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Abstract

A q-query Locally Decodable Code (LDC) encodes ann-bit messagex as anN -bit codewordC(x), such that
one can probabilistically recover any bitxi of the message by querying onlyq bits of the codewordC(x), even
after some constant fraction of codeword bits has been corrupted.

We give new constructions of three query LDCs of vastly shorter length than that of previous constructions.
Specifically, given any Mersenne primep = 2t − 1, we design three query LDCs of lengthN = exp

(
n1/t

)
,

for everyn. Based on the largest known Mersenne prime, this translates to a length of less thanexp
(
n10−7

)
,

compared toexp
(
n1/2

)
in the previous constructions. It has often been conjectured that there are infinitely many

Mersenne primes. Under this conjecture, our constructions yield three query locally decodable codes of length

N = exp
(

n
O

(
1

log log n

))
for infinitely manyn.

We also obtain analogous improvements for Private Information Retrieval (PIR) schemes. We give 3-server

PIR schemes with communication complexity ofO
(
n10−7

)
to access ann-bit database, compared to the previous

best scheme with complexityO(n1/5.25). Assuming again that there are infinitely many Mersenne primes, we get

3-server PIR schemes of communication complexityn
O

(
1

log log n

)
for infinitely manyn.

Previous families of LDCs and PIR schemes were based on the properties of low-degree multivariate polynomi-
als over finite fields. Our constructions are completely different and are obtained by constructing a large number
of vectors in a small dimensional vector space whose inner products are restricted to lie in an algebraically nice
set.

1 Introduction

Classical error-correcting codes allow one to encode ann-bit stringx into in N -bit codewordC(x), in such a
way thatx can still be recovered even ifC(x) gets corrupted in a number of coordinates. For instance, codewords
C(x) of lengthN = O(n) already suffice to correct errors in up toδN locations ofC(x) for any constantδ < 1/4.
The disadvantage of classical error-correction is that one needs to consider all or most of the (corrupted) codeword
to recover anything aboutx. Now suppose that one is only interested in recovering one or a few bits ofx. In such
case more efficient schemes are possible. Such schemes are known as locally decodable codes (LDCs). Locally
decodable codes allow reconstruction of an arbitrary bitxi, from looking only atq randomly chosen coordinates

∗An earlier version of this paper has appeared on ECCC as a technical report (TR06-127) under the title: “New Locally Decodable
Codes and Private Information Retrieval Schemes”.



of C(x), whereq can be as small as2. Locally decodable codes have found numerous applications in complexity
theory and cryptography. See [25], [10] for a survey. Below is a slightly informal definition of LDCs:

A (q, δ, ε)-locally decodable code encodesn-bit strings toN -bit codewordsC(x), such that for everyi ∈ [n],
the bitxi can be recovered with probability1− ε, by a randomized decoding procedure that makes onlyq queries,
even if the codewordC(x) is corrupted in up toδN locations.

One should think ofδ > 0 andε < 1/2 as constants. The main parameters of interest in LDCs are the lengthN
and the query complexityq. Ideally we would like to have both of them as small as possible. The notion of locally
decodable codes was explicitly discussed in various places in the early 1990s, most notably in [3, 24, 21]. Katz and
Trevisan [15] were the first to provide a formal definition of LDCs and prove lower bounds on their length. Further
work on locally decodable codes includes [5, 8, 20, 6, 16, 26]. The length of optimal2-query LDCs was settled by
Kerenidis and de Wolf in [16] and isexp(n).1 The length of optimal3-query LDCs is unknown. The best upper
bound prior to our work wasexp

(
n1/2

)
due to Beimel et al. [5], and the best lower bound isΩ̃(n2) [16, 30]. For

general (constant)q the best upper bound wasexp
(
nO(log log q/(q log q))

)
due to Beimel et al. [6] and the best lower

bound isΩ̃
(
n1+1/(dq/2e−1)

)
[16, 30].

The current state of knowledge raises a natural question: Is the poor rate of known constructions an inherent
property of locally decodable codes? Indeed, Gasarch [10, section 9] and Goldreich [11, conjecture 4.4] conjecture
that the exponential dependence onn, i.e., the dependence of the formN = exp

(
nΩ(1)

)
, is unavoidable for any

constant number of queries. As our results suggest, such behavior may well not be inherent.

Our results

We give new families of locally decodable codes whose length is vastly shorter than that of previous con-
structions. We show that every Mersenne primep (i.e., a prime of the formp = 2t − 1) yields a family of
three query locally decodable codes of lengthexp

(
n1/t

)
. The largest Mersenne prime known currently has

t = 32, 582, 657 > 107. Substituting this prime into our theorem we conclude that for everyn there exists a
three query locally decodable code of lengthexp

(
n1/32,582,657

)
.

