Integer cells in convex sets

R. Vershynin*

March 16, 2004

Abstract

Every convex body K in \mathbb{R}^n admits a coordinate projection PK that contains at least $\text{vol}(\frac{1}{2}K)$ cells of the integer lattice \mathbb{Z}^n, provided this volume is at least one. Our proof of this counterpart of Minkowski’s theorem is based on an extension of the combinatorial density theorem of Sauer, Shelah and Vapnik-Chervonenkis to \mathbb{Z}^n. This leads to a new approach to sections of convex bodies. In particular, fundamental results of the asymptotic convex geometry such as the Volume Ratio Theorem and Milman’s duality of the diameters admit natural versions for coordinate sections.

1 Introduction

Minkowski’s Theorem, a central result in the geometry of numbers, states that if K is a convex and symmetric set in \mathbb{R}^n, then $\text{vol}(K) > 2^{-n}$ implies that K contains a nonzero integer point. More generally, K contains at least $\text{vol}(\frac{1}{2}K)$ integer points. The main result of the present paper is a similar estimate on the number of integer cells, the unit cells of the integer lattice \mathbb{Z}^n, contained in a convex body.

Clearly, the largeness of the volume of K does not imply the existence of any integer cells in K; a thin horizontal pancake is an example. The obstacle in the pancake K is caused by the only coordinate in which K is flat; after eliminating it (by projecting K onto the remaining ones) the projection PK
will have many integer cells of the lattice $P\mathbb{Z}^n$. This observation turns out to be a general phenomenon.

Theorem 1.1. Let K be a convex set in \mathbb{R}^n. Then there exists a coordinate projection P such that PK contains at least $\text{vol}(\frac{1}{d}K)$ integer cells, provided this volume is at least one.

(A coordinate projection is the orthogonal projection in \mathbb{R}^n onto \mathbb{R}^l for some nonempty subset $I \subset \{1, \ldots, n\}$.)

Combinatorics: Sauer-Shelah-type results. Theorem 1.1 is a consequence of an extension to \mathbb{Z}^n of the famous result due to Vapnik-Chervonenkis, Sauer, Perles and Shelah, commonly known as Sauer-Shelah lemma, see e.g. [10], §17.

Sauer-Shelah Lemma. If $A \subset \{0,1\}^n$ has cardinality $\#A > (\binom{n}{0}) + (\binom{n}{1}) + \ldots + (\binom{n}{d})$, then there exists a coordinate projection P of rank larger than d and such that $PA = P\{0,1\}^n$.

This result is used in a variety of areas ranging from logic to theoretical computer science to functional analysis [11]. We will generalize Sauer-Shelah lemma to sets $A \subset \mathbb{Z}^n$. An integer box is a subset of \mathbb{Z}^l of the form $\prod_{i \in I} [a_i, b_i]$ with $a_i \neq b_i$.

Theorem 1.2. If $A \subset \mathbb{Z}^n$, then $\#A \leq 1 + \sum_{P} \#(\text{integer boxes in } PA)$, where the sum is over all coordinate projections P.

If $A \subset \{0,1\}^n$, then every PA may contain only one integer box $P\{0,1\}^n$ if any, hence in this case

$$\#A \leq 1 + \#(P \text{ for which } PA = P\{0,1\}^n).$$

(1)

This estimate is due to A.Pajor [12]. Since the right hand side of (1) is bounded by $\binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{d}$, where d is the maximal rank of P for which $PA = P\{0,1\}^n$, (1) immediately implies Sauer-Shelah Lemma.

In a similar way, Theorem 1.2 implies a recent generalization of Sauer-Shelah lemma in terms of Natarajan dimension, due to Haussler and Long [13]. In their result, A has to be bounded by some paralelepiped; we do not impose any boundedness restrictions.

Most importantly, Theorem 1.2 admits a version for integer cells instead of boxes. In particular, Theorem 1.2 holds for convex sets $A \subset \mathbb{R}^n$ with the
integer cells in the sum. This quickly leads to Theorem 1. This version also implies a generalization of Sauer-Shelah lemma from [11] in terms of the combinatorial dimension, which is an important concept that originated in the statistical learning theory and became widely useful see [ABC], [CH], [105], [MY]. These results will be discussed in detail in Section 4. The proof of Theorem 1 relies on the combinatorics developed in [MY] and [RV].

Convex geometry: Coordinate sections in classical theorems Theorem 1 leads to a new approach to coordinate sections of convex bodies.

The problem of finding nice coordinate sections of a symmetric convex body K in \mathbb{R}^n has been extensively studied in geometric functional analysis. It is connected in particular with important applications in harmonic analysis, where the system of characters defines a natural coordinate structure. The Λ_p-problem, which was solved by J. Bourgain [Bou], is an exemplary problem on finding nice coordinate sections, as explained by an alternative and more general solution (via the majorizing measures) given by M. Talagrand [95]. It is generally extremely difficult to find a nice coordinate section even when the existence of nice non-coordinate sections is well known, as the Λ_p-problem shows, see also [103], [MY], [RV].

The method of the present paper allows one to prove natural versions of a few classical results for coordinate sections. Since the number of integer cells in a set K is bounded by its volume, we have in Theorem 2 that

$$PK \text{ contains an integer cell and } |PK| \geq \frac{1}{6} |K|.$$ \hspace{1cm} (2)

(we write $|PK| = \text{vol}(PK)$ for the volume in $P\mathbb{R}^n$). This often enables one to conclude a posteriori that P has large rank, as \mathcal{A} typically fails for all projections of small ranks.

If K is symmetric and an integer $m < n$ is fixed, then using (2) for $a^{-1}K$ with an appropriate $a > 0$, we obtain $a^{-m} |PK| \geq a^{-n} \frac{1}{6} |K|$ for some coordinate projection P of rank m. Moreover, $P(a^{-1}K)$ contains a unit coordinate cube, so solving for a we conclude that

$$PK \text{ contains a coordinate cube of side } \left(\frac{|cK|}{|PK|}\right)^{\frac{1}{m}}.$$ \hspace{1cm} (3)

where C, c, c_1, \ldots denote positive absolute constants (here $c = 1/6$).

This leads to a “coordinate” version of the classical Volume Ratio Theorem. This theorem is a remarkable phenomenon originated in the work of
B. Kashin related to approximation theory, developed by S. Szarek into a general method and carried over to all convex bodies by S. Szarek and N. Tomczak-Jaegermann (see [12], see [14] §6). The unit ball of L_p^n ($1 \leq p \leq \infty$) is denoted by B_p^n, i.e., for $p < \infty$

$$x \in B_p^n \iff |x(1)|^p + \cdots + |x(n)|^p \leq n$$

and $x \in B_\infty^n$ if $\max |x(i)| \leq 1$.

