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ABSTRACT
We consider the following combinatorial problem: given a
set of n objects (for example, disks in the plane, triangles),
and an integer L ≥ 1, what is the size of the smallest subset
of these n objects that covers all points that are in at least
L of the objects? This is the classic question about the size
of an L

n
-net for these objects. It is well known that for fairly

general classes of geometric objects the size of an L
n
-net is

O( n
L

log n
L

). There are some instances where this general
bound can be improved, and this improvement is usually
due to bounds on the combinatorial complexity (size) of the
boundary of the union of these objects. Thus, the boundary
of the union of m disks has size O(m), and this translates to
an O( n

L
) bound on the size of an L

n
-net for disks. For m fat

triangles, the size of the union boundary is O(m log log m),
and this yields L

n
-nets of size O( n

L
log log n

L
).

Improved nets directly translate into an upper bound on
the ratio between the optimal integral solution and the op-
timal fractional solution for the corresponding geometric set
cover problem. Thus, for covering k points by disks, this
ratio is O(1); and for covering k points by fat triangles, this
ratio is O(log log k). This connection to approximation al-
gorithms for geometric set cover is a major motivation for
attempting to improve bounds on nets.

Our main result is an argument that in some cases yields
nets that are smaller than those previously obtained from
the size of the union boundary. Thus for fat triangles, for
instance, we obtain nets of size O( n

L
log log log n). We use

this to obtain a randomized polynomial time algorithm that
gives an O(log log log k)-approximation for the problem of
covering k points by the smallest subset of a given set of
triangles.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
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1. INTRODUCTION
Let us consider the geometric set cover problem for points

in the plane.

Geometric Set Cover: Given a set P of points
in the plane and a set of objects that cover (whose
union contains) P , find the smallest subset of the
objects that covers P .

We obtain several versions of this problem by letting the
objects be disks, triangles, or axis-parallel rectangles, for
example. Typically, we have a polynomial time algorithm
that returns a cover whose size is at most O(log |P |) times
that of the optimal by reduction to the combinatorial set
cover problem [15, 18, 7]. This is the best we can do using
this approach, under standard complexity theoretic assump-
tions; see for instance [13]. For several versions of geomet-
ric set cover, however, a better approximation factor can be
achieved. While some of these results are based on combina-
torial approaches tuned to the version at hand (for instance
[17, 4]), several others can be thought of as being obtained
by rounding a solution to the linear programming relaxation
of the set cover problem.

The classic notion of epsilon nets is central to this ap-
proach.

Epsilon Nets: Given a set of n objects, and an
integer L ≥ 1, what is the size of the smallest
subset of these n objects that covers all points
that are in at least L of the objects?

This is not an algorithmic question but a combinatorial one,
and we are thus asking for an upper bound on the size of the
subset that holds for all configurations of n objects. In other
words, what is a bound on the size of an L

n
-net for n such

objects? Clarkson [8] and Haussler and Welzl [14] showed
that for objects of very general kinds (this includes triangles,
rectangles, disks, and ellipses for instance and roughly cor-
responds to all objects of constant description complexity),
there is an L

n
-net of size O( n

L
log n

L
).



Brönnimann and Goodrich [5] made a connection between
the geometric set cover and the epsilon nets problems and
showed that if the objects admit L

n
-nets of size O( n

L
g( n

L
))

(that can be efficiently computed), then the correspond-
ing geometric set cover problem admits a polynomial time
O(g(λ∗)) approximation, where λ∗ is the size of the optimal
cover. Thus one obtains O(log λ∗)-approximations for cov-
ering with disks, triangles, axis-parallel rectangles, and so
on. Furthermore, if the objects are disks, for example, then
we have L

n
-nets of size O( n

L
) [21], and so we have an O(1)

approximation for covering with disks.
Thus, improving bounds on L

n
-nets is central to the geo-

metric set cover problem. However, we know how to beat the
O( n

L
log n

L
) bound only in a few cases. The first important

instances were halfspaces in ℜ3 and disks in the plane [21,
19], where we have nets of size O( n

L
). (See also the more re-

cent [23].) These results were generalized and other objects
were brought into this category using a connection to a com-
binatorial problem about the complexity of the boundary of
the union of such objects.

Union Complexity: What is the combinatorial
complexity of the boundary of the union of m
objects in the plane?

