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Abstract

A g-query Locally Decodable Code (LDC) encodesmahit message: as anN-bit codewordC'(x), such that
one can probabilistically recover any hit; of the message by querying omfyits of the codeword’(x), even
after some constant fraction of codeword bits has been corrupted.

We give new constructions of three query LDCs of vastly shorter length than that of previous constructions.
Specifically, given any Mersenne primpe= 2! — 1, we design three query LDCs of length = exp (n'/?),

for everyn. Based on the largest known Mersenne prime, this translates to a length of |e€@¢h@11077),

compared texp (n1/2) in the previous constructions. It has often been conjectured that there are infinitely many

Mersenne primes. Under this conjecture, our constructions yield three query locally decodable codes of length
1
N =exp n0<loglog") for infinitely manyn.

We also obtain analogous improvements for Private Information Retrieval (PIR) schemes. We give 3-server
PIR schemes with communication complexit@c(fnloq) to access am-bit database, compared to the previous

best scheme with complexify(n'/52°). Assuming again that there are infinitely many Mersenne primes, we get
1
3-server PIR schemes of communication complexcftg/ioglog") for infinitely manyn.
Previous families of LDCs and PIR schemes were based on the properties of low-degree multivariate polynomi-
als over finite fields. Our constructions are completely different and are obtained by constructing a large number
of vectors in a small dimensional vector space whose inner products are restricted to lie in an algebraically nice

set.

1 Introduction

Classical error-correcting codes allow one to encode-ait string x into in N-bit codewordC'(x), in such a
way thatx can still be recovered evendf(x) gets corrupted in a number of coordinates. For instance, codewords
C(z) of lengthN = O(n) already suffice to correct errors in up&® locations ofC'(x) for any constani < 1/4.
The disadvantage of classical error-correction is that one needs to consider all or most of the (corrupted) codeword
to recover anything about Now suppose that one is only interested in recovering one or a few hitsliofsuch
case more efficient schemes are possible. Such schemes are known as locally decodable codes (LDCs). Locally
decodable codes allow reconstruction of an arbitrary:pifrom looking only atg randomly chosen coordinates

*An earlier version of this paper has appeared on ECCC as a technical report (TR06-127) under the title: “New Locally Decodable
Codes and Private Information Retrieval Schemes”.



of C'(x), whereq can be as small & Locally decodable codes have found numerous applications in complexity
theory and cryptography. See [25], [10] for a survey. Below is a slightly informal definition of LDCs:

A (g, 0, ¢)-locally decodable code encodesit strings toN-bit codewords”'(x), such that for every € [n],
the bitx; can be recovered with probability— ¢, by a randomized decoding procedure that makes @qglyeries,
even if the codeword’(z) is corrupted in up t@ NV locations.

One should think 0§ > 0 ande < 1/2 as constants. The main parameters of interest in LDCs are the I1&nhgth
and the query complexity. Ideally we would like to have both of them as small as possible. The notion of locally
decodable codes was explicitly discussed in various places in the early 1990s, most notably in [3, 24, 21]. Katz and
Trevisan [15] were the first to provide a formal definition of LDCs and prove lower bounds on their length. Further
work on locally decodable codes includes [5, 8, 20, 6, 16, 26]. The length of o@imagry LDCs was settled by
Kerenidis and de Wolf in [16] and isxp(n).* The length of optimaB-query LDCs is unknown. The best upper
bound prior to our work wasxp (n!/2) due to Beimel et al. [5], and the best lower boun€{s:%) [16, 30]. For
general (constant) the best upper bound wasp (n©(°8lee4/(@1°s9))) due to Beimel et al. [6] and the best lower
bound isQ (n!+1/([4/21-1)) [16, 30].

The current state of knowledge raises a natural question: Is the poor rate of known constructions an inherent
property of locally decodable codes? Indeed, Gasarch [10, section 9] and Goldreich [11, conjecture 4.4] conjecture
that the exponential dependencerari.e., the dependence of the forli = exp (nﬂ(l)) , is unavoidable for any
constant number of queries. As our results suggest, such behavior may well not be inherent.