Volume Ratio Theorem. (Szarek, Tomczak-Jaegermann). Let K be a convex symmetric body in \mathbb{R}^n which contains B_2^n. Then for every integer $0 < k < n$ there exists a subspace E of codimension k and such that

$$K \cap E \subseteq |CK|^{1/k} B_2^n. \quad (4)$$

In fact, the subspace E can be taken at random from the Grassmanian.

To obtain a coordinate version of the Volume Ratio Theorem, we can not just claim that $\mathbf{(1)}$ holds for some coordinate subspace $E = \mathbb{R}^l$; the octahedron $K = B_2^n$ forms an obstacle. However it turns out that the octahedron is the only obstacle, and our claim becomes true if one replaces the Euclidean ball B_2^n in $\mathbf{(1)}$ by the inscribed octahedron B_1^n. This seems to be a general phenomenon when one passes from arbitrary to coordinate sections, see [14].

Theorem 1.3. Let K be a convex symmetric body in \mathbb{R}^n which contains B_∞^n. Then for every integer $0 < k < n$ there exists a coordinate subspace E of codimension k and such that

$$K \cap E \subseteq |CK|^{1/k} B_1^n. \quad (4)$$

This theorem follows from $\mathbf{(1)}$ by duality (Santalo and the reverse Santalo inequalities, the latter due to Bourgain and Milman).

Note that the assumption $B_\infty^n \subset K$ is weaker than the assumption $B_2^n \subset K$ of the Volume Ratio Theorem. In fact, this assumption can be completely eliminated if one replaces $|CK|^{1/k}$ by

$$A_k(K) = \max \left(\frac{|CK|}{|K \cap E|} \right)^{1/\codim E}$$

where the maximum is over the coordinate subspaces E, $\codim E \geq k$.

Clearly, $A_k(K) \leq |CK|^{1/k}$ if K contains B_∞^n. We will discuss this “Coordinate Volume Ratio Theorem” as well as the quantity $A_k(K)$ in more detail in Section $\mathbf{8}$.
The right dependence on k/n in the Volume Ratio Theorem and in Theorem 1.1 is a delicate problem. $|CK^n|^{1/k} = C^{n/k}|K|^{1/k}$, and while the factor $|K|^{1/k}$ is sharp (which is easily seen on ellipsoids or parallelepipeds), the exponential factor $C^{n/k}$ is not. We will improve it (in the dual form) to a linear factor Cn/k in Section 2.

Another example of applications of Theorem 1.1 is a similar coordinate version of Milman’s duality of diameters of sections. For a symmetric convex body K in \mathbb{R}^n, let

$$b_k(K) = \min \text{diam}(K \cap E_k),$$

where the minimum is over all k-dimensional subspaces E_k. Then for every $\varepsilon > 0$ and for any two positive integers k and m satisfying $k + m \leq (1 - \varepsilon)n - C$ one has

$$b_k(K) b_m(K^\circ) \leq C/\varepsilon.$$

(in fact, this holds for random subspaces E_k in the Grassmanian) [Mi2], [Mi3]. This phenomenon reflects deep linear duality relations and provides a key tool in understanding the “global” duality in asymptotic convex geometry, see [Mi3], [Mi4].

To prove a version of this result for coordinate subspaces E_k, we have (as before) to change the metric that defines the diameter to that given by the octahedron inscribed around the unit Euclidean ball (rather than the Euclidean ball itself). Then for the new diameter diam_1 we let

$$c_k(K) = \min \text{diam}_1(K \cap E_k),$$

where the minimum is over all k-dimensional coordinate subspaces E_k. In other words, the inequality $c_k(K) \leq 2r$ holds if one can find a k-element set I so that one has $\sum_{i \in I} |x(i)| \leq r\sqrt{n}$ for all $x \in K$.

Theorem 1.4 (Duality for diameters of coordinate sections). Let K be a symmetric convex body in \mathbb{R}^n. For any $\varepsilon > 0$ and for any two positive integers k and m satisfying $k + m \leq (1 - \varepsilon)n$ one has

$$c_k(K)c_m(K^\circ) \leq C^{1/\varepsilon}.$$

In particular, there exists a subset of coordinates I of size, say, $[n/3]$ such that the absolute values of the coordinates in I sum to at most $C\sqrt{n}$ either for all vectors in K or for all vectors in K°.

5
Remark. In most of the results of this paper, the convexity of K can be relaxed to a weaker coordinate convexity, see e.g. [Ma2].

ACKNOWLEDGEMENTS. The author is grateful to M. Rudelson for his interest and valuable comments. This project started when the author was at the Pacific Institute for Mathematical Studies and the University of Alberta. He thanks these institutions and especially N. Tomczak-Jaegermann for support.

2 Sauer-Shelah Lemma in \mathbb{Z}^n

In 1971-72, Vapnik and Chervonenkis [VC], Sauer [Sa] and Perles and Shelah [Sh] independently proved the following well known result, which has found applications in a variety of areas ranging from logics to probability to computer science.

Theorem 2.1 (Sauer-Shelah Lemma). If $A \subset \{0,1\}^n$ has cardinality $\#A > \binom{n}{d} + \binom{n}{d+1} + \ldots + \binom{n}{n}$, then there exists a coordinate projection P of rank larger than d and such that

$$PA = P\{0,1\}^n.$$ \hspace{1cm} (6)

A short proof of Sauer-Shelah Lemma can be found e.g. in [Bo] §17; for numerous variants of the Lemma see the bibliography in [Hi] as well as [Sa], [Ar], [Sl], [Li].

To make an effective use of Sauer-Shelah Lemma in geometry, we will have to generalize it to sets $A \subset \mathbb{Z}^n$. The case when such A is bounded by a paralleloiped, i.e. $A \subset \prod_{i=1}^n \{0, \ldots, N_i\}$, is well understood by now, see [KM], [Na], [Sl], [Hi]. In this section we will prove a generalization of Sauer-Shelah Lemma to $A \subset \mathbb{Z}^n$ independent of any boundedness assumptions.

We start with a simpler result. An integer box is a subset of \mathbb{Z}^n of the form $\{a_1, b_1\} \times \cdots \times \{a_n, b_n\}$ with $a_i \neq b_i \forall i$. Similarly one defines integer boxes in \mathbb{Z}^I, where $I \subseteq \{1, \ldots, n\}$.

Theorem 2.2. If $A \subset \mathbb{Z}^n$, then

$$\#A \leq 1 + \sum_P \#(\text{integer boxes in } PA),$$ \hspace{1cm} (7)

where the sum is over all coordinate projections P.