Let us consider a set of m triangles in the plane. Its union
is a polygon, possibly with holes. The question is about the
total number of vertices of this polygon in the worst case.
This question has received a lot of attention in combinatorial
geometry [24]. Clarkson and Varadarajan [11] pointed out
a connection between the epsilon nets and union complexity
questions. They showed, roughly speaking, that if the union
complexity of m objects is O(mh(m)), then for these objects
we have L

n
-nets of size O( n

L
h( n

L
)). Thus nets of size O( n

L
) for

disks is due to the fact that the union complexity of m diskss
is O(m) [16]. Let us call a triangle ρ-fat if the ratio of the
radii of its smallest enclosing circle and its largest enclosed
circle is bounded by ρ. The union complexity of m ρ-fat
triangles, where ρ > 1 is any constant, is O(m log log m) [20].
Thus for ρ-fat triangles we have nets of size O( n

L
log log n

L
).

This connection between the union complexity and epsilon
nets accounts for most of the improved bounds for L

n
-nets.

1.1 Our Results
Our main result is an argument that in some cases yields

nets that are smaller than those previously obtained using
the connection to union complexity. Thus for fat triangles,
for instance, we obtain nets of size O( n

L
log log log n):

Theorem 1. Let T be a set of n ρ-fat triangles in the
plane, where ρ > 1 is an arbitrary constant. For any 1 ≤
L ≤ n, there is a subset T ′ ⊆ T of size O( n

L
log log log n) that

covers all points in the plane that lie in L or more triangles
in T .

The bound on the size of T ′ can be improved, as we show,
to O( n

L
log log log n

L
) using ε-approximations [6]. However,

the bound as stated in Theorem 1 seems to be the most
natural outcome of our technique. The technique shows that
we can find a subset T1 of T with |T1| = O(n log L

L
), such that

any point contained in L or more triangles in T is contained
in at least log L triangles in T1. Thus the relevant points
are covered by a Ω

`

L
n

´

fraction of the triangles in T1. The
main progress is that the uncovered points are covered by
log L triangles of T1 as opposed to L triangles of T . So we

can iteratively apply the technique on T1, and this process
yields Theorem 1.

The set T1 is essentially obtained from T using the Lo-
vasz Local Lemma [2], after a preprocessing stage where we
add a small number of triangles to T1 to bring down the
“dependence” to a manageable level. It turns out that us-
ing our current scheme we can make progress using such a
T1 only if L ≥ log log log n, and this is why we do not do
better than n

L
log log log n. This limitation is related to the

O(m log log m) bound on the complexity of the union of m
fat triangles.

Our approach generalizes beyond fat triangles, and yields
nets of size O( n

L
log h( n

L
)) for situations in which the union

complexity of m objects is O(mh(m)), provided h(m) grows

faster than log(k) m, the logarithm function applied k times,
where k is any constant. Thus we improve the O( n

L
h( n

L
))

bound of [11] at this “high end”. (If h(m) = α(m), the
inverse-Ackermann function, for example, we get no im-
provement.) So we obtain nets smaller than O

`

n
L

log n
L

´

in situations where the union complexity of m objects is
O(m2o(log m)).

Theorem 1 also has an algorithmic analog – we can com-
pute a net of size O( n

L
log log log n) in polynomial time, and

this yields a polynomial time algorithm that computes an
O(log log log k)-approximation for the set covering problem
with fat triangles and k points.

Independently of our work reported here, Aronov, Ezra,
and Sharir [3] develop a different technique to address the
problems considered here. For instance, they also give a
proof of Theorem 1, with the bound on the size of T ′ be-
ing the same as what we obtain, that is, O( n

L
log log log n

L
).

Their approach also yields nets of size O( n
L

log h( n
L

)) for
situations in which the union complexity of m objects is
O(mh(m)). Unlike our result here, they do not require h(m)
to grow faster than the logarithm function applied a constant
number of times.

Roughly speaking, their approach for fat triangles is to
pick a uniform random sample of n

L
log log log n

L
triangles

from T . These may not cover all the points that we need to,
so a trapezoidal decomposition of the exterior of the union of
the sampled triangles is constructed, and for each trapezoid
a net is chosen for the uncovered points. The high level
idea is similar to the two-level sampling of [19, 11], but the
key insight is that there is an exploitable trade-off between
the size of the sample in the first stage and the number of
triangles chosen in the second stage.