Our results

We give new families of locally decodable codes whose length is vastly shorter than that of previous con-
structions. We show that every Mersenne primé.e., a prime of the fornp = 2! — 1) yields a family of
three query locally decodable codes of lengttp (n'/*) . The largest Mersenne prime known currently has
t = 32,582,657 > 107. Substituting this prime into our theorem we conclude that for evetiiere exists a
three query locally decodable code of lengtip (n!/32582:657),
It has often been conjectured that the number of Mersenne primes is infinite. If indeed this conjecture holds,

1
our constructions yield three query locally decodable codes of leNgth exp n0<1°g1°g”> for infinitely

manyn. Finally, assuming that the conjecture of Lenstra, Pomerance and Wagstaff [27, 22, 28] regarding the
density of Mersenne primes holds, our constructions yield three query locally decodable codes oMeagth

of——1
exp (n <log1‘€10gn)> for all n, for everye > 0.

1.1 Application to Private Information Retrieval

A g-serverprivate information retrievalPIR) scheme allows a user to retrieve thh bit of ann-bit string
x replicated between servers while each server individually learns no information abolihe main parameter
of interest in a PIR scheme is its communication comple&ityn), namely the number of bits exchanged by the
user and the servers. Private information retrieval schemes were introduced by Chor et. al. [7]. Further work on
PIRs includes [1, 18, 13, 14, 5, 12, 16, 2, 31, 23]. Below is a brief summary of known boun@g(for.

The best upper bound fék(n) is O(n'/3) due to [7]. The best upper bounds for larger valuegarieC,,(n) <
nOUeglosa/(aloga)) due to Beimel et al. [6]. In particular [6] show thag(n) < O (n/>2°), Cy(n) < O (n/757)
andCs(n) < O (n1/1983) . The best lower bound faf(n) is 5log n due to Wehner and de Wolf [26].

Private information retrieval schemes are closely related to locally decodable codes. In particular, our construc-
tions of LDCs yield three server private information retrieval schemes with small communication complexity. We
show that every Mersenne prime= 2! — 1 yields C3(n) < O (n'/(+1) . Instantiating this with the largest

Throughout the paper we use the standard notatigiiz) < ¢©®).



known Mersenne prime we gét;(n) < O (n!/32582658) ~Assuming that the number of Mersenne primes is
1
infinite our bound goes further downmo(loglogn> for infinitely manyn. Finally, assuming the density conjecture
1
of Lenstra, Pomerance and Wagstaff [27, 22, 28], wa3éh) < n0<1og1*510gn) for all n, for everye > 0.

1.2 Our technique

All previously known constructions of locally decodable codes and private information retrieval schemes are
(implicitly or explicitly) centered around the idea of representing a messdgean evaluation of a certain low
degree polynomial over a finite field. Our constructions take a completely different approach. We start by reducing
the problem of constructing locally decodable codes to the problem of designing certain families of sets with
restricted intersections. We use elementary algebra over finite fields to design such families.

The heart of our construction is the design of aSeC F) for a primep that simultaneously satisfies two
properties: (1) There exist two large sequences of veetQrs ., u,, v1, ..., v, in Some low dimensional space
[}, such that the dot products:;, v;) = 0 for all 4, and the dot product&u;, v;) € S for all i # j. We refer
to this property as the combinatorial niceness50{2) For a small integey there exists g sparse polynomial
$(z) € Fo[z] such that the common GCD of all polynomials of the fasta:®), 5 € S and the polynomiat? — 1
is non-trivial. We refer to this property as the algebraic niceness. dur notion of combinatorial niceness is
related to the notion of set families with restricted intersections in [4].

Our construction of locally decodable codes thus comes in three steps: First we show th&texisiditing
both combinatorial and algebraic niceness leads to good locally decodable codes. In particular thedétigth
sequencesq, ..., u, andvy, ..., v, corresponds to the number of message bits we can encode, while the length
of the codewords we build i&% = p™. So the longer the sequence and the smaller the dimension the better.
The query complexity of our codes is given by the parametieom the definition of algebraic niceness §f
This step of our construction is quite general and applies to vegiors. , v, and subset$' over any field. It
leads us to the task of identifying good sets that are both combinatorially and algebraically nice, and these tasks
narrow our choice of fields. As our second step we focus on combinatorial niceness. In general big sets tend to
be “nicer” (allow longer sequences) than small ones. We show that every multiplicative subgroup of a prime field
is combinatorially as nice as its cardinality would allow. This still leaves us with a variety of fields and subsets to
work with. Finally as the last step we attempt to understand the algebraic niceness of sets. We focus on the very
narrow case of Mersenne primgsnd the subgroup generated by the elem2entF,. We manage to show that
this subgroup is nice enough to get 3-query locally decodable codes, leading to our final result.