6
Remark. Let $A \subset \{0,1\}^n$. Since the only lattice box that can be contained in PA is $P\{0,1\}^n$, Theorem 2 implies that

$$\#A \leq 1 + \#(P \text{ for which } PA = P\{0,1\}^n).$$

This estimate is due to A. Pajor (\textit{24}, Theorem 1.4). Note that this quantity is bounded by $\binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{d}$, where d is the maximal rank of P for which $PA = P\{0,1\}^n$. This immediately implies Sauer-Shelah Lemma.

The result that we really need for geometric applications is Theorem 2 (for convex bodies A) with \textit{integer cells}, which are integer boxes with all the sides equal 1. Even though the number of integer cells in a convex body can in principle be estimated through the number of integer boxes, the dependence will not be linear – a cube $[0,M]^n$ contains M^n integer cells and $\frac{1}{2}M(M+1)$ integer boxes. To obtain Theorem 4 for integer cells, we will have to prove a more accurate extension of Sauer-Shelah Lemma to \mathbb{Z}^n.

The crucial in the next discussion will be the notion of \textit{coordinate convexity} (see e.g. \textit{22}), which is weaker than that of convexity.

Definition 2.3. Let K be a set in \mathbb{R}^n. The coordinate convex hull of K consists of the points $x \in \mathbb{R}^n$ such that for every choice of signs $\theta \in \{-1,1\}^n$ one can find $y \in K$ such that

$$y(i) \geq x(i) \quad \text{if } \theta(i) = 1,$$

$$y(i) \leq x(i) \quad \text{if } \theta(i) = -1.$$

K is called coordinate convex if it coincides with its coordinate convex hull.

By changing \mathbb{R}^n to \mathbb{Z}^n the coordinate convexity can also be defined for subsets of \mathbb{Z}^n.

One obtains a general convex body in \mathbb{R}^n by cutting off half-spaces. Similarly, a general coordinate convex body in \mathbb{R}^n is obtained by cutting off octants, i.e. translates of the sets $\theta \cdot \mathbb{R}^n_+$ with $\theta \in \{-1,1\}^n$. Clearly, every convex set is coordinate convex; the converse is not true, as shows the example of a cross $\{(x,y) \mid x = 0 \text{ or } y = 0\}$ in \mathbb{R}^2.

The central combinatorial result of this section is the following theorem which we will prove after some comments.

Theorem 2.4. For every $A \subset \mathbb{Z}^n$,

$$\#A \leq 1 + \sum_P \#(\text{integer cells in } \text{conv} PA),$$

(9)
where the sum is over all coordinate projections P.

Combinatorial dimension and Sauer-Shelah-type results. Like Theorem 2.2, Theorem 2.4 also contains Sauer-Shelah Lemma: every subset $A \subset \{0, 1\}^n$ is coordinate convex, and the only lattice box that can be contained in PA is $P\{0, 1\}^n$, which implies \([\mathbf{8}]\) and hence Sauer-Shelah lemma.

To see a relation of Theorem 2.4 to later generalizations of Sauer-Shelah lemma, let us recall an important concept of the combinatorial dimension, which originates in the statistical learning theory and which became useful in convex geometry, combinatorics and analysis, see [ABCH], [CH], [JLB], [MV], [RY].

Definition 2.5. The combinatorial dimension $v(A)$ of a set $A \subset \mathbb{R}^n$ is the maximal rank of a coordinate projection P such that $\text{cconv}(PA)$ contains some translate of the unit cube $P[0, 1]^n$.

For $t > 0$, the scale-sensitive version of the combinatorial dimension is as $v(A, t) = v(t^{-1}A, 1)$.

Equivalently, a subset $I \subset \{1, \ldots, n\}$ is called t-shattered by A if there exists an $h \in \mathbb{R}^n$ such that, given any partition $I = I^- \cup I^+$, one can find an $x \in A$ such that $x(i) \leq h(i)$ if $i \in I^-$ and $x(i) \geq h(i) + t$ if $i \in I^+$. The combinatorial dimension $v(A, t)$ is the maximal cardinality of a subset t-shattered by A.

For $A \subset \{0, 1\}^n$, the combinatorial dimension $v(A)$ is the classical Vapnik-Chervonenkis dimension; see [Ma3] for a nice introduction to this concept. For $A \subset \mathbb{Z}^n$, the definition of $v(A)$ goes back to Pollard and Haussler (see [HH]) and is also sometimes called Pollard dimension. Finally, for general sets $A \subset \mathbb{R}^n$, the dimension $v(A, t)$ was introduced by Kearns and Schapire [KS] and it turned out to be very effective in measuring the size of A (see [ABCH], [JLB], [MV], [RY]).

Similarly, Natarajan dimension $n(A)$ of a set $A \subset \mathbb{Z}^n$ is the maximal rank of a coordinate projection P such that PA contains an integer box (see [HH]).

Theorems 2.2 and 2.4 easily imply two recent results of Haussler and Long [HL] on the combinatorial and Natarajan dimensions, which are in turn generalizations of Sauer-Shelah lemma.

Corollary 2.6. [HH] Let $A \subset \prod_{i=1}^n \{0, \ldots, N_i\}$. Then
(i) $|A| \leq \sum_{\# I \leq v(A)} \prod_{i \in I} N_i$, where the sum is over the subsets $I \subseteq \{1, \ldots, n\}$ of cardinality at most $v(A)$ (we include $I = \emptyset$ and assigned to it the summand equal to 1).

(ii) In particular, if $A \subseteq \{0, \ldots, N\}^n$ then

$$|A| \leq \sum_{i=0}^{v(A)} \binom{n}{i} N^i.$$

(iii) $|A| \leq \sum_{\# I \leq n(A)} \prod_{i \in I} \binom{N_i + 1}{2}.$

Proof. For (i), apply Theorem \[\text{4}\] All the summands in (i) that correspond to rank $P > v(A)$ vanish by the definition of the combinatorial dimension. Each of the non-vanishing summands is bounded by the number of integer cells in $\text{conv} PA \subset P(\prod_{i=1}^{n} \{0, \ldots, N_i\})$. This establishes (i) and thus (ii).

Repeating this for (ii), we only have to note that the number of integer cells in $P(\prod_{i=1}^{n} \{0, \ldots, N_i\}) = \{0\} \times \prod_{i \in I} \{0, \ldots, N_i\}$ is at most $\left(\binom{N_i + 1}{2}\right)$. □

Remark. Note that all the statements in Corollary \[\text{4}\] reduce to Sauer-Shelah lemma if $N_i = 1 \forall i$.