The techniques we use here are different and were de-
veloped independently of [3], though the final form of our
bounds is influenced by the bounds in [3].1

Organization of the Paper.
In Section 2, we define several notions and review previ-

ous work that we depend on. In Section 3, we prove The-
orem 1. In Section 4, we improve the bound in Theorem
1 to O( n

L
log log log n

L
). In Section 5, we review, following

[12], the connection between Theorem 1 and the approx-
imation algorithm, based on a linear programming relax-
ation, for covering points by fat triangles, and obtain our

1Before becoming aware of [3], we had a version of Theo-
rem 1, for instance, where |T ′| = O( n

L
(log log n)δ), for any

δ > 0; subsequently, we realized that our argument could be
optimized to obtain the O( n

L
log log log n) bound.



O(log log log λ∗) approximation algorithm for this problem,
where λ∗ is the size of the optimal cover. We conclude in
Section 6 with a direction for future work.

2. PRELIMINARIES
In this section, we review certain preliminary notions and

well-known results.

Fat Triangles.
A triangle is said to be ρ-fat if the ratio of the radii of

its smallest enclosing circle and its largest enclosed circle is
bounded by ρ.

Arrangements and Cells.
A triangle t can be partitioned into seven features – the

three vertices, the three edges (we don’t include the end-
points of an edge when we talk about it as a feature), and
its interior. Now given a set T of triangles in the plane, we
can define an equivalence relation on the plane – two points
are related if they are contained in exactly the same set of
features. The connected components of the resulting equiv-
alence classes are the cells in the arrangement of T . A cell
can be a point (thus zero-dimensional), a line segment (thus
one-dimensional), or an open polygonal region (thus two-
dimensional). It will be useful to note that each one or two
dimensional cell has a zero-dimensional cell on its boundary.

Levels.
We define the level of a point in a given set T of triangles

to be the number of triangles it is contained in. Note that
two points that belong to the same cell have the same level,
because they are contained in the same set of triangles. The
level of a point is an integer between 0 and |T |. We will say
that a point is k-deep with respect to a set T of triangles if
its level is at least k.

General Position.
We will say that a set F of triangles is in general position if

the intersection of the boundaries of every three triangles is
empty, and if the intersection of the boundaries of every two
triangles is a finite set of points (that is, we don’t allow the
intersection of two boundaries to include a line segment.)

The Boundary of the Union.
One of the equivalence classes in the definition of cells in

an arrangement of triangles F consists of the points that
are contained in no triangle. That is, this equivalence class
is the complement of the union of the triangles in F . This
class is constituted of one or more 2-cells, each of which is an
open polygon. One measure of the combinatorial complexity
of these 2-cells is the total number of 0-cells on the their
boundaries. A well known result in combinatorial geometry
[20] is that the total number of such 0-cells is O(m log log m),
where m = |F |.

The Number of Shallow Cells.
The following Lemma bounds the number of cells in an

arrangement of triangles with level at most some given α. It
is a well known consequence of a technique that goes back
to Clarkson and Shor [10], but we furnish a proof to make
the exposition more self-contained.

Lemma 2. Let F be a set of m ρ-fat triangles in general
position, and 1 ≤ α ≤ m be a parameter. The number
of cells with level at most α in the arrangement of F is
O(αm log log m

α
).

Proof. Let us charge each one or two dimensional cell at
level at most α to a zero-dimensional cell on its boundary.
Each zero dimensional cell at level at most α is charged to
itself. By the general position assumption, each point is
charged O(1) times, so it is enough to bound the number of
charged points, which we denote N .

Now a charged point q is on the boundary of two triangles
t1 and t2 and is contained in at most α other triangles. Let
us choose a random subset F ′ ⊆ F using k independent tri-
als in each of which we pick a triangle from F with uniform
probability. Now q is a zero-dimensional cell on the bound-
ary of the union of F ′ if t1, t2 ∈ F ′ and the other triangles
containing q are not in F ′. The probability of this event is
at least

k(k − 1)

m2

“

1 −
α

m

”k

.

Thus the expected number of 0-cells on the boundary of
the union of F ′ is at least

N
k(k − 1)

m2

“

1 −
α

m

”k

.

On the other hand, the number of 0-cells on the boundary
of the union of F ′ is always bounded by O(k log log k). Thus

N
k(k − 1)

m2

“

1 −
α

m

”k

≤ O(k log log k).

Choosing k = 2m
α

yields N = O(αm log log m
α

).