1.3 Outline

In section 3 we formally define locally decodable codes and introduce certain combinatorial objects that we call
regular intersecting families of sets. Those objects later serve as our tool to construct binary LDCs. In section 4
we present a linear algebraic construction of a regular intersecting family that yields locally decodable codes with
good (although, not the best known) parameters. The notions of combinatorial and algebraic niceness of sets are
used implicitly in this section. Our main construction in section 5 builds upon the construction of section 4. We
formally introduce combinatorial and algebraic niceness and show how the interplay between these two notions
yields new LDCs. The last subsection of section 5 and section 6 contain our main results for LDCs and private
information retrieval schemes.

2 Notation

We use the following standard mathematical notation:



[s] ={1,...,s};

IF, is a finite field ofg elements;

[F; is the multiplicative group oF;

dy(x,y) denotes the Hamming distance between binary veatarsdy;

(u,v) stands for the dot product of vectarsandv.

e For alinear spac& C F3*, L+ denotes thelual space. ThatisL* = {u € FJ* | Vv € L, (u,v) = 0}.
3 A combinatorial approach to locally decodable codes

In this section we formally define locally decodable codes and introduce certain combinatorial objects that we
call regular intersecting familiesf sets. We show that regular intersecting families of sets yield binary LDCs.

Definition 1 A binary codeC : {0,1}" — {0,1}" is said to be(qg, 6, ¢)-locally decodable if there exists a
randomized decoding algorithpA such that

1. Forallz € {0,1}",i € [n] andy € {0,1}" such thatdy (C(x),y) < 0N : PrlAY(i) = z;] > 1 — ¢,
where the probability is taken over the random coin tosses of the algovithm

2. A makes at most queries toy.

A locally decodable code is called lineardfis a linear transformation ovéi,. Our constructions of locally
decodable codes are linear. They are obtained by viewing the basis elements of the code and the decoding sets o
the code as specifying a set system (where a vector corresponds to the set of coordinates on which it is non-zero),
with some special intersection properties. We define these properties nexy,, Redndn be positive integers.
Consider the s€tV]. Fori € [n], r € [R] letT; andQ;,., be subsets dgiV].

Definition 2 We say that subsef§ and Q;, form a(q,n, N, R, s) regular intersecting family if the following
conditions are satisfied:

1. g is odd;

2. Foralli € [n], |Ti] = s;

3. Foralli € [n] andr € [R], |Qir| = ¢;

4. Foralli € [n] andr € [R], Qi C Tj;

5. Foralli € [n]andw € T;, |{r € [R] | w € Qir}| = (Rq)/s, (i-e.,T; is uniformly covered by the sef}, );
6. Foralli,j € [n] andr € [R] such thati # j, |Qs NT;| =0 mod (2).

The following proposition shows that regular intersecting families imply locally decodable codes.

Proposition 3 A (¢, n, N, R, s) regular intersecting family yields a binary linear code encodingits to NV bits
thatis (g, 0, 0Ng/s) locally decodable for alb.

2\We remark that many earlier papers about LDCs used the paragiatardifferent way. They required PAY (i) = ;] > 1/2 + ¢,
rather than Rr4Y (i) = x;] > 1 — . We choose to break with this tradition.



Proof: For a setS C [N] let I(S) € {0,1}" denote its incidence vector. Formally, far € [N] we set
I1(S)y = 1if w € S; andI(S),, = 0 otherwise. We define linear codgévia its generator matrig’ € {0, 1}"*V.
Fori € [n], we set thei-th row of G to be the incidence vector of the sBt Below is the description of the
decoding algorithmA. Given oracle access gpand input; € [n], the algorithmA4

1. picksr € [R] uniformly at random;
2. outputs the dot produ¢y, I (Q;,)) overFs.

Note that sinceQ;,| = ¢, A needs only; queries intay to compute the dot product. It is easy to verify that the
decoding is correct ifd picksr € [R] such that all bits o&G in locationsh € @;, are not corrupted:

(2G, 1 (Qir)) Zazg 1(Qir) = @i (I(T), 1 (Qir)) = @i. (1)

The second equality in formula (1) follows from part 6 of definition 2 and the last equality follows from parts
1,3 and 4 of definition 2. Now assume that updt¥ bits of the encoding:G have been corrupted. Part 5 of
definition 2 implies that there are at mdstV Rq)/s setsQ;, that contain at least one corrupted location. Thus
with probability at least — (6 /N¢)/s, the algorithmA outputs the correct value. |

4 Basic construction

In this section we present our basic construction of regular intersecting families that gielesy locally
decodable codes of lengtixp (n!/(4=1) for prime values ofy > 3. We choose set§; to be unions of cosets
of certain hyperplanes and sé&js,. to be lines. We argue the intersection properties based on elementary linear
algebra. Lep be an odd prime anth > p — 1 be an integer.