It has often been conjectured that the number of Mersenne primes is infinite. If indeed this conjecture holds,

our constructions yield three query locally decodable codes of lengthN = exp
(

n
O

(
1

log log n

))
for infinitely

manyn. Finally, assuming that the conjecture of Lenstra, Pomerance and Wagstaff [27, 22, 28] regarding the
density of Mersenne primes holds, our constructions yield three query locally decodable codes of lengthN =

exp
(

n
O

(
1

log1−ε log n

))
for all n, for everyε > 0.

1.1 Application to Private Information Retrieval

A q-serverprivate information retrieval(PIR) scheme allows a user to retrieve thei-th bit of ann-bit string
x replicated betweenq servers while each server individually learns no information abouti. The main parameter
of interest in a PIR scheme is its communication complexityCq(n), namely the number of bits exchanged by the
user and the servers. Private information retrieval schemes were introduced by Chor et. al. [7]. Further work on
PIRs includes [1, 18, 13, 14, 5, 12, 16, 2, 31, 23]. Below is a brief summary of known bounds forCq(n).

The best upper bound forC2(n) is O(n1/3) due to [7]. The best upper bounds for larger values ofq areCq(n) ≤
nO(log log q/(q log q)) due to Beimel et al. [6]. In particular [6] show thatC3(n) ≤ O

(
n1/5.25

)
, C4(n) ≤ O

(
n1/7.87

)
andC5(n) ≤ O

(
n1/10.83

)
. The best lower bound forC2(n) is 5 log n due to Wehner and de Wolf [26].

Private information retrieval schemes are closely related to locally decodable codes. In particular, our construc-
tions of LDCs yield three server private information retrieval schemes with small communication complexity. We
show that every Mersenne primep = 2t − 1 yields C3(n) ≤ O

(
n1/(t+1)

)
. Instantiating this with the largest

1Throughout the paper we use the standard notationexp(x)
def
= eO(x).



known Mersenne prime we getC3(n) ≤ O
(
n1/32,582,658

)
. Assuming that the number of Mersenne primes is

infinite our bound goes further down ton
O

(
1

log log n

)
for infinitely manyn. Finally, assuming the density conjecture

of Lenstra, Pomerance and Wagstaff [27, 22, 28], we getC3(n) ≤ n
O

(
1

log1−ε log n

)
for all n, for everyε > 0.

1.2 Our technique

All previously known constructions of locally decodable codes and private information retrieval schemes are
(implicitly or explicitly) centered around the idea of representing a messagex by an evaluation of a certain low
degree polynomial over a finite field. Our constructions take a completely different approach. We start by reducing
the problem of constructing locally decodable codes to the problem of designing certain families of sets with
restricted intersections. We use elementary algebra over finite fields to design such families.

The heart of our construction is the design of a setS ⊆ F∗p for a primep that simultaneously satisfies two
properties: (1) There exist two large sequences of vectorsu1, . . . , un, v1, . . . , vn in some low dimensional space
Fm

p , such that the dot products(ui, vi) = 0 for all i, and the dot products(uj , vi) ∈ S for all i 6= j. We refer
to this property as the combinatorial niceness ofS; (2) For a small integerq there exists aq sparse polynomial
φ(x) ∈ F2[x] such that the common GCD of all polynomials of the formφ(xβ), β ∈ S and the polynomialxp−1
is non-trivial. We refer to this property as the algebraic niceness ofS. Our notion of combinatorial niceness is
related to the notion of set families with restricted intersections in [4].

Our construction of locally decodable codes thus comes in three steps: First we show that a setS exhibiting
both combinatorial and algebraic niceness leads to good locally decodable codes. In particular the lengthn of the
sequencesu1, . . . , un andv1, . . . , vn corresponds to the number of message bits we can encode, while the length
of the codewords we build isN = pm. So the longer the sequence and the smaller the dimension the better.
The query complexity of our codes is given by the parameterq from the definition of algebraic niceness ofS.
This step of our construction is quite general and applies to vectorsu1, . . . , vn and subsetsS over any field. It
leads us to the task of identifying good sets that are both combinatorially and algebraically nice, and these tasks
narrow our choice of fields. As our second step we focus on combinatorial niceness. In general big sets tend to
be “nicer” (allow longer sequences) than small ones. We show that every multiplicative subgroup of a prime field
is combinatorially as nice as its cardinality would allow. This still leaves us with a variety of fields and subsets to
work with. Finally as the last step we attempt to understand the algebraic niceness of sets. We focus on the very
narrow case of Mersenne primesp and the subgroup generated by the element2 in F∗p. We manage to show that
this subgroup is nice enough to get 3-query locally decodable codes, leading to our final result.

1.3 Outline

In section 3 we formally define locally decodable codes and introduce certain combinatorial objects that we call
regular intersecting families of sets. Those objects later serve as our tool to construct binary LDCs. In section 4
we present a linear algebraic construction of a regular intersecting family that yields locally decodable codes with
good (although, not the best known) parameters. The notions of combinatorial and algebraic niceness of sets are
used implicitly in this section. Our main construction in section 5 builds upon the construction of section 4. We
formally introduce combinatorial and algebraic niceness and show how the interplay between these two notions
yields new LDCs. The last subsection of section 5 and section 6 contain our main results for LDCs and private
information retrieval schemes.