The proof. Here we prove Theorem \[\text{4}\]. Define the *cell content of* A as

$$\Sigma(A) = \sum_{P} \#(\text{integer cells in} \ \text{conv} PA),$$

where we include in the counting one 0-dimensional projection P, for which the summand is set to be 1 if A is nonempty and 0 otherwise. This definition appears in \[\text{4}\]. We partition A into sets $A_k, k \in \mathbb{Z}$, defined as

$$A_k = \{x \in A : x(1) = k\}.$$

Lemma 2.7. For every $A \subseteq \mathbb{Z}^n$,

$$\Sigma(A) \geq \sum_{k \in \mathbb{Z}} \Sigma(A_k).$$

Proof. A cell \mathcal{C} in $\mathbb{R}^l, I \subseteq \{1, \ldots, n\}$, will be considered as an ordered pair (\mathcal{C}, I). This also concerns a trivial cell $(0, \emptyset)$ which we will include in the
counting throughout this argument. The coordinate projection onto \mathbb{R}^I will be denoted by P_I.

We say that A has a cell (C, I) if $C \subseteq \text{cconv } P_I B$. The lemma states that A has at least as many cells as all the sets A_k have in total.

If A_k has a cell (C, I) then A has it, too. Assume that $N > 1$ sets among A_k have a nontrivial cell (C, I). Since the first coordinate of any point in such a set A_k equals k, one necessarily has $1 \notin I$. Then $P_{\{1\} \cup I} A_k = \{k\} \times P_I A_k$, where the factor $\{k\}$ means of course the first coordinate. Hence

\[
\{k\} \times C \subseteq \{k\} \times \text{cconv } (P_I A_k) = \text{cconv } (\{k\} \times P_I A_k) = \text{cconv } P_{\{1\} \cup I} A_k \subseteq \text{cconv } P_{\{1\} \cup I} A.
\]

Therefore the set $\text{cconv } P_{\{1\} \cup I} A$ contains the integer box $\{k_1, k_2\} \times C$, where k_1 is the minimal k and k_2 is the maximal k for the N sets A_k. Then $\text{cconv } P_{\{1\} \cup I} A$ must also contain $\text{cconv } (\{k_1, k_2\} \times C) \supset [k_1, k_2] \times C$ which in turn contains at least $k_2 - k_1 \geq N - 1$ integer cells of the form $\{a, a + 1\} \times C$. Hence, in addition to one cell C, the set A has at least $N - 1$ cells of the form

\[
\{a, a + 1\} \times C, \{1\} \cup I).
\]

Since the first coordinate of all points in any fixed A_k is the same, none of A_k may have a cell of the form (10). Note also that the argument above works also for the trivial cell.

This shows that there exists an injective mapping from the set of the cells that at least one A_k has into the set of the cells that A has. The lemma is proved. ■

Proof of Theorem It is enough to show that for every $A \subseteq \mathbb{Z}^n$

\[
\# A \geq \Sigma(A).
\]

This is proved using Lemma by induction on the dimension n.

The claim is trivially true for $n = 0$ (in fact also for $n = 1$). Assume it is true for some $n \geq 0$. Apply Lemma and note that each A_k is a translate of a subset in \mathbb{Z}^{n-1}. We have

\[
\Sigma(A) \geq \sum_{k \in \mathbb{Z}} \Sigma(A_k) \geq \sum_{k \in \mathbb{Z}} \# A_k = \# A
\]

(here we used the induction hypothesis for each A_k). This completes the proof. ■
Volume and lattice cells Now we head to Theorem

Corollary 2.8. Let K be set in \mathbb{R}^n. Then

$$ |\frac{1}{2}K| \leq 1 + \sum_P \#(\text{integer cells in } c\text{conv}PK), $$

where the sum is over all coordinate projections P.

For the proof we need a simple fact:

Lemma 2.9. For every set K in \mathbb{R}^n and every $x \in \mathbb{R}^n$,

$$ \#(\text{integer cells in } x + K) \leq \#(\text{integer cells in } 2K). $$

Proof. The proof reduces to the observation that every translate of the cube $[0,2]^n$ be a vector in \mathbb{R}^n contains an integer cell. This in turn is easily seen by reducing to the one-dimensional case.

Proof of Corollary
Let x be a random vector uniformly distributed in $[0,1]^n$, and let $A_x = (x + K) \cap \mathbb{Z}^n$. Then $\mathbb{E}\#A_x = |K|$. By Theorem

$$ |K| \leq 1 + \mathbb{E} \sum_P \#(\text{integer cells in } c\text{conv}PA_x), \quad (11) $$

while

$$ c\text{conv}PA_x \subset c\text{conv}P(x + K) = P(x + K). \quad (12) $$

By this and Lemma

$$ \#(\text{integer cells in } c\text{conv}PA_x) \leq \#(\text{integer cells in } c\text{conv}P(2K)). $$

Thus by

$$ |K| \leq 1 + \sum_P \#(\text{integer cells in } c\text{conv}P(2K)). $$

This proves the corollary.

Remark. The proof of Theorem is very similar and in fact is simpler than the argument above. One looks at $\Sigma(A) = \sum_P \#(\text{integer boxes in } PA)$ and repeats the proof without worrying about coordinate convexity.

Now we can prove the main geometric result of this section.
Theorem 2.10. Let K be a set in \mathbb{R}^n. Then there exists a coordinate projection P in \mathbb{R}^n such that $\text{cconv} PK$ contains at least $\frac{1}{2}|K| - 2^{-n}$ integer cells.

Proof. By Corollary 2.8,

$$|\frac{1}{2}K| \leq 1 + (2^n - 1) \max_P \#(\text{integer cells in } \text{cconv} PK).$$

Hence $\max_P \#(\text{integer cells in } \text{cconv} PK) \geq \frac{1}{2}|K| - 2^{-n}$.

Note that $\frac{1}{2}|K| - 2^{-n} \geq \frac{1}{6}|K|$ if $\frac{1}{6}|K| \geq 1$. This implies Theorem 1.1.

3 The Coordinate Volume Ratio Theorem

Let K be a set in \mathbb{R}^k. For $0 < k < n$, define

$$A_k(K) = \max \left(\frac{|CK|}{|K \cap E|} \right)^{1/\text{codim} E}$$

where the maximum is over the coordinate subspaces E, codim $E \geq k$, and $C > 0$ is an absolute constant whose value will be discussed later.

Theorem 3.1 (Coordinate Volume Ratio Theorem). Let K be a convex symmetric set in \mathbb{R}^n. Then for every integer $0 < k < n$ there exists a coordinate section E, codim $E = k$, such that

$$K \cap E \subseteq A_k(K)B^n_k.$$

The proof relies on the extension on Sauer-Shelah Lemma in \mathbb{Z}^n from the previous section and on the duality for the volume, which is Santalo and the reverse Santalo inequalities (the latter due to J.Bourgain and V.Milman). We will give the proof in the end of the section.