Lemma4 Letn = (p’f‘l> . There exist two families of vectofs,, . .., u, } and{vy, ..., v, } in F}*, such that
e Foralli € [n], (u;,v;) = 0;
e Foralli,j € [n] suchthati # j, (u;,v;) # 0.

Proof: Lete € ;' be the vector that containiss in all the coordinates. We set vectarsto be incidence

vectors of all possible{p’g) subsets ofm| of cardinality (p — 1). For everyi € [n] we setv; = e — u;. Itis
straightforward to verify that this family satisfies the condition of the lemma. |

Now we are ready to present our regular intersecting family. et p” andn = (p’fl) . Assume some
bijection between the sV | and the spack)’. Fori € [n] set

T ={z € F}) | (us,z) €Fp}.

SetR = s = (p—1)-p™ L. For eachi € [n] assume some bijection between pointdpand elements ofR)].
Fori € [n] andr € [R] letw;, be ther-th point of 7;. Set

Qir = {wir + My | N €T} .3

Lemma Fori € [n] andr € [R] setsT; andQ;, form a(p,n, N, R, s) regular intersecting family.

*Note that the set§);, are not all distinct.



Proof: We simply need to verify that all 6 conditions listed in definition 2 are satisfied.
1. Condition 1 is trivial.
2. Condition 2 is trivial.
3. Condition 3 is trivial.
4

. Fixi € [n] andr € [R]. Given that(u;, w;) € I, let us show that);, C T;. By lemma 4(u;, v;) = 0.
Thus for every\ € IF,, : (uj, wir + Av;) = (u;, wyr) . Condition 4 follows.

5. Fixi € [n] andw € T;. Note that
{r € (Rl |w e Qu}l = Hwir € Ty | 3X € Fpyw = wir + Avi}| =
Hwir € T; | 3N € Fp,wip = w — Avi}| = p.
It remains to notice thakp/s = p. Condition 5 follows.
6. Fixi,j € [n] andr € [R] such that # j. Note that
1Qir NTj| = {X €Fp | (uj,wir + Mvi) € Fi}| = [{A € Fp| ((uj, wir) + Auj,v;)) € Fp}| =p—1.

The last equality follows from the fact that:;,v;) # 0, and therefore the univariate linear function
(uj, wir) + A(uj, v;) takes every value ifi, exactly once. It remains to notice that- 1 is even. Condition
6 follows.

|

Combining lemma 5 and proposition 3 we get

Corollary 6 Letp be an odd prime and» > p — 1 be an integer. There exists a binary linear code encoding
(p’j‘l) bits top™ bits that is(p, 5, 5p*/(p — 1)) locally decodable for alb.

It is now easy to convert the above result into a dense family (i.e., one that has a code for every message length
n, as opposed to infinitely manys) of p-query LDCs of lengthexp (n!/(P—1)).

Theorem 7 Letp be a fixed odd prime. For every positive integethere exists a code of lengtixp (n!/(*~1)
thatis (p, 6, 5p?/(p — 1)) locally decodable for alb.

Proof: Givenn, choosen to be the smallest integer such tha& (pﬂ) . Setn/ = <p’f1> . Itis easy to verify

that if n is sufficiently large we have’ < 2n. Given a message of lengthn, we pad it with zeros to length’
and use the code from corollary 6 encodingith a codeword of length™ = exp (n!/P=1)) . |

5 Main construction

In the previous section we presented our basic linear algebraic construction of regular intersecting families. We
chose setq; to be unions of cosets of certain hyperplanes. We choseket® be lines. The high-level idea
behind our main construction, is to reduce the number of codeword locations queried by choosipg tetse
proper subsets of linesather than whole lines. Before we proceed to our main construction we introduce two
central technical concepts of our paper, nanuaisnbinatorialandalgebraic nicenesd.et p be an odd prime.