2 Notation

We use the following standard mathematical notation:



• [s] = {1, . . . , s};

• Fq is a finite field ofq elements;

• F∗q is the multiplicative group ofFq;

• dH(x, y) denotes the Hamming distance between binary vectorsx andy;

• (u, v) stands for the dot product of vectorsu andv.

• For a linear spaceL ⊆ Fm
2 , L⊥ denotes thedualspace. That is,L⊥ = {u ∈ Fm

2 | ∀v ∈ L, (u, v) = 0}.

3 A combinatorial approach to locally decodable codes

In this section we formally define locally decodable codes and introduce certain combinatorial objects that we
call regular intersecting familiesof sets. We show that regular intersecting families of sets yield binary LDCs.

Definition 1 A binary codeC : {0, 1}n → {0, 1}N is said to be(q, δ, ε)-locally decodable if there exists a
randomized decoding algorithmA such that

1. For all x ∈ {0, 1}n, i ∈ [n] andy ∈ {0, 1}N such thatdH(C(x), y) ≤ δN : Pr[Ay(i) = xi] ≥ 1 − ε,2

where the probability is taken over the random coin tosses of the algorithmA.

2. A makes at mostq queries toy.

A locally decodable code is called linear ifC is a linear transformation overF2. Our constructions of locally
decodable codes are linear. They are obtained by viewing the basis elements of the code and the decoding sets of
the code as specifying a set system (where a vector corresponds to the set of coordinates on which it is non-zero),
with some special intersection properties. We define these properties next. LetN,R andn be positive integers.
Consider the set[N ]. For i ∈ [n], r ∈ [R] let Ti andQir, be subsets of[N ].

Definition 2 We say that subsetsTi and Qir form a (q, n,N, R, s) regular intersecting family if the following
conditions are satisfied:

1. q is odd;

2. For all i ∈ [n], |Ti| = s;

3. For all i ∈ [n] andr ∈ [R], |Qir| = q;

4. For all i ∈ [n] andr ∈ [R], Qir ⊆ Ti;

5. For all i ∈ [n] andw ∈ Ti, |{r ∈ [R] | w ∈ Qir}| = (Rq)/s, (i.e.,Ti is uniformly covered by the setsQir);

6. For all i, j ∈ [n] andr ∈ [R] such thati 6= j, |Qir ∩ Tj | ≡ 0 mod (2).

The following proposition shows that regular intersecting families imply locally decodable codes.

Proposition 3 A (q, n,N, R, s) regular intersecting family yields a binary linear code encodingn bits toN bits
that is(q, δ, δNq/s) locally decodable for allδ.

2We remark that many earlier papers about LDCs used the parameterε in a different way. They required Pr[Ay(i) = xi] ≥ 1/2 + ε,
rather than Pr[Ay(i) = xi] ≥ 1− ε. We choose to break with this tradition.



Proof: For a setS ⊆ [N ] let I(S) ∈ {0, 1}N denote its incidence vector. Formally, forw ∈ [N ] we set
I(S)w = 1 if w ∈ S; andI(S)w = 0 otherwise. We define linear codeC via its generator matrixG ∈ {0, 1}n×N .
For i ∈ [n], we set thei-th row of G to be the incidence vector of the setTi. Below is the description of the
decoding algorithmA. Given oracle access toy and inputi ∈ [n], the algorithmA

1. picksr ∈ [R] uniformly at random;

2. outputs the dot product(y, I (Qir)) overF2.

Note that since|Qir| = q, A needs onlyq queries intoy to compute the dot product. It is easy to verify that the
decoding is correct ifA picksr ∈ [R] such that all bits ofxG in locationsh ∈ Qir are not corrupted:

(xG, I (Qir)) =
n∑

j=1

xj (I(Tj), I (Qir)) = xi (I(Ti), I (Qir)) = xi. (1)

The second equality in formula (1) follows from part 6 of definition 2 and the last equality follows from parts
1,3 and 4 of definition 2. Now assume that up toδN bits of the encodingxG have been corrupted. Part 5 of
definition 2 implies that there are at most(δNRq)/s setsQir that contain at least one corrupted location. Thus
with probability at least1− (δNq)/s, the algorithmA outputs the correct value.

4 Basic construction

In this section we present our basic construction of regular intersecting families that yieldsq-query locally
decodable codes of lengthexp

(
n1/(q−1)

)
for prime values ofq ≥ 3. We choose setsTi to be unions of cosets

of certain hyperplanes and setsQir to be lines. We argue the intersection properties based on elementary linear
algebra. Letp be an odd prime andm ≥ p− 1 be an integer.