1. In the important case when K contains the unit cube we have $A_k(K) \leq |CK|^{1/k}$. We have thus proved:

Corollary 3.2. Let K be a convex body in \mathbb{R}^n which contains the unit cube B^n_1. Then for every integer $0 < k < n$ there exists a coordinate subspace E of codimension k and such that

$$K \cap E \subseteq |CK|^{1/k}B^n_k.$$

12
The assumptions of this corollary are satisfied in particular when K contains B_2^n, as in the classical Volume Ratio Theorem. Corollary then bounds some coordinate section $K \cap E$ by the octahedron B_1^n, which is larger than the Euclidean ball B_2^n (as one would have in the classical Volume Ratio Theorem), but nothing more can be said about coordinate sections: $K = B_1^n$ itself is an obstacle.

Nevertheless, by a result of Kashin (see a sharper estimate in Garnaev-Gluskin a random section of B_1^n in the Grassmanian $G_{n,k}$ with $k = \lceil n/2 \rceil$ is equivalent to the Euclidean ball B_2^k. Thus a random (no longer coordinate) section of $K \cap E$ of dimension, say, $\frac{k}{2} \dim(K \cap E)$ will already be a subset of $|CK|^{1/k} B_2^n$. This shows that Corollary is close in nature to the classical Volume Ratio Theorem. It gives coordinate subspaces without sacrificing too much of the power of the Volume Ratio Theorem.

In the next section we will prove a (dual) result even sharper than Corollary.

2. The quantity $A_k(K)$ is best illustrated on the example of classical bodies. If K is the parallelipiped $\prod_{i=1}^n [-a_i, a_i]$ with semiaxes $a_1 \geq a_2 \geq \cdots \geq a_n > 0$, then

$$A_k(K) = (2C)^{n/k} \left(\prod_{i=1}^k a_i \right)^{1/k},$$

(13)
a quantity proportional to the geometric mean of the largest k semiaxes. The same holds if K is the ellipsoid with the coordinate nonincreasing semiaxes $a_i \sqrt{n}$, i.e. $x \in K$ iff $\sum_{i=1}^n x(i)^2/a_i^2 \leq n$. This is clearly better than

$$|CK|^{1/k} = (2C)^{n/k} \left(\prod_{i=1}^n a_i \right)^{1/k},$$

which appears in the classical Volume Ratio Theorem (note that the inclusion $B_2^n \subset K$ implies in the ellipsoidal example that all $a_i \geq 1$.)

3. An important observation is that holds for arbitrary symmetric convex body K, in which case $a_1 \sqrt{n}$ denote the semiaxes of an M-ellipsoid of K.

1Even though in the Coordinate Volume Ratio Theorem the coordinate section can not be random in general, a work in progress by Giannopoulos, Milman, Tsolomitis and the author suggests that one can automatically regain randomness of a bounded section in the Grassmanian if one only knows the existence of a bounded section in the Grassmanian.
The M-ellipsoid is a deep concept in the modern convex geometry; it nicely reflects volumetric properties of convex bodies. For every symmetric convex body K in \mathbb{R}^n there exists an ellipsoid \mathcal{E} such that $|K| = |\mathcal{E}|$ and K can be covered by at most $\exp(C_0 n)$ translates of \mathcal{E}. Such ellipsoid \mathcal{E} is called an M-ellipsoid of K (with parameter C_0). Its existence (with the parameter equal to an absolute constant) was proved by V. Milman [Mil]; for numerous consequences see [Pi], [ML], [CM].

Fact 3.3. Let K be a symmetric convex body in \mathbb{R}^n and \mathcal{E} be its M-ellipsoid with parameter C_0. Then

$$A_k(K) \leq (CC_0)^{n/k} \left(\prod_{i=1}^{k} a_i \right)^{1/k},$$

where $a_i \sqrt{n}$ are the semiaxes of \mathcal{E} in a nondecreasing order. In other words, a_i are the singular values of a linear operator that maps B_2^n onto \mathcal{E}.

Proof. The fact that \mathcal{E} is an M-ellipsoid of K implies by standard covering arguments that $(CC_0)^{n}|K \cap E| \geq |\mathcal{E} \cap E|$ for all subspaces E in \mathbb{R}^n, see e.g. [ML] Fact 1.1(ii). Since $|K| = |\mathcal{E}|$, we have $A_k(K) \leq (CC_0)^{n/k} A_k(\mathcal{E})$, which reduces the problem to the examples of ellipsoids discussed above. $
\blacksquare$

4. A quantity similar to $A_k(K)$ and which equals $(\prod_{i=1}^{k} a_i)^{1/k}$ for the ellipsoid with nonincreasing semiaxes a_i plays a central role in the recent work of Mankiewicz and Tomczak-Jaegermann [ML]. They proved a volume ratio-type result also for this quantity (for random non-coordinate subspaces E in the Grassmanian) which works for $\dim E \leq n/2$.

5. Theorem 5.1 follows from its more general dual counterpart that allows to compute the combinatorial dimension of a set in terms of its volume.

Let K be a set in \mathbb{R}^n. For $0 < k < n$, define

$$a_k(K) = \min \left(\frac{|cK|}{|P_k K|} \right)^{1/\text{codim} E}$$

where the minimum is over the coordinate subspaces E, $\text{codim} E \geq k$, and $c > 0$ is an absolute constant whose value will be discussed later.
Theorem 3.4. Let K be a convex set in \mathbb{R}^n. Then for every integer $0 < k < n$,
\[v(K, a_k(K)) \geq n - k. \]

Proof. By applying an arbitrarily small perturbation of K we can assume that the function $R \mapsto v(RK, 1)$ maps \mathbb{R}_+ onto $\{0, 1, \ldots, n\}$. Let R be a solution to the equation
\[v(RK, 1) = n - k. \]

By Corollary
\[\left| \frac{1}{2} RK \right| \leq 1 + \max_P \#(\text{integer cells in } P(RK)) \quad (14) \]

where the maximum is over all coordinate projections P in \mathbb{R}^n. Since $v(RK, 1) \geq 1$, the maximum in (14) is at least 1. Hence there exists a coordinate projection $P = P_E$ onto a coordinate subspace E such that
\[\left| \frac{1}{2} RK \right| \leq 2\#(\text{integer cells in } P_E(RK)). \]

Since the number of integer cells in a set is bounded by its volume,
\[R^n \left| \frac{1}{2} K \right| \leq 2|P_E(RK)| \leq 2^{n-l}|P_E| \]
where $n - l = \dim E$. It follows that
\[\frac{1}{R} \geq \left(\frac{|P_E K|}{|P_E K|} \right)^{1/l} \quad \text{and} \quad v(K, \frac{1}{R}) = n - k. \]

It only remains to note that by the maximal property of the combinatorial dimension, $n - l = \dim E \leq n - k$; thus $l = \dim E \geq k$. \hfill \blacksquare

Lemma 3.5. For every integer $0 < k < n$, we have $A_k(K) a_k(n K^o) \geq 1$.