Definition 8 A setS C [} is called(m, n) combinatorially nice if there exist two families of vectéts;, . . ., u, }
and{vy, ..., v, } in F}, such that

e Foralli € [n], (u;,v;) = 0;
e Forall i,j € [n] suchthat # j, (u;,v;) € S.
Remark 9 Note that in lemma 4 we established that the $et F) is (m, (;fﬂ)) combinatorially nice for
every integerm > p — 1.
Definition 10 A setS C F; is calledq algebraically nice ifg is odd and there exist two sef§, S; C ), such that
e Sy is not empty;
o [Sil=¢
e Foralla e Fyand3 € S : 1SN (a+BS1)] =0 mod (2).

Remark 11 Itis easy to verify that the s&t = I}, is p algebraically nice. Simply pick; =, andS, = F,.
5.1 Removing points from lines

The next proposition shows how an interplay between combinatorial and algebraic niceness yields regular
intersecting families. It is the core of our construction.

Proposition 12 Assumes C F) is simultaneouslym, n) combinatorially nice and algebraically nice. LetS,
be the set from the definition of algebraic niceness.dfhe setS yields a(g, 7, p™, [So|p™ !, |So[p™ ) regular
intersecting family.

Proof: Fori € [n] let u;,v; be the vectors from the definition of combinatorial niceness. \Bet p™ and
R =s=So|p™'. Assume a bijection betwedV] and[F;". For alli € [n] set

Ty = {x € F)' | (us,z) € So} .
For eachi € [n] assume some bijection betweld?] andT;. Let w;, denote the-th point of 7;. Set
Qir = {wir + v | X € S1}.

It remains to verify that all 6 conditions listed in definition 2 are satisfied.

1. Condition 1 is trivial.

2. Condition 2 is trivial.
3. Condition 3 is trivial.
4

. Fixi € [n] andr € [R]. Given that(u;, w;) € Sy let us show that);, C T;. Definition 8 implies that
(ui,v;) = 0. Thus for everyA € Sy : (u;, wir + Av;) = (u;, w;,) . Condition 4 follows.

5. Fixi € [n] andw € T;. Note that
Hr e [R]|we Qi}| = {wir € T; | IN € S1,w = wip + Av}| =

Hwir € T; | 3N € S, wir = w — Avi | = |S1] = ¢.

It remains to notice thaRq/s = ¢. Condition 5 follows.



6. Fixi,j € [n] andr € [R] such that # j. Note that

Qir NT3 = [{A € 81 | (uj,wir +Mvy) € So}| =

HA € S1 | ((uj,wir) + AMuj,vi)) € Sot| = 1S0 N ((wj, wir) + (uj,v)51)] =0 mod (2).
The last equality follows from the fact that;, v;) € .S, and definition 10. Condition 6 follows.
[ |

Observe that one can derive a regular intersecting family with parameters from lemma 5 using proposition 12
in combination with remarks 9 and 11.

5.2 On combinatorially nice subsets of,

Forw € F)' and a positive integel; let w® € IF;” denote thd-th tensor power ofv. Coordinates ofv®!
l
are labelled by all possible sequencegritj! andwfffm’il = 'H1 w;;. The goal of this section is to establish the
j:
following

Lemma 13 Let p be an odd prime andn > p — 1 be an integer. Supposg is a subgroup off}; then S is

<<m7é,+_(f37|2|/‘sl) ) <p’f1)) combinatorially nice.

Proof: Letn = (pﬂ) . Fori € [n] let vectorsy;’ andv; in F}' be the same as vectons, v; in the proof of

lemma 4, i.e., vectors are incidence vectors of all possible subsetg:dfof cardinality(p — 1) and vectors)
are their complements. Recall that

e Foralli € [n], (u/,v}) = 0;

e Foralli,j € [n] such that # j, (uj,v;) # 0.

Let! be a positive integer and v be vectors ir¥;. Observe that

(U®l7q)®l) — Z <IL[ Uj; lill Uij) =

(i1,.y51) €E[m]E \J=1

2
l
Z (H uijvij) = < Z uil”h) ( Z uil”h) = (uvv)l'
(#1581 E[m]t \J=1 i1€[m] i1€[m]

Letl = (p —1)/[S]. Fori € [n] setu] = u/* andv] = v/®. Formula (2) and cyclicity oF; yield

e Foralli € [n], (u},v}) = 0;
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e Foralli,j € [n] suchthat # j, (u},v;) € S.