Lemma 4 Letn =
(

m
p−1

)
. There exist two families of vectors{u1, . . . , un} and{v1, . . . , vn} in Fm

p , such that

• For all i ∈ [n], (ui, vi) = 0;

• For all i, j ∈ [n] such thati 6= j, (uj , vi) 6= 0.

Proof: Let e ∈ Fm
p be the vector that contains1’s in all the coordinates. We set vectorsui to be incidence

vectors of all possible
(

m
p−1

)
subsets of[m] of cardinality(p − 1). For everyi ∈ [n] we setvi = e − ui. It is

straightforward to verify that this family satisfies the condition of the lemma.

Now we are ready to present our regular intersecting family. SetN = pm andn =
(

m
p−1

)
. Assume some

bijection between the set[N ] and the spaceFm
p . For i ∈ [n] set

Ti =
{
x ∈ Fm

p | (ui, x) ∈ F∗p
}

.

SetR = s = (p − 1) · pm−1. For eachi ∈ [n] assume some bijection between points ofTi and elements of[R].
For i ∈ [n] andr ∈ [R] let wir be ther-th point ofTi. Set

Qir = {wir + λvi | λ ∈ Fp} .3

Lemma 5 For i ∈ [n] andr ∈ [R] setsTi andQir form a(p, n,N, R, s) regular intersecting family.

3Note that the setsQir are not all distinct.



Proof: We simply need to verify that all 6 conditions listed in definition 2 are satisfied.

1. Condition 1 is trivial.

2. Condition 2 is trivial.

3. Condition 3 is trivial.

4. Fix i ∈ [n] andr ∈ [R]. Given that(ui, wir) ∈ F∗p let us show thatQir ⊆ Ti. By lemma 4(ui, vi) = 0.
Thus for everyλ ∈ Fp : (ui, wir + λvi) = (ui, wir) . Condition 4 follows.

5. Fix i ∈ [n] andw ∈ Ti. Note that

|{r ∈ [R] | w ∈ Qir}| = |{wir ∈ Ti | ∃λ ∈ Fp, w = wir + λvi}| =

|{wir ∈ Ti | ∃λ ∈ Fp, wir = w − λvi}| = p.

It remains to notice thatRp/s = p. Condition 5 follows.

6. Fix i, j ∈ [n] andr ∈ [R] such thati 6= j. Note that

|Qir ∩ Tj | =
∣∣{λ ∈ Fp | (uj , wir + λvi) ∈ F∗p

}∣∣ = ∣∣{λ ∈ Fp | ((uj , wir) + λ(uj , vi)) ∈ F∗p
}∣∣ = p− 1.

The last equality follows from the fact that(uj , vi) 6= 0, and therefore the univariate linear function
(uj , wir) + λ(uj , vi) takes every value inFp exactly once. It remains to notice thatp− 1 is even. Condition
6 follows.

Combining lemma 5 and proposition 3 we get

Corollary 6 Let p be an odd prime andm ≥ p − 1 be an integer. There exists a binary linear code encoding(
m

p−1

)
bits topm bits that is

(
p, δ, δp2/(p− 1)

)
locally decodable for allδ.

It is now easy to convert the above result into a dense family (i.e., one that has a code for every message length
n, as opposed to infinitely manyn’s) of p-query LDCs of lengthexp

(
n1/(p−1)

)
.

Theorem 7 Let p be a fixed odd prime. For every positive integern there exists a code of lengthexp
(
n1/(p−1)

)
that is

(
p, δ, δp2/(p− 1)

)
locally decodable for allδ.

Proof: Givenn, choosem to be the smallest integer such thatn ≤
(

m
p−1

)
. Setn′ =

(
m

p−1

)
. It is easy to verify

that if n is sufficiently large we haven′ ≤ 2n. Given a messagex of lengthn, we pad it with zeros to lengthn′

and use the code from corollary 6 encodingx with a codeword of lengthpm = exp
(
n1/(p−1)

)
.

5 Main construction

In the previous section we presented our basic linear algebraic construction of regular intersecting families. We
chose setsTi to be unions of cosets of certain hyperplanes. We chose setsQir to be lines. The high-level idea
behind our main construction, is to reduce the number of codeword locations queried by choosing setsQir to be
proper subsets of linesrather than whole lines. Before we proceed to our main construction we introduce two
central technical concepts of our paper, namelycombinatorialandalgebraic niceness.Let p be an odd prime.



Definition 8 A setS ⊆ F∗p is called(m, n) combinatorially nice if there exist two families of vectors{u1, . . . , un}
and{v1, . . . , vn} in Fm

p , such that

• For all i ∈ [n], (ui, vi) = 0;

• For all i, j ∈ [n] such thati 6= j, (uj , vi) ∈ S.

Remark 9 Note that in lemma 4 we established that the setS = F∗p is
(
m,
(

m
p−1

))
combinatorially nice for

every integerm ≥ p− 1.

