Exercise 5

February, 2006

- 1. Consider the r-Hamming code, defined as follows: let H be the $(2^r 1) \times r$ matrix whose columns contain every possible r-bit string, except for the zero string. The codewords are the bit strings v of length $2^r - 1$ such that Hv = 0. (H is called a *parity check matrix* for the code.)
 - (a) What is the distance d of the r-Hamming code?
 - (b) Show that the 3-Hamming code is perfect, i.e., there is a unique codeword of distance (d-1)/2 or less from a bit string of the appropriate length. Is the general *r*-Hamming code perfect?
- 2. (a) Let $f : \{0,1\}^n \to \{0,1\}$, and define $f_i(S) = f(S \oplus e_i)$. Express the Fourier coefficients of f_i in terms of the Fourier coefficients of f.
 - (b) Let $g = \sum_{i} f_{i}$. What condition on $\langle f, g \rangle$ is equivalent to f being the indicator function for an independent set in the discrete cube? Express this in terms of the Fourier coefficients of f.
 - (c) Assume that $\mathbb{E}(f) \ge 1/2$. What can we say about the Fourier coefficients? If f is the indicator function of an independent set, what is f?
 - (d) Describe all possible 2-colorings of the discrete cube.
- 3. For any Boolean function $f : \{-1, 1\}^n \to \{1, -1\}$, we say that a polynomial P is a sign-representing polynomial for f if $\forall x : \operatorname{sign} f(x) = \operatorname{sign} P(x)$. The degree of f is defined to be the minimal degree of a sign-representing polynomial of f. Show, using the Fourier expansion of P, that the degree of the parity function is n.
- 4. The following lemma has been proved by Kahn, Linial and Samorodnitsky, and also by Linial and Nisan:

Let A_i and B_i be two families of events for $i \in [n]$. For $S \subseteq [n]$, define $a_S = P(\bigcap_{i \in S} A_i \text{ and } i \in [n])$

$$\alpha_S = P(\bigcap_{i \in S} \cap \bigcap_{j \notin S} A_j^c)$$

and define b_S , β_S similarly for B. If, for every $S \subsetneq [n]$, we have $a_S = b_S$, then there is a real ϵ such that $|\epsilon| \le 1/2^{n-1}$, and for every $S \subseteq [n]$, the equation $\alpha_S = \beta_S + (-1)^{|S|} \epsilon$ holds.

Let G and H be a pair of graphs with n vertices and m edges such that the collection of proper edgesubgraphs of G is isomorphic to the collection of proper edge-subgraphs of H. Define $\alpha_{G,S}$ for S an edge subgraph of G to be $P(E(\pi(G)) \setminus E(G)) = S$. Show that there is a real ϵ such that $|\epsilon| < \frac{1}{2^{m-1}}$ and $\alpha_{G,S} - \alpha_{H,S} = (-1)^{|S|} \epsilon$ for every $S \subseteq E(G)$.

Deduce Müller's Theorem: if G and H are nonisomorphic, then $m \leq \log_2(n!) + 1$.

If you're feeling adventurous, prove (or look up) the lemma.