3. SMALL NETS FOR FAT TRIANGLES
In this section, we prove Theorem 1. We begin with the

following statement about certain types of combinatorial set
systems, which is proved using the Lovasz Local Lemma
[2]. For an application of the Local Lemma in a different
geometric context, see [1].

Lemma 3. Let X be some non-empty set of elements, and
F = {S1, S2, . . . , St} be a collection of subsets of X. Suppose
that for some positive integers k1 and k2 such that log k2 ≤
k1 ≤ k2, we have (a) |Sj | = k1 for each 1 ≤ j ≤ t, and (b)
no element of X is contained in more than k2 subsets in F.

Then there exists a Y ⊆ X so that (a) |Y | = O( |X|
k1

log k2),

and (b) |Y ∩ Sj | ≥ log k2 for each 1 ≤ j ≤ t.

Proof. We may assume that k2 is greater than a suf-
ficiently large constant. Consider the probabilistic process
where we throw each element in X uniformly at random
into one of k1

100 log k2
bins; the throw is independent for each

element. Let Ej,i denote the event that the i’th bin has
less than log k2 elements from Sj . Since |Sj | = k1, the ex-
pected number of elements from Sj in the i’th is 100 log k2.
A Chernoff-bound argument implies that Pr[Ej,i] ≤

1
k20

2

.

By the Lovasz Local Lemma [2], the event
T

i,j Ej,i occurs

with positive probability. (Explanation: The event Ej,i is
independent of any combination of events Ej1,i1 , . . . , Ejk,ik

provided Sj doesn’t intersect Sj1 ∪ · · · ∪ Sjk
. Thus we can

find a set of k1 × k2 ×
k1

100 log k2

≤ k3
2 events of the form Ej′,i′

such that Ej,i is independent of any combination of all but
these events. )



Thus with positive probability, each bin has at least log k2

elements from any Sj . Assume this event happens. One of

the k1

100 log k2
bins has at most 100|X| log k2

k1
elements, and we

let Y be this bin.

We now establish the following crucial ingredient.

Lemma 4. Let F be a set of m fat triangles in the plane
in general position and α be any integer such that m ≥ α ≥
log log m

α
. There exists a subset F1 ⊆ F so that (a) |F1| =

O(m log α
α

), and (b) each α-deep cell in F is contained in a
log α-deep cell in F1.

Proof. We may assume that α is bigger than a suffi-
ciently large constant. Let k be the smallest integer such
that 2kα > m. Fix a j such that 0 ≤ j < k and let C
be the cells in F whose levels are between 2jα and 2j+1α.
Letting β = 2jα, the number of such cells, by Lemma 2, is
O(mβ log log m

β
) = O(mβ2).

Let us call a triangle f ∈ F heavy if it contains at least
β4 cells in C, and light otherwise. Let us call a cell in C
good if it is contained in at least β/2 light triangles, and
bad otherwise. Let C′ denote the set of good cells, and F j

1

denote the set of heavy triangles. Since

|F j
1 |β

4 ≤ 2β|C|,

we have |F j
1 | = O(m

β
). Note that each bad cell is contained

in at least β/2 ≥ log β triangles in F j
1 .

Turning now to the set of good cells C′, we recall that
each cell in C′ is covered by at least β/2 light triangles;
and each light triangle contains at most β4 cells in C′. We
now invoke Lemma 3 by setting X to be the set of light
triangles; for each good cell c ∈ C′, we define Sc ⊆ S to be
an arbitrary subset of k1 ≡ β/2 light triangles that contain
c; and k2 ≡ β4. We obtain a set F j

2 ≡ Y of light triangles,

so that |F j
2 | = O(m

β
log β), and each c ∈ C′ is contained in

at least log β triangles in F j
2 .

Let F j = F j
1 ∪F j

2 . Note that |F j | = O(m
β

log β), and that
any cell whose level in F is between β and 2β is contained
in at least log β triangles of F j .

We construct F j in this way for each 0 ≤ j < k, and
let F1 = ∪jF

j . It is clear that any α-deep cell in F is
contained in at least log α triangles in F1. We verify that
|F1| = O(m

α
log α).

We also need the following variant:

Lemma 5. Let F be a set of m fat triangles in the plane in
general position and α be any integer such that log log m

α
≥

α ≥ 100 log log log m
α

. There exists a subset F1 ⊆ F so that
(a) |F1| = O(m

α
log log log m

α
), and (b) each α-deep cell in F

is contained in a log log log m
α

-deep cell in F1.