Note that vectors/; andv; arem®~1)/IS| long. Therefore at this point we have already shown that the set
(m(pfl)/‘sh <p’f1>> combinatorially nice.
Let w be an arbitrary vector ifi;;*. Note that the value o&;f?’” depends on thenulti-set{iy, ..., } rather

than the sequenca, ..., ;. Thus many coordinates @f® contain identical (and therefore redundant) values.
We are going to reduce the length of vectafsandv; using this observation. Léf(m,[) denote the family of



all multi-subsets ofm] of cardinalityl. Note that|F'(m, )| = (m‘ll“) . For a multi-setv € F(m,1) let ¢(o)

denote the number of sequencegir) that represent. Now we are ready to define vectarsandw; in IFLF(m’l)‘.
The Coordinates of the vectors andv; are labelled by multi-sets € F(m,![). For alli € [n] ando € F(m,)
we set

(ui)o = C(U)(u;’)cr and (v;)o = (vz,‘)a'

It is easy to verify that for ali,j € [n], (u;,v;) = (u;,vl’) . Combining this observation with the properties

of vectorsu; andv, that were established earlier, we conclude that theSsist ((m_(;t(ﬁ7lls)‘/|5|> , (;ﬁbl))
combinatorially nice.

5.3 On algebraically nice subsets df,,
In this section we construct 3-algebraically nice subsetg offor primesp that have the fornp = 2t — 1.

Such primes are known &dersennerimes. Our construction relies on some basic properties of finite fields [17].
Consider a natural one to one correspondence between suhsetsF,, and polynomialspg, (x) in the ring

Folz]/(xP — 1) :
bs, (z) = Z x®.
SEST
It is immediate to verify that for all setS; C F, and allo, 3 € F,, such that3 # 0 :
Patps, () = 2%¢g, (a”). (3)

Lemma 14 Letp = 2! — 1 be a Mersenne prime. The set= {1,2,4,8,...,2/711 C IF;, is three algebraically
nice.

Proof: Observe that the polynomiaP — 1 = I | splits into distinct linear factors in the finite fiekd:.
Clearly, every non-zero elementBf: is a root ofx” —1. Let g be a generator d;, . Fix v such thatl +g+¢” = 0.
SetS; = {0,1,~}.

Let o be a variable ranging ovél, and3 be a variable ranging ovet. We are going to argue the existence of a
setSy that has even intersections with all sets of the farm 351, by showing that all polynomials, . 35, belong
to a certain linear spade € Fy[x]/(2” — 1) of dimension less thap In this case any nonempty sEtC [, such
that¢r € L' can be used as the s§. Let 7(z) = GCD(zP — 1, ¢g,(z)). Note thatr(z) # 1 sinceg is a
common root oft” — 1 and1 + x + z”. Let L be the space of polynomials iy[z]/(zP — 1) that are multiples
of 7(z). Clearly,dim L = p — deg 7. Fix somea € [, andg € S. Let us prove thab,gs, (z) isin L :

barps (2) = 2%s, (27) = 2%(ds, (2))".

The last identity above follows from the fact that for any polynonfiat F»[z| and any integei : f (:czi)
(f(x))? and our choice of the sét

The parameters of a regular intersecting family that one gets by applying proposition 12 to a certain (nice) set
S depend on the size of the s&f from the definition of algebraic niceness.®fThe next lemma shows that one
can always pick the s&, to be large.

Lemma l5 Let S C IE«‘; be aq algebraically nice set. Le§,, S; C I, be sets from the definition of algebraic
niceness ob. One can always redefine the sgtto satisfy|Sy| > [p/2].



Proof: LetL C Fq[z]/(2P — 1) be the linear space spanned by polynomials of the togmsg, (z), for o € F),
andg3 € S. Clearly, the spacd is closed under cyclic shifts. This implies that the spaceis also closed
under cyclic shifts. Note that* has positive dimension sinegs,(z) € L. The last two observations imply
that L hasfull support,i.e., for every coordinaté there exists a vectas € L+ such thatp; # 0. It is easy to
verify that any linear subspace B that has full support contains a vector of Hamming weight at Iga&t]. Let
ér(x) € L+ be such a vector. Redefining the $gtto be the sef” we conclude the proof. |

5.4 Results

Letp = 2! — 1 be a Mersenne prime. Note that the Set {1,2,4,8,...,2/"'} is a multiplicative subgroup
of ;. Combining proposition 12 with lemmas 13, 14 and 15 we conclude

Lemma 16 Letp = 2! — 1 be a Mersenne prime and > p — 1 be an integer. Letn’ = (m_éf(ﬁ7j)/t) . For
some integet > [p/2] there exists a regular intersecting family with parameters

<3, ( " ) ™™ zpm'l) :
p—1
Combining lemma 16 with proposition 3 we obtain the key lemma of the paper

(r—1)/t
exists a binary linear code encodimg= (p’fl) bits top™’ bits that is(3, 8, 6) locally decodable code for af.