Definition 10 A setS ⊆ F∗p is calledq algebraically nice ifq is odd and there exist two setsS0, S1 ⊆ Fp such that

• S0 is not empty;

• |S1| = q;

• For all α ∈ Fp andβ ∈ S : |S0 ∩ (α + βS1)| ≡ 0 mod (2).

Remark 11 It is easy to verify that the setS = F∗p is p algebraically nice. Simply pickS1 = Fp andS0 = F∗p.

5.1 Removing points from lines

The next proposition shows how an interplay between combinatorial and algebraic niceness yields regular
intersecting families. It is the core of our construction.

Proposition 12 AssumeS ⊆ F∗p is simultaneously(m,n) combinatorially nice andq algebraically nice. LetS0

be the set from the definition of algebraic niceness ofS. The setS yields a
(
q, n, pm, |S0|pm−1, |S0|pm−1

)
regular

intersecting family.

Proof: For i ∈ [n] let ui, vi be the vectors from the definition of combinatorial niceness. SetN = pm and
R = s = |S0|pm−1. Assume a bijection between[N ] andFm

p . For all i ∈ [n] set

Ti =
{
x ∈ Fm

p | (ui, x) ∈ S0

}
.

For eachi ∈ [n] assume some bijection between[R] andTi. Let wir denote ther-th point ofTi. Set

Qir = {wir + λvi | λ ∈ S1} .

It remains to verify that all 6 conditions listed in definition 2 are satisfied.

1. Condition 1 is trivial.

2. Condition 2 is trivial.

3. Condition 3 is trivial.

4. Fix i ∈ [n] andr ∈ [R]. Given that(ui, wir) ∈ S0 let us show thatQir ⊆ Ti. Definition 8 implies that
(ui, vi) = 0. Thus for everyλ ∈ S1 : (ui, wir + λvi) = (ui, wir) . Condition 4 follows.

5. Fix i ∈ [n] andw ∈ Ti. Note that

|{r ∈ [R] | w ∈ Qir}| = |{wir ∈ Ti | ∃λ ∈ S1, w = wir + λvi}| =

|{wir ∈ Ti | ∃λ ∈ S1, wir = w − λvi}| = |S1| = q.

It remains to notice thatRq/s = q. Condition 5 follows.



6. Fix i, j ∈ [n] andr ∈ [R] such thati 6= j. Note that

|Qir ∩ Tj | = |{λ ∈ S1 | (uj , wir + λvi) ∈ S0}| =

|{λ ∈ S1 | ((uj , wir) + λ(uj , vi)) ∈ S0}| = |S0 ∩ ((uj , wir) + (uj , vi)S1)| ≡ 0 mod (2).

The last equality follows from the fact that(uj , vi) ∈ S, and definition 10. Condition 6 follows.

Observe that one can derive a regular intersecting family with parameters from lemma 5 using proposition 12
in combination with remarks 9 and 11.

5.2 On combinatorially nice subsets ofF∗p

For w ∈ Fm
p and a positive integerl, let w⊗l ∈ Fml

p denote thel-th tensor power ofw. Coordinates ofw⊗l

are labelled by all possible sequences in[m]l andw⊗l
i1,...,il

=
l∏

j=1
wij . The goal of this section is to establish the

following

Lemma 13 Let p be an odd prime andm ≥ p − 1 be an integer. SupposeS is a subgroup ofF∗p; thenS is((
m−1+(p−1)/|S|

(p−1)/|S|

)
,
(

m
p−1

))
combinatorially nice.

Proof: Let n =
(

m
p−1

)
. For i ∈ [n] let vectorsu′′i andv′′i in Fm

p be the same as vectorsui, vi in the proof of

lemma 4, i.e., vectorsu′′i are incidence vectors of all possible subsets of[m] of cardinality(p− 1) and vectorsv′′i
are their complements. Recall that

• For all i ∈ [n], (u′′i , v
′′
i ) = 0;

• For all i, j ∈ [n] such thati 6= j, (u′′j , v
′′
i ) 6= 0.

Let l be a positive integer andu, v be vectors inFm
p . Observe that

(
u⊗l, v⊗l

)
=

∑
(i1,...,il)∈[m]l

(
l∏

j=1
uij

l∏
j=1

vij

)
=

∑
(i1,...,il)∈[m]l

(
l∏

j=1
uijvij

)
=

( ∑
i1∈[m]

ui1vi1

)
. . .

( ∑
il∈[m]

uilvil

)
= (u, v)l.

(2)

Let l = (p− 1)/|S|. For i ∈ [n] setu′i = u′′⊗l
i andv′i = v′′⊗l

i . Formula (2) and cyclicity ofF∗p yield

• For all i ∈ [n], (u′i, v
′
i) = 0;

• For all i, j ∈ [n] such thati 6= j, (u′j , v
′
i) ∈ S.