Proof. Using Lemma 4, we find a set F ′ such that any
log log m

α
-deep cell in F is contained in at least log log log m

α
triangles in F ′. We have

|F ′| = O

„

m

log log m
α

log log log
m

α

«

= O(
m

α
log log log

m

α
).

Let C be the cells whose level in F is between α and
log log m

α
. Let β = log log m

α
. The number of such cells is,

by Lemma 2, O(m(log log m
α

)2) = O(mβ2).
We now proceed as in the proof of Lemma 4, but with the

parameters set differently. (The differences are important.)

Let us call a triangle f ∈ F heavy if it contains at least
β4 cells in C, and light otherwise. Let us call a cell in C
good if it is contained in at least α/2 light triangles, and
bad otherwise. Let C′ denote the set of good cells, and F ′′

1

denote the set of heavy triangles. Since

|F ′′
1 |β4 ≤ β|C|,

we have |F ′′
1 | = O(m

β
). Note that each bad cell is contained

in at least α/2 ≥ log log log m
α

triangles in F ′′
1 .

Turning now to the set of good cells C′, we now invoke
Lemma 3 by setting X to be the set of light triangles; for
each good cell c ∈ C′, we define Sc ⊆ S to be an arbitrary
subset of k1 ≡ α/2 light triangles that contain c; and k2 ≡
β4. We obtain a set F ′′

2 ≡ Y of light triangles, so that
|F ′′

2 | = O(m
α

log β), and each c ∈ C′ is contained in at least
log β = log log log m

α
triangles in F ′′

2 .
We let F1 = F ′ ∪ F ′′

1 ∪ F ′′
2 , and check that the claims in

the Lemma hold.

3.1 Proof of Theorem 1
We now go on to the proof of Theorem 1.

General Position.
Our first step will be to perturb T so that it is in general

position. For this, we pick a set of points R that contains
one representative point from each cell in the arrangement
of T . We then enlarge each triangle t by scaling it up (so the
fatness is not affected). We do the scaling so that the set
of triangles containing any point in R does not change, and
the scaled triangles are now in general position. It is easy
to see that a sufficiently small random scaling achieves this
with probability 1. We then apply the method described
below to obtain a set T ′ of O( n

L
log log log n) (scaled) trian-

gles that cover every point in the plane contained in at least
L of the scaled triangles. We return the original triangles
corresponding to T ′.

Consider any cell c in the arrangement of the original tri-
angles that is at level at least L, and let r be its representa-
tive point. Now r is contained in one of the scaled triangles
in T ′, and thus in one of the original triangles returned. It
follows that c itself is contained in that triangle that con-
tains r. In what follows, we will therefore assume that T is
in general position.

Repeated Applications of Lemmas 4 and 5.
If L < 100 log log log |T |

L
, then T ′ = T is a cover of size

n = O( n
L

log log log n
L

), and we are done. Otherwise, let

L1 = max{log L, log log log |T |
L
}. Applying either Lemma 4

or Lemma 5, as appropriate, with F = T and α = L, we

obtain a set T1 = F1. (We apply Lemma 4 if L ≥ log log |T |
L

and Lemma 5 otherwise.) Note that |T1| = O(nL1

L
), and any

cell that is L-deep in T is contained in at least L1 triangles
in T1.

If L1 < 100 log log log |T1|
L

, then T ′ = T1 is a cover of

size O(nL1

L
) = O( n

L
log log log n

L
). Otherwise, let L2 =

max{log L1, log log log |T1|
L1

}. We apply either Lemma 4 or
Lemma 5, as appropriate, with F = T1 and α = L1 to ob-

tain a set T2 = F1. Note that |T2| = O( |T1|L2

α
) = O(nL2

L
),

and that any cell that is L-deep in T is contained in at least
L2 triangles in T2.

If L2 < 100 log log log |T2|
L

, then T ′ = T2 is a cover of

size O(nL2

L
) = O( n

L
log log log n

L
). Otherwise, let L3 =



max{log L2, log log log |T2|
L2

}. We apply either Lemma 4 or
Lemma 5, as appropriate, with F = T2 and α = L2 to ob-

tain a set T3. Note that |T3| = O( |T2|L3

α
) = O(nL3

L
), and

that any cell that is L-deep in T is contained in at least L3

triangles in T3.
Now, T3 is a cover of size

O

„

nL3

L

«

= O
“ n

L
max{log log log L, log log log

n

L
}

”

= O
“ n

L
log log log n

”

.