Proof. Let $L = n K^o$. Fix numbers $0 < k < l < n$ and a coordinate subspace E, $\dim E = l$. Santalo and the reverse Santalo inequalities (the latter due to Bourgain and Milman [BM], see [PT] §7) imply that
\[|L| \geq c_l^n |K|^{-1}, \]
\[|P_E L| \leq \left(\frac{C_l}{n - l} \right)^{n-l} |L^o \cap E|^{-1} = \left(\frac{C_l n}{n - l} \right)^{n-l} |K \cap E|^{-1}. \]

15
Then
\[\left(\frac{|cL|}{|P_E L|} \right)^{1/l} \geq \left[(c_1 c)^n \left(\frac{n-l}{C_1 n} \right)^{n-l} \frac{|K \cap E|}{|K|} \right]^{1/l} \geq \left(\frac{|K \cap E|}{|(C_2/c)K|} \right)^{1/l}. \]

Now take the minimum over \(l \geq k \) and over \(E \) to see that \(a_k(L) \geq A_k(K)^{-1} \) if we choose \(C = C_2/c \).

Remark. Theorem \(\S1 \) holds for general sets \(K \) (not necessarily convex) if in the definition of \(a_k(K) \) one replaces \(|P_E K| \) by \(|\text{conv}P_E K| \). The proof above easily modifies.

Proof of Theorem \(\S1 \) By Theorem \(\S1 \) and Lemma \(\S1 \),
\[v(K^o,(nA_k(K))^{-1}) = v(nK^o,A_k(K)^{-1}) \geq n - k. \]

By the symmetry of \(K \), this means that exists an orthogonal projection \(P_E \) onto a coordinate subspace \(E \), \(\text{codim } E = k \), such that
\[P_E(K^o) \supset P_E\left((nA_k(K))^{-1}[-\frac{1}{2}, \frac{1}{2}]^n\right). \]

Dualizing, we obtain
\[K \cap E \subset 2A_k(K)B^n_1. \]

The constant 2 can be removed by increasing the value of the absolute constant \(C \) in the definition of \(A_k(K) \).

4 Volumes of the sets in the \(L_p \) balls

This section concerns with the sharpness of the Volume Ratio Theorem and its coordinate versions. The Volume Ratio Theorem is indeed sharp up to an absolute constant \(C \) (see e.g. \(\S1 \)), but if we look at the factor \(|CK|^{1/k} = C^{n/k}|K|^{1/k} \) which also appears in Corollary\(\S1 \) cube inside intro, then it becomes questionable whether the exponential dependence of the proportion \(n/k \) is the right one. We will improve it the dual setting to a linear dependence. The main result computes the combinatorial dimension of a set \(K \) (not even convex) in \(\mathbb{R}^n \) in terms of its volume restricted to \(B^n_p \), i.e. the probability measure
\[\mu_p(K) = \frac{|K \cap B^n_p|}{|B^n_p|}. \]
Theorem 4.1. Let K be a set in \mathbb{R}^n and $1 \leq p \leq \infty$. Then for every integer $0 < k \leq n$ one has

$$v(K, t) = n - k \quad \text{for} \quad t = c \left(\frac{k}{n} \right) \mu_p(K)^{1/k}. \quad (15)$$

Remarks. 1. The result is sharp up to an absolute constant c. An example showing this will be given after the proof.

2. It is not known whether for convex bodies K the ratio k/n can be removed from the estimate.

3. Corollary 3.2 is an immediate consequence of Theorem 4.1 by duality.

4. To compare Theorem 4.1 to the classical Volume Ratio Theorem, one can read (**) for convex bodies as follows:

(*) There exists a coordinate projection P of rank $n - k$ so that PK contains a translate of the cube $P(tB^n_\infty)$ with $t = c \left(\frac{k}{n} \right) \mu_p(K)^{1/k}$,

while the classical Volume Ratio Theorem states that

(**) There is a random orthogonal projection P of rank $n - k$ so that PK contains a translate of the ball $P(tB^n_2)$ with $t = c^{n/k} \mu_2(K)^{1/k}$.

Beside the central fact of the existence of a coordinate projection in (*), note also the linear dependence on the proportion k/n (in contrast to the exponential dependence in (**)), and also the arbitrary p.

For the proof of Theorem 4.1, we will need to know that the volumes $w_p(n) = |B^n_p|$ approximately increase in n.

Lemma 4.2. $w_p(k) \leq C w_p(n)$ provided $k \leq n$.

Proof. We have

$$w_p(k) = k^{k/p} \frac{(2\Gamma(1 + \frac{1}{p}))^k}{\Gamma(1 + \frac{k}{p})},$$

see (1.17). Note that

$$a^{1/p} := 2\Gamma(1 + \frac{1}{p}) \geq 2 \min_{x>0} \Gamma(x) \geq 1.76.$$

We then use Stirling’s formula

$$\Gamma(1 + z) \approx e^{-z} z^{z+1/2}$$
where $a \approx b$ means $ca \leq b \leq Cb$ for some absolute constants $c, C > 0$.

Consider two cases.

1. $k \geq p$. We have

$$w_p(k) = \frac{(ak)^{k/p}}{\Gamma(1 + \frac{k}{p})} \approx (ak)^{k/p} e^{k/p} \left(\frac{k}{p}\right)^\frac{k}{p} \approx (eap)^{k/p} \sqrt{\frac{p}{k}}. \quad (16)$$

2. $k \leq p$. In this case $\Gamma(1 + \frac{k}{p}) \approx 1$, thus

$$w_p(k) \approx (ak)^{k/p}. \quad (17)$$

To complete the proof, we consider three possible cases.

(a) $k \leq n \leq p$. Here the lemma is trivially true by (16).