Note that vectorsu′i andv′i arem(p−1)/|S| long. Therefore at this point we have already shown that the setS is(
m(p−1)/|S|,

(
m

p−1

))
combinatorially nice.

Let w be an arbitrary vector inFm
p . Note that the value ofw⊗l

i1,...,il
depends on themulti-set{i1, . . . , il} rather

than the sequencei1, . . . , il. Thus many coordinates ofw⊗l contain identical (and therefore redundant) values.
We are going to reduce the length of vectorsu′i andv′i using this observation. LetF (m, l) denote the family of



all multi-subsets of[m] of cardinalityl. Note that|F (m, l)| =
(

m−1+l
l

)
. For a multi-setσ ∈ F (m, l) let c(σ)

denote the number of sequences in[m]l that representσ. Now we are ready to define vectorsui andvi in F|F (m,l)|
p .

The Coordinates of the vectorsui andvi are labelled by multi-setsσ ∈ F (m, l). For all i ∈ [n] andσ ∈ F (m, l)
we set

(ui)σ = c(σ)(u′i)σ and (vi)σ = (v′i)σ.

It is easy to verify that for alli, j ∈ [n], (uj , vi) =
(
u′j , v

′
i

)
. Combining this observation with the properties

of vectorsu′i and v′i that were established earlier, we conclude that the setS is
((

m−1+(p−1)/|S|
(p−1)/|S|

)
,
(

m
p−1

))
combinatorially nice.

5.3 On algebraically nice subsets ofF∗p

In this section we construct 3-algebraically nice subsets ofF∗p, for primesp that have the formp = 2t − 1.
Such primes are known asMersenneprimes. Our construction relies on some basic properties of finite fields [17].
Consider a natural one to one correspondence between subsetsS1 of Fp and polynomialsφS1(x) in the ring
F2[x]/(xp − 1) :

φS1(x) =
∑
s∈S1

xs.

It is immediate to verify that for all setsS1 ⊆ Fp and allα, β ∈ Fp, such thatβ 6= 0 :

φα+βS1(x) = xαφS1(x
β). (3)

Lemma 14 Let p = 2t − 1 be a Mersenne prime. The setS = {1, 2, 4, 8, . . . , 2t−1} ⊆ F∗p is three algebraically
nice.

Proof: Observe that the polynomialxp − 1 = x2t−1 − 1 splits into distinct linear factors in the finite fieldF2t .
Clearly, every non-zero element ofF2t is a root ofxp−1. Let g be a generator ofF∗2t . Fix γ such that1+g+gγ = 0.
SetS1 = {0, 1, γ}.

Let α be a variable ranging overFp andβ be a variable ranging overS. We are going to argue the existence of a
setS0 that has even intersections with all sets of the formα+βS1, by showing that all polynomialsφα+βS1 belong
to a certain linear spaceL ∈ F2[x]/(xp − 1) of dimension less thanp. In this case any nonempty setT ⊆ Fp such
that φT ∈ L⊥ can be used as the setS0. Let τ(x) = GCD(xp − 1, φS1(x)). Note thatτ(x) 6= 1 sinceg is a
common root ofxp − 1 and1 + x + xγ . Let L be the space of polynomials inF2[x]/(xp − 1) that are multiples
of τ(x). Clearly,dim L = p− deg τ. Fix someα ∈ Fp andβ ∈ S. Let us prove thatφα+βS1(x) is in L :

φα+βS1(x) = xαφS1(x
β) = xα(φS1(x))β.

The last identity above follows from the fact that for any polynomialf ∈ F2[x] and any integeri : f(x2i
) =

(f(x))2
i

and our choice of the setS.

The parameters of a regular intersecting family that one gets by applying proposition 12 to a certain (nice) set
S depend on the size of the setS0 from the definition of algebraic niceness ofS. The next lemma shows that one
can always pick the setS0 to be large.

Lemma 15 Let S ⊆ F∗p be aq algebraically nice set. LetS0, S1 ⊆ Fp be sets from the definition of algebraic
niceness ofS. One can always redefine the setS0 to satisfy|S0| ≥ dp/2e.



Proof: Let L ⊂ F2[x]/(xp − 1) be the linear space spanned by polynomials of the formφα+βS1(x), for α ∈ Fp

andβ ∈ S. Clearly, the spaceL is closed under cyclic shifts. This implies that the spaceL⊥ is also closed
under cyclic shifts. Note thatL⊥ has positive dimension sinceφS0(x) ∈ L⊥. The last two observations imply
thatL⊥ hasfull support,i.e., for every coordinatei there exists a vectorφ ∈ L⊥ such thatφi 6= 0. It is easy to
verify that any linear subspace ofFp

2 that has full support contains a vector of Hamming weight at leastdp/2e. Let
φT (x) ∈ L⊥ be such a vector. Redefining the setS0 to be the setT we conclude the proof.

