about polynomiality). This finishes
the sketch of the proof of part (a) with k even.

The just give argument for even k hinges on the fact that [ι, ι] has infinite order in
π2k−1(Sk); for k odd, though, [ι, ι] has order 2 (and actually, all of the homotopy groups
πn(Sk), n > k, are finite). For odd k, we thus take Y = Sk ∨ Sk, and the role of [ι, ι] in
the previous proof is played by [ι1, ι2], where ι1, ι2 are the inclusions of the two copies of Sk

into Y .
Otherwise, the proof is similar to the case of k; however, instead of (2), it leads to a skew-

symmetric bilinear system
∑

i<j a
(q)
ij (xiyj − xjyj), q = 1, 2, . . . , s, with unknowns x1, . . . , xr,

y1, . . . , yr. Proving undecidability of that system is somewhat more demanding.

For part (b) of Theorem 1.6, fixed source, we briefly mention only the case of even k.
Here X is the mapping cylinder of the Whitehead product [ι, ι] : A = S2k−1 → W = Sk. To
construct Y = Ya, we take the wedge T := Sk1 ∨ · · · ∨ Skr ∨ S2k−1

1 ∨ · · · ∨ S2k−1
s and we attach

to it disjoint copies D2k
ij , 1 ≤ i ≤ j ≤ r, of the ball D2k along their boundaries, according to

suitable attaching maps ϕij : S2k−1 → T—these depend on a. For this construction, one thus
needs to understand the homotopy groups π2k−1(T ), which is described by a special case of
a theorem of Hilton [9]. The rest of the analysis resembles that for the fixed source case, and

7Actually, for technical convenience, we take the reduced mapping cylinder, which is obtained from the
ordinary mapping cylinder by collapsing the segment {x0} × [0, 1] over the basepoint to a single point.
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we refer to [4] for more details.
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computation of homotopy groups and Postnikov systems in fixed dimension. Preprint,
arXiv:1211.3093, 2012.

[6] R. Forman. Morse theory for cell complexes. Adv. Math., 134(1):90–145, 1998.

[7] G. Friedman. An elementary illustrated introduction to simplicial sets. Rocky Mountain
J. Math., to appear. Preprint arXiv:math/0809.4221v3, 2011.

[8] A. Hatcher. Algebraic Topology. Cambridge University Press, Cambridge, 2001. Elec-
tronic version available at http://math.cornell.edu/hatcher#AT1.

[9] J. P. Hilton. On the homotopy groups of union of spheres. J. London Math. Soc.,
3:154–172, 1955.

[10] R. Kannan and A. Bachem. Polynomial algorithms for computing the Smith and Hermite
normal forms of an integer matrix. SIAM J. Computing, 8:499–507, 1981.

[11] S. O. Kochman. Stable homotopy groups of spheres. A computer-assisted approach. Lec-
ture Notes in Mathematics 1423. Springer-Verlag, Berlin etc., 1990.
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