(b) $k \leq p \leq n$. Here

$$\frac{w_p(n)}{w_p(k)} \geq \frac{(eap)^{n/p}}{(ak)^{k/p}} \sqrt{\frac{p}{n}} \geq a^{\frac{k}{p}} \sqrt{\frac{k}{n}} \quad \text{(because $p \geq k$)}$$

$$\geq (1.76)^{n-k} \sqrt{\frac{k}{n}} \geq c > 0.$$

(c) $p \leq k \leq n$. Here

$$\frac{w_p(n)}{w_p(k)} \geq (eap)^{\frac{n-k}{p}} \sqrt{\frac{n}{k}}.$$

Since $ep > 1$, one finishes the proof as in case (b).

Proof of Theorem 4.1 We can assume that $K \subseteq B^n_p$. Let

$$u^n = \frac{|K|}{|B^n_p|}.$$

By applying an arbitrarily small perturbation of K we can assume that the function $R \mapsto v(RK,1)$ maps \mathbb{R}_+ onto $\{0,1,\ldots,n\}$. Then there exists a solution R to the equation

$$v(RK,1) = n - k.$$

The geometric results of the previous sections, such as Corollary 5.4 and Theorem 2.10, contain absolute constant factors which would destroy the
linear dependence on \(k/n \). So we have to be more careful and apply \(\text{II} \) together with \(\text{I} \) instead:

\[
|RK| \leq 1 + \max_{x \in (0,1)^n} \sum_{P} \#(\text{integer cells in } P_x + c\text{conv}(RK))
\]

(18)

Since \(v(RK,1) > 0 \), there exists a coordinate projection \(P \) such that

\[
\max_{x \in (0,1)^n} \max_{P} \#(\text{integer cells in } P_x + c\text{conv}(RK)) \geq 1.
\]

Hence the maximum in \(\text{I} \) is bounded below by 1 (for \(x = 0 \)). Thus

\[
|RK| \leq 2 \max_{x \in (0,1)^n} \sum_{P} \#(\text{integer cells in } P_x + c\text{conv}(RK)) \leq 2 \max_{x \in (0,1)^n} \sum_{d=1}^{n-k} \sum_{\text{rank } P=d} \#(\text{integer cells in } P_x + c\text{conv}(RK)) \leq 2 \sum_{d=1}^{n-k} \sum_{\text{rank } P=d} |c\text{conv}(RK)|
\]

because the number of integer cells in a set is bounded by its volume. Note that \(c\text{conv}(RK) \subset \text{conv}(RK) \subset RP(B^n_p) \) by the assumption. Then denoting by \(P_d \) the orthogonal projection in \(R^n \) onto \(R^d \), we have

\[
|RK| \leq 2 \sum_{d=1}^{n-k} \binom{n}{d} R^d |P_d B^n_p|.
\]

Now note that \(P_d B^n_p = (n/d)^{1/p} B^d_p \). Hence

\[
|RK| \leq 2 \sum_{d=1}^{n-k} \binom{n}{d} \left(\frac{n}{d} \right)^{d/p} R^d w_p(d).
\]

(19)

Now \(|RK| = R^n |K| = R^n u^n w_p(n) \) in the left hand side of \(\text{I} \) and \(w_p(d) \leq C w_p(n) \) in the right hand side of \(\text{I} \) by Lemma \(\text{I} \). After dividing \(\text{I} \) through by \(R^n w_p(n) \) we get

\[
u^n \leq 2C \sum_{d=1}^{n-k} \binom{n}{d} \left(\frac{n}{d} \right)^{d/p} R^{d-n}.
\]

(20)
Let $0 < \varepsilon < 1$. There exists a $1 \leq d \leq n - k$ such that

$$
\left(\frac{n}{d} \right)^{d/p} R^{d-n} \geq (2C)^{-1} \varepsilon^{n-d} (1 - \varepsilon)^d u^n;
$$

otherwise $2A$ would fail by the Binomial Theorem. From this we get

$$
R \leq (2C)^{\frac{1}{2n}} \left(\frac{n}{d} \right)^{d/p} \frac{1}{\varepsilon} \left(\frac{1}{1 - \varepsilon} \right)^d u^{\frac{n}{n-d}}.
$$

Define δ by the equation $d = (1 - \delta)n$. We have

$$
R \leq (2C)^{1/2n} \left[(1 - \delta)^{1/p} (1 - \varepsilon) \right]^{-\frac{(1-\delta)}{\delta}} u^{-1/\varepsilon}.
$$

Now we use this with ε defined by the equation $n - k = (1 - \varepsilon)n$. Since $d \leq n - k$, we have $\varepsilon \leq \delta$, so

$$
\left[(1 - \delta)^{1/p} (1 - \varepsilon) \right]^{-\frac{(1-\delta)}{\delta}} \leq (1 - \varepsilon)^{\frac{2(1-\varepsilon)}{\varepsilon} (1 - \varepsilon)} < C \quad \text{for } 0 < \varepsilon < 1.
$$

Thus

$$
R \leq \frac{C}{\varepsilon} u^{-1/\varepsilon}.
$$

Then for $t := C^{-1} \varepsilon u^{1/\varepsilon} \leq \frac{1}{n}$ we have $v(K,t) \geq v(K,\frac{1}{n}) = n - k$. \hfill \Box

Example. For every integer $n/2 \leq k < n$ there exists a coordinate convex body K in \mathbb{R}^n of arbitrarily small volume and such that for all $1 \leq p \leq n$

$$
v(K,t) > n - k \quad \text{implies} \quad t < C \left(\frac{k}{n} \right) \mu_p(K)^{1/k}.
$$

Proof. Fix an $\varepsilon > 0$ and let K be the set of all points $x \in B^p$ such that one has $|x(i)| \leq \varepsilon$ for at least k coordinates $i \in \{1, \ldots, n\}$. Then K contains $\binom{n}{k}$ disjoint sets K_A indexed by $A \subset \{1, \ldots, n\}$, $|A| = k$,

$$
K_A = \{ x \in B^p : \text{one has } |x(i)| \leq \varepsilon \text{ iff } i \in A \}.
$$

For each A, write

$$
K_A = ([-\varepsilon, \varepsilon]^A \times (\varepsilon I)^{A^c}) \cap B^p.
$$
where \(I = (-\infty, -1) \cup (1, \infty) \). In the next line we use notation \(f(\varepsilon) \asymp g(\varepsilon) \)
if \(f(\varepsilon)/g(\varepsilon) \to 1 \) as \(\varepsilon \to 0 \) uniformly over \(p \in [1, \infty] \). We have

\[
|K_A| \asymp \left| \left([-\varepsilon, \varepsilon]^A \times \mathbb{R}^d \right) \cap B_p^n \right| \asymp \left| \left[-\varepsilon, \varepsilon \right]^A \times |B_p^n \cap \mathbb{R}^d \right|
\]

\[
= (2\varepsilon)^k \left| \left(\frac{n}{n-k} \right)^{1/p} B_p^{n-k} \right| \geq (2\varepsilon)^k |B_p^{n-k}|.
\]

Thus there exists an \(\varepsilon = \varepsilon(n, k) > 0 \) so that

\[
\mu_p(K) = \binom{n}{k} \mu_p(K_A) \geq \binom{n}{k} (2\varepsilon)^k \frac{|B_p^{n-k}|}{|B_p^n|}.
\]

Now we need now to bound below the ratio of the volumes.