5.4 Results

Let p = 2t − 1 be a Mersenne prime. Note that the setS = {1, 2, 4, 8, . . . , 2t−1} is a multiplicative subgroup
of F∗p. Combining proposition 12 with lemmas 13, 14 and 15 we conclude

Lemma 16 Let p = 2t − 1 be a Mersenne prime andm ≥ p − 1 be an integer. Letm′ =
(

m−1+(p−1)/t
(p−1)/t

)
. For

some integerz ≥ dp/2e there exists a regular intersecting family with parameters(
3,

(
m

p− 1

)
, pm′

, zpm′−1, zpm′−1

)
.

Combining lemma 16 with proposition 3 we obtain the key lemma of the paper

Lemma 17 Letp = 2t − 1 be a Mersenne prime andm ≥ p− 1 be an integer. Letm′ =
(

m−1+(p−1)/t
(p−1)/t

)
. There

exists a binary linear code encodingn =
(

m
p−1

)
bits topm′

bits that is(3, δ, 6δ) locally decodable code for allδ.

For every fixed Mersenne primep = 2t − 1 we get a family of 3-query LDCs of lengthexp
(
n1/t

)
. We omit

the proof since it is essentially identical to the proof of theorem 7.

Theorem 18 Letp = 2t − 1 be a fixed Mersenne prime. For every positive integern there exists a code of length
exp

(
n1/t

)
that is(3, δ, 6δ) locally decodable for allδ.

Mersenne primes have been a popular object of study in number theory for the last few centuries. It is still
unknown whether the number of Mersenne primes is infinite. There has been a large amount of effort and com-
putational power invested in search for large Mersenne primes [29]. The largest currently known Mersenne prime
is p = 232,582,657 − 1. It was discovered by C. Cooper and S. Boone [9] on September 4, 2006. Pluggingp into
theorem 18 we get

Theorem 19 For every positive integern there exists a code of lengthexp
(
n1/32,582,657

)
that is(3, δ, 6δ) locally

decodable for allδ.

It has often been conjectured that the number of Mersenne primes is infinite. If this conjecture holds we get three
query locally decodable codes of subexponential lengthfor infinitely manymessage lengthsn.

Theorem 20 Suppose that the number of Mersenne primes is infinite; then for infinitely many values ofn there

exists a code of lengthexp
(

n
O

(
1

log log n

))
that is(3, δ, 6δ) locally decodable for allδ.

Proof: Given a Mersenne primep, setm = 2p. Substitutingm andp into lemma 17 and making some basic
manipulations we conclude that there exists a(3, δ, 6δ) locally decodable code encodingn = mΘ(log m) bits to

N = exp
(

m
O

(
log m

log log m

))
bits. An observation thatlog log n = Θ(log log m) completes the proof.



Lenstra, Pomerance, and Wagstaff [27, 22, 28] have made the following conjecture regarding the density of
Mersenne primes.

Conjecture 21 LetM(t) be the number of Mersenne primes that are less than or equal to2t − 1; then

lim
t→∞

M(t)/ log2 t = eγ ,

whereγ ≈ 0.577 is the Euler-Mascheroni constant.

If the conjecture above holds we get three query locally decodable codes of subexponential lengthfor all
message lengthsn.

Theorem 22 Let ε be a positive constant. Suppose the conjecture 21 holds; then for all values ofn there exists a

code of lengthexp
(

n
O

(
1

log1−ε log n

))
that is(3, δ, 6δ) locally decodable for allδ.

Proof: Conjecture 21 implies that for all sufficiently large integersz there is a Mersenne prime between2log1−ε z

andz. Assumen is sufficiently large. Pick a Mersenne primep from the interval
[
2log1−ε √log n,

√
log n

]
. Let

m be the smallest integer such thatn ≤
(

m
p−1

)
. Note thatm = pnΘ(1/p). Given ann-bit messagex we pad

it with zeros to length
(

m
p−1

)
and use the code from lemma 17 to encodex into a codeword of lengthpm′

for

m′ =
(
n1/p log p

)O(p/ log p)
. It remains to notice thatlog m′ = O

(
log n
log p + p log log p

log p

)
= O

(
log n

log1−ε log n

)
.

6 Application to Private Information Retrieval

We start with a formal definition of a three server PIR protocol. Letx ∈ {0, 1}n be the database.

Definition 23 A three server PIR protocol is a triplet of non-uniform algorithmsP = (Q,A, C). We assume that
each algorithm is givenn as an advice. At the beginning of the protocol, the userU tosses random coins and
obtains a random stringr. NextU invokesQ(i, r) to generate a triple of queries(que1, que2, que3). For j ∈ [3],
U sendsquej to Sj . Each serverSj responds with an answeransj = A(j, x, quej). (We can assume without loss
of generality that servers are deterministic; hence, each answer is a function of a query and a database.) Finally,
U computes its output by applying the reconstruction algorithmC(ans1, ans2, ans3, i, r). A protocol as above
should satisfy the following requirements:

• Correctness :For anyn, x ∈ {0, 1}n andi ∈ [n], the user outputs the correct value ofxi with probability
1 (where the probability is over the random stringsr).