Remark 6. Theorem 1 can be strengthened slightly to say
that any point that is L-deep in T is contained in an Ω

`

L
n

´

fraction of the triangles in T ′, as is evident from the proof.

3.2 Algorithmic Aspects
We can obtain a randomized algorithm whose expected

running time is a polynomial and that computes a cover
whose size is that guaranteed by that of Theorem 1. The
nontrivial step here is the application of the Lovasz Local
Lemma in Lemmas 4 and 5, where the event that we want
happens with a positive but possibly very small probability.
Since the success probability can be very small, we can-
not just afford to repeat the probabilistic process till we
encounter success. Luckily for us, we can obtain a random-
ized polynomial time algorithm for this step by adapting the
method of Beck that works for other typical applications of
the Lovasz Local Lemma [2]. We defer a description of this
adaptation to a later version, and conclude:

Theorem 7. Let T be a set of n ρ-fat triangles in the
plane, where ρ > 1 is an arbitrary constant. For any 1 ≤
L ≤ n, we can compute in polynomial expected time a subset
T ′ ⊆ T of size O( n

L
log log log n) that covers all points in the

plane that lie in L or more triangles in T .

4. IMPROVEMENTS
We now make the following minor improvement to Theo-

rem 7.

Theorem 8. Let T be a set of n ρ-fat triangles in the
plane, where ρ > 1 is an arbitrary constant. For any 1 ≤
L ≤ n, we can compute in polynomial expected time a subset
T ′ ⊆ T of size O( n

L
log log log n

L
) that covers all points in

the plane that lie in L or more triangles in T .

Proof. We use a polynomial time algorithm for comput-
ing ε-approximations [6] to obtain a subset T ′ ⊆ T of size

O
“

`

n
L

´3
”

so that any point contained in a L
n

fraction of the

triangles in T is contained in at least a L
2n

fraction of the
triangles in T ′. We then apply Theorem 7 to T ′ and the
points contained in at least L

2n
|T ′| triangles in T ′.

5. THE SET COVER CONNECTION
Suppose we are given a set P of k points in the plane, and

a set T1 of fat triangles whose union covers P , and we seek
the smallest subset of T1 that covers P . Since two triangles
that contain the same subset of P are equivalent, we may
assume that |T1| ≤ k6. Let λ∗ denote the size of the optimal
cover. Solving in polynomial time the linear programming
relaxation of the set cover problem, we find non-negative

numbers xt, for each t ∈ T1, so that
X

t∈T1:p∈t

xt ≥ 1 for each p ∈ P,

and λ ≡
P

t∈T1
xt ≤ λ∗. We then round down each xt to

the nearest multiple of 1
k8 ; even after this, we have, for each

p ∈ P ,

X

t∈T1:p∈t

xt ≥ 1 −
k6

k8
≥

1

2

for k ≥ 2.
For each triangle t ∈ T1 with xt > 0, we make xt

1/k8 copies

of it. (We discard each triangle t ∈ T1 with xt = 0.) Denot-
ing by T the resulting set of triangles, we have n ≡ |T | ≤

k8λ, and each p ∈ P is contained in at least L ≡ k8

2
triangles

in T . Applying Theorem 8, we obtain a subset of

O
“ n

L
log log log

n

L

”

= O(λ log log log λ)

= O(λ∗ log log log λ∗)

triangles that covers P .

Theorem 9. Given a set P of k points in the plane, and
a set T1 of fat triangles whose union covers P , we can,
in polynomial expected time, compute a subset of T1 with
O(λ∗ log log log λ∗) triangles that covers P , where λ∗ is the
size of the smallest subset of T1 that covers P .

6. CONCLUSIONS
Let us consider the set covering problem with fat triangles

where now each triangle has a cost which is some positive
integer, and we wish to find the minimum cost cover. In
contrast to the uniform cost case considered in this paper,
the best approximation factor that is known for this problem
is still logarithmic in the number of points. Just as in the
uniform cost case, we may approach the problem by solving
a linear programming relaxation and then rounding the re-
sulting solution. The rounding approaches that yield better
approximations for the uniform cost case do not work here
because, essentially, they are based on non-uniform sam-
pling. In our approach, the non-uniformity of the sampling
occurs in the proof of Lemma 4 where we (deterministically)
reduce the “dependence” to a reasonable level before apply-
ing the Local Lemma. Is there a way around the difficulty
that this step causes?
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