Lemma 17 Letp = 2! — 1 be a Mersenne prime and > p — 1 be an integer. Letn’ = (m—1+(p—1)/t> . There

For every fixed Mersenne prime= 2! — 1 we get a family of 3-query LDCs of lengtxp (n!/?) . We omit
the proof since it is essentially identical to the proof of theorem 7.

Theorem 18 Letp = 2! — 1 be a fixed Mersenne prime. For every positive integétere exists a code of length
exp (n'/t) thatis(3, d, 65) locally decodable for alb.

Mersenne primes have been a popular object of study in number theory for the last few centuries. It is still
unknown whether the number of Mersenne primes is infinite. There has been a large amount of effort and com-
putational power invested in search for large Mersenne primes [29]. The largest currently known Mersenne prime
isp = 232582657 _ 1 |t was discovered by C. Cooper and S. Boone [9] on September 4, 2006. Plygigitag
theorem 18 we get

Theorem 19 For every positive integet there exists a code of lengtitp (n!/3%582:657) that is (3, 6, 66) locally
decodable for alb.

It has often been conjectured that the number of Mersenne primes is infinite. If this conjecture holds we get three
guery locally decodable codes of subexponential lefgtimfinitely manymessage lengths.

Theorem 20 Suppose that the number of Mersenne primes is infinite; then for infinitely many valuekeyé
1
exists a code of lengtéxp <n0<1°g1°gn)> that is(3, 0, 60) locally decodable for alb.

Proof: Given a Mersenne primg, setm = 2P. Substitutingm andp into lemma 17 and making some basic
manipulations we conclude that there exist8as, 66) locally decodable code encodimg= m®{°s™) pits to

logm

N =exp (mo(log logm>> bits. An observation thdbg logn = ©(loglogm) completes the proof. |



Lenstra, Pomerance, and Wagstaff [27, 22, 28] have made the following conjecture regarding the density of
Mersenne primes.

Conjecture 21 Let M (t) be the number of Mersenne primes that are less than or eq4l-tol; then
lim M(t)/logyt = €7,
t—o0

wherey ~ 0.577 is the Euler-Mascheroni constant.

If the conjecture above holds we get three query locally decodable codes of subexponentiafderadjth
message lengths

Theorem 22 Lete be a positive constant. Suppose the conjecture 21 holds; then for all valugherfe exists a
1
code of lengtrexp <n0<loglslogn)> that is (3, 0, 60) locally decodable for alb.

Proof: Conjecture 21 implies that for all sufficiently large integethere is a Mersenne prime betwefg' =
and z. Assumen is sufficiently large. Pick a Mersenne primperom the interval [210575\/10%”, Vlog n} . Let

m

m be the smallest integer such that< (p71> . Note thatm = pn®1/P). Given ann-bit message: we pad
it with zeros to Iength(p’fl) and use the code from lemma 17 to encadato a codeword of length™ for

r_ 1 O(p/logp) : : /I logn ploglogp\ __ logn
m' = (n /p 1ogp) . It remains to notice thdbgm’ = O (logp + W) =0 (m) . |

6 Application to Private Information Retrieval

We start with a formal definition of a three server PIR protocol. et {0, 1}" be the database.

Definition 23 A three server PIR protocol is a triplet of non-uniform algorithis= (Q, .4, C). We assume that

each algorithm is givem as an advice. At the beginning of the protocol, the ugeosses random coins and
obtains a random string. Next/ invokesQ(i, r) to generate a triple of queriegue;, quea, ques). For j € [3],

U sendsjue; to S;. Each serverS; responds with an answems; = A(j, z, que;). (We can assume without loss

of generality that servers are deterministic; hence, each answer is a function of a query and a database.) Finally,
U computes its output by applying the reconstruction algorithans,, anss, anss,i,r). A protocol as above
should satisfy the following requirements:

e Correctness :For anyn, x € {0,1}" and: € [n], the user outputs the correct valuegfwith probability
1 (where the probability is over the random strings

e Privacy : Each server individually learns no information abauffo formalize this le©Q; denote thej-th
output ofQ. We require that forj = 1, 2,3 and anyn, iy, i € [n] the distributionsQ; (i1, ) and Q;(i2, )
are identical.