• Privacy : Each server individually learns no information abouti. To formalize this letQj denote thej-th
output ofQ. We require that forj = 1, 2, 3 and anyn, i1, i2 ∈ [n] the distributionsQj(i1, r) andQj(i2, r)
are identical.

There are known generic procedures [15] to convertq-query LDCs intoq-server PIR schemes. However a simple
application of such a procedure to our LDCs will either yield a PIR protocol with perfect privacy, but small
probability of error, or a PIR protocol with perfect correctness and some slight privacy leakage. Fortunately, it is
possible to achieve both perfect privacy and perfect correctness simultaneously via a specially designed reduction.



Lemma 24 Let p = 2t − 1 be a Mersenne prime andm ≥ p − 1 be an integer. Letn =
(

m
p−1

)
and m′ =(

m−1+(p−1)/t
(p−1)/t

)
. There exists a one round three server PIR protocol with questions of lengthm′ log p and answers

of lengthp that allows private retrieval of bits from databases of lengthn.

Proof: In the preprocessing stage the servers encode the databasex with a three query locally decodable codeC
from lemma 17. We are going to use the notation from that lemma. Recall that the coordinates ofC(x) are in one
to one correspondence with points inFm′

p . In order to decodexi the user has to query three locations{w+λvi | λ ∈
S1} for somew ∈ Ti, whereTi is the union of certain cosets of the hyperplane

{
y ∈ Fm′

p | (ui, y) = 0
}

. Unlike

the LDC setup in the PIR setup the user can not pickw ∈ Ti uniformly at random and then query locations
{w + λvi | λ ∈ S1} from three different servers, since in such case the servers would observe the uniform
distribution onTi rather than the uniform distribution onFm′

p . Here is our way to go around this problem.

Let e ∈ Fm′
p be the all-ones vector. The definition of vectorsui in lemma 13 implies that(e, ui) 6= 0 mod (p)

for all i ∈ [n]. Thus for everyi ∈ [n] and everyw ∈ Fm′
p there is someγ0 ∈ Fp such thatw + γ0e ∈ Ti. The user

picksw ∈ Fm′
p uniformly at random and (simultaneously) asksp triples of queries of the from{w+γe+λvi | λ ∈

S1} for all γ ∈ Fp. For every triple the first query always goes to server 1, the second to server 2 and the last to
server 3. (Note that in order to ask all those queries the user needs to communicate only a single point inFm′

p to
each of the servers.) It is easy to verify that in such case each server individually observes a uniform distribution
independent ofi, while the user always successfully reconstructsxi from one of the triples.

The next theorem captures the asymptotic behavior of our PIR schemes for a fixed Mersenne primep. We omit
the proof since it is essentially identical to the proof of theorem 7.

Theorem 25 Let p = 2t − 1 be a fixed Mersenne prime. For every positive integern there exists a three server
PIR protocol with questions of lengthO

(
n1/t

)
and answers of lengthO(1).

A generic balancing technique of [7, section 4.3] allows to convert any PIR protocol withO(n1/t) long queries
andO(1) long answers into a new PIR protocol withO(n1/(t+1)) total communication. Such a conversion yields

Theorem 26 Let p = 2t − 1 be a fixed Mersenne prime. For every positive integern there exists a three server
PIR protocol withO

(
n1/(t+1)

)
communication.

Plugging the value of the largest known Mersenne primep = 232,582,657 − 1 into theorem 26, we conclude

Theorem 27 For every positive integern there exists a three server PIR protocol with communication complexity
of O

(
n1/32,582,658

)
.

The next two theorems capture the asymptotic parameters of our PIR schemes under the number-theoretic
assumptions. Both theorems follow immediately from lemma 24 using the arguments that are essentially identical
to the proofs of theorems 20 and 22.

Theorem 28 Suppose that the number of Mersenne primes is infinite; then for infinitely many values ofn there

exists a three server PIR protocol with communication complexity ofn
O

(
1

log log n

)
.

Theorem 29 Let ε be a positive constant. Suppose the conjecture 21 holds; then for all values ofn there exists a

three server PIR protocol with communication complexity ofn
O

(
1

log1−ε log n

)
.



7 Conclusion

We presented a novel approach to constructing locally decodable codes and vastly improved the known upper
bounds. However the gap between the upper and lower bounds for LDCs still remains very large. It might be the
case that the technique proposed in this paper has not yet been pushed to its limit and further improvements will
be obtained in this way. In particular, proposition 12 generalizes to arbitrary finite fields (rather than just prime
fields). It may happen that a clever choice of a fieldF and a subsetS ⊆ F that is simultaneously combinatorially
and algebraically nice will yield shorter LDCs.
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