CLAIM. \(\frac{w_p(n-k)}{w_p(n)} \geq c^k \).

Consider two possible cases:

(a) \(p \geq n - k \). In this case \(n/2 \leq n - k \leq p \leq n \), and by \(\text{LIM} \) and \(\text{LIM} \) we have

\[
\frac{w_p(n-k)}{w_p(n)} = \frac{(a(n-k))^\frac{n-k}{p}}{(ea)^n} \sqrt{\frac{n}{p}} \geq \left(\frac{n-k}{ea} \right)^\frac{n}{p} \quad \text{(since } p \leq n \text{)}
\]

\[
\geq \left(\frac{1}{2ea} \right)^2 \quad \text{(since } p \geq n - k \geq n/2 \text{)}
\]

which proves the claim in this case.

(b) \(p \leq n - k \). Here

\[
\frac{w_p(n-k)}{w_p(n)} = \frac{(ea)^{n-k}}{(ea)^n} \sqrt{\frac{n}{n-k}} \geq \frac{1}{2} (ea)^{n-k} \quad \text{(since } n/2 \leq k \leq n \text{)}
\]

\[
\geq c^k.
\]

This proves the claim.

We have thus shown that \(\mu_p(K) \geq \binom{n}{k} (2\varepsilon)^k \), so

\[
\mu_p(K)^{1/k} \geq c \left(\frac{n}{k} \right) \varepsilon.
\]
On the other hand, no coordinate projection PK of dimension exceeding $n - k$ can contain a translate of the cube $P[\-t, t]^n$ for $t > \varepsilon$. Thus

$$v(K, t) > n - k \implies t \leq \varepsilon < C \left(\frac{k}{n} \right) \mu_s(K)^{1/k}.$$

Note also that the volume of K can be made arbitrarily small by decreasing ε.

The same example also works for $p = \infty$.

5 Duality for diameters of coordinate sections

Here we prove Theorem 4.1. Formally,

$$c_k(K) = \frac{2}{\sqrt{n}} \min_{\|v\| = k} \max_{x \in K} \sum_{i \in l} |x(i)|.$$

Theorem 5.1. Let K be a symmetric convex body in \mathbb{R}^n. For any $\varepsilon > 0$ and for any two positive integers k and m satisfying $k + m \leq (1 - \varepsilon)n$ one has

$$c_k(K) c_m(K^\circ) \leq C^{1/\varepsilon}.$$

The proof is based on Corollary 4.2.

Proof. Define δ and λ as follows: $k = (1 - \delta)n$, $m = (1 - \lambda)n$. Then $\delta + \lambda - 1 > \varepsilon$. Let $t_1, t_2 > 0$ be parameters, and define

$$K_1 = \text{conv} \left(K \cup t_1 n^{1/2} B^n_\infty \right) \cap \frac{1}{t_2} n^{-1/2} B^n_1.$$

Consider two possible cases:

1. $|K_1| \leq |n^{-1/2} B^n_\infty|$. Since K_1 contains $t_1 n^{-1/2} B^n_\infty$, we have

$$\frac{\sqrt{n}}{t_1} K_1 \supset B^n_\infty \quad \text{and} \quad \left| \frac{\sqrt{n}}{t_1} K_1 \right| \leq \frac{1}{t_1} B^n_\infty = \left(\frac{2}{t_1} \right)^n.$$

Corollary 4.3 implies the existence of a subspace E, $\dim E = (1 - \delta)n$, such that

$$\frac{\sqrt{n}}{t_1} K_1 \cap E \subset \left(\frac{C}{t_1} \right)^{1/\delta} B^n_1.$$

22
Multiplying through by t_1 / \sqrt{n} and recalling the definition of K_1, we conclude that
\[K \cap E \cap \frac{1}{t_2} n^{-1/2} B^n_1 \subseteq t_1 \left(\frac{C}{t_1} \right)^{1/\delta} n^{-1/2} B^n_1. \] (21)

(2) $|K_1| > |n^{-1/2} B^n_\infty|$. Note that
\[K_1^o = \text{conv} \left(\left(K^o \cap \frac{1}{t_1} n^{-1/2} B^n_1 \right) \cup t_2 n^{-1/2} B^n_\infty \right). \]

By Santalo and reverse Santalo inequalities,
\[|K_1^o| < |C n^{-1/2} B^n_1|. \]

Since K_1^o contains $t_2 n^{-1/2} B^n_\infty$, we have
\[\frac{\sqrt{n}}{t_1} K_1^o \supseteq B^n_\infty \quad \text{and} \quad \left| \frac{\sqrt{n}}{t_1} K_1^o \right| \leq \left| C B^n_1 \right| \leq \left(\frac{C}{t_2} \right)^n. \]

Arguing similarly to case (1) for K^o, we find a subspace F, $\dim F = (1 - \lambda)n$, and such that
\[K^o \cap F \cap \frac{1}{t_1} n^{-1/2} B^n_1 \subseteq t_2 \left(\frac{C}{t_2} \right)^{1/\lambda} n^{-1/2} B^n_1. \] (22)

Looking at (21) and (22), we see that our choice of t_1, t_2 should be so that
\[t_1 \left(\frac{C}{t_1} \right)^{1/\delta} = \frac{1}{2t_2}, \quad t_2 \left(\frac{C}{t_2} \right)^{1/\lambda} = \frac{1}{2t_1}. \]

Solving this for t_1 and t_2 we get
\[\frac{1}{2t_1} = \frac{1}{\sqrt{2}} C^{(1+\delta)/\delta}, \quad \frac{1}{2t_2} = \frac{1}{\sqrt{2}} C^{(1+\lambda)/\lambda}. \]

Then (21) becomes
\[K \cap E \subseteq R_2 n^{-1/2} B^n_1 \]
and (22) becomes
\[K^o \cap F \subseteq R_1 n^{-1/2} B^n_1. \]

It remains to note that
\[R_1 R_2 = \frac{1}{2} C^{2/\delta + \lambda - 1} < \frac{1}{2} C^{2/\delta}. \]

This completes the proof.
References

24

[RV] M. Rudelson, R. Vershynin, *Combinatorics of random processes and sections of convex bodies*, submitted

25