There are known generic procedures [15] to conyegtiery LDCs intog-server PIR schemes. However a simple
application of such a procedure to our LDCs will either yield a PIR protocol with perfect privacy, but small
probability of error, or a PIR protocol with perfect correctness and some slight privacy leakage. Fortunately, it is
possible to achieve both perfect privacy and perfect correctness simultaneously via a specially designed reduction.



Lemma 24 Letp = 2 — 1 be a Mersenne prime ana > p — 1 be an integer. Leh = ( m ) andm’ =

p—1
m’(;t(ﬁjtl)/t . There exists a one round three server PIR protocol with questions of le#dtlg p and answers

of lengthp that allows private retrieval of bits from databases of length

Proof: Inthe preprocessing stage the servers encode the databéitea three query locally decodable code
from lemma 17. We are going to use the notation from that lemma. Recall that the coordin@teg afe in one
to one correspondence with pointSFIgi‘/. In order to decode; the user has to query three locatidns+ \v; | A €
S} for somew € T;, whereT; is the union of certain cosets of the hyperpl{ryae IF;”' | (us,y) = 0} . Unlike

the LDC setup in the PIR setup the user can not picke T; uniformly at random and then query locations
{w + Mv; | A € S} from three different servers, since in such case the servers would observe the uniform
distribution onT; rather than the uniform distribution d?);"'. Here is our way to go around this problem.

Lete € IF;“ be the all-ones vector. The definition of vectagsn lemma 13 implies thate, u;) # 0 mod (p)
for all i € [n]. Thus for everyi € [n] and everyw € }F‘;”' there is somey € I, such thatw + e € T;. The user

picksw € IF;”' uniformly at random and (simultaneously) agkisiples of queries of the frorfiw +~vye + Av; | A €

S} for all v € F,. For every triple the first query always goes to server 1, the second to server 2 and the last to
server 3. (Note that in order to ask all those queries the user needs to communicate only a singléﬂgéim in

each of the servers.) It is easy to verify that in such case each server individually observes a uniform distribution
independent of, while the user always successfully reconstrugtBom one of the triples. |

The next theorem captures the asymptotic behavior of our PIR schemes for a fixed Mersenne Wamenit
the proof since it is essentially identical to the proof of theorem 7.

Theorem 25 Letp = 2! — 1 be a fixed Mersenne prime. For every positive integénere exists a three server
PIR protocol with questions of length (n'/*) and answers of lengtév(1).

A generic balancing technique of [7, section 4.3] allows to convert any PIR protocoOgith'*) long queries
andO(1) long answers into a new PIR protocol withn!/(*+1)) total communication. Such a conversion yields

Theorem 26 Letp = 2! — 1 be a fixed Mersenne prime. For every positive integénere exists a three server
PIR protocol withO (n!/(+1)) communication.

Plugging the value of the largest known Mersenne prime 232:582:657 _ 1 into theorem 26, we conclude

Theorem 27 For every positive integet there exists a three server PIR protocol with communication complexity
of O (n1/32,582,658) _

The next two theorems capture the asymptotic parameters of our PIR schemes under the number-theoretic
assumptions. Both theorems follow immediately from lemma 24 using the arguments that are essentially identical
to the proofs of theorems 20 and 22.

Theorem 28 Suppose that the number of Mersenne primes is infinite; then for infinitely many valudkeré

1
exists a three server PIR protocol with communication complexhb}%fog logn).

Theorem 29 Lete be a positive constant. Suppose the conjecture 21 holds; then for all valugberfe exists a

. L o[ —
three server PIR protocol with communication complexity og log!—¢ logn>.



7 Conclusion

We presented a novel approach to constructing locally decodable codes and vastly improved the known upper
bounds. However the gap between the upper and lower bounds for LDCs still remains very large. It might be the
case that the technique proposed in this paper has not yet been pushed to its limit and further improvements will
be obtained in this way. In particular, proposition 12 generalizes to arbitrary finite fields (rather than just prime
fields). It may happen that a clever choice of a fielénd a subset C F' that is simultaneously combinatorially
and algebraically nice will yield shorter LDCs.
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