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Abstract

It is well established that the problem of detecting a triangle in a graph can be reduced to
Boolean matrix multiplication (BMM). Many have asked if there is a reduction in the other
direction: can a fast triangle detection algorithm be used to solve BMM faster? The general
intuition has been that such a reduction is impossible: for example, triangle detection returns one
bit, while a BMM algorithm returns n2 bits. Similar reasoning goes for other matrix products
and their corresponding triangle problems.

We show this intuition is false, and present a new generic strategy for efficiently computing
matrix products over algebraic structures used in optimization. We say an algorithm on n × n
matrices (or n-node graphs) is truly subcubic if it runs in O(n3−δ · poly(logM)) time for some
δ > 0, where M is the absolute value of the largest entry (or the largest edge weight). We prove an
equivalence between the existence of truly subcubic algorithms for any (min,�) matrix product,
the corresponding matrix product verification problem, and a corresponding triangle detection
problem. Our work simplifies and unifies prior work, and has some new consequences:

• The following problems either all have truly subcubic algorithms, or none of them do:

– The all-pairs shortest paths problem on directed graphs.
– The all-pairs shortest paths problem on undirected graphs.
– Detecting if a weighted graph has a triangle of negative total edge weight.
– Reporting n2.99 negative triangles in a graph.
– Checking whether a given matrix defines a metric.
– Verifying the correctness of a matrix product over the (min,+)-semiring.

• The following either all have truly subcubic combinatorial algorithms, or none of them do:

– Boolean matrix multiplication.
– Detecting if a graph has a triangle.
– Reporting n2.99 triangles in a graph.
– Verifying the correctness of a matrix product over the Boolean semiring.
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1 Introduction

Matrix multiplication is fundamental to problems in computer science. The case of multiplying
over a ring is well known to admit surprisingly faster algorithms using the magic of subtraction,
beginning with the famous algorithm of Strassen [26, 21, 23, 11, 10]. These algebraic algorithms all
have truly subcubic running times, meaning in this context that on n× n matrices they use O(n3−δ)
additions and multiplications over the ring, for a fixed δ > 0. As usual, we use ω < 2.38 to denote
the exponent of ring matrix multiplication.

Over algebraic structures without subtraction, there has been little progress in the search for truly
subcubic algorithms. These “exotic” matrix products are extremely useful in graph algorithms and
optimization. For example, matrix multiplication over the (max,min)-semiring, with max and min
operators in place of plus and times (respectively), can be used to solve the all pairs bottleneck paths
problem (APBP) on arbitrary weighted graphs, where we wish to find a maximum capacity path from
s to t for all pairs of nodes s and t. Recent work [31, 13] has shown that fast matrix multiplication
over rings can be applied to obtain a truly subcubic algorithm over the (max,min)-semiring, yielding
truly subcubic APBP. Matrix multiplication over the (min,+)-semiring (also known as the distance
product) can be used to solve all pairs shortest paths (APSP) in arbitrary weighted graphs [15]. That
is, truly subcubic distance product would imply truly subcubic APSP, one of the “Holy Grails” of
graph algorithms. The fastest known algorithms for distance product are the O(n3 log log3 n/ log2 n)
solution due to Chan [8], and Õ(Mnω) whereM is the largest weight in the matrices due to Alon, Galil
and Margalit [3] (following Yuval [34]). Unfortunately, the latter is pseudopolynomial (exponential
in the bit complexity), and can only be used to efficiently solve APSP in special cases [24].

Shoshan and Zwick [24] ask if the distance product of two n×n matrices with entries in {1, . . . ,M}
can be computed in O(n3−δ logM) for some δ > 0. (Note an APSP algorithm of similar runtime
would follow from such an algorithm.) In general, poly logM factors are natural: the truly subcubic
ring matrix multiplication algorithms have poly logM overhead if one counts the bit complexity of
operations. Hence we say that an algorithm on n×n matrices (or an n-node graph) computing a set
of integer values in {−M, . . . ,M} is truly subcubic if it uses O(n3−δ · poly(logM)) time for a δ > 0.

A generic approach to computing fast (min,�) matrix products (for an arbitrary binary operation
�) would be of major interest. Intuitively it is unclear why a minimum should actually be “harder”
than addition and subtraction. In an attempt to understand the difficulty of (min,�) matrix prod-
ucts, the present authors studied certain weighted triangle problems which would have truly subcubic
algorithms, if (min,�) matrix products had such algorithms [28, 29]. Of particular interest are the
minimum edge-weight triangle and minimum node-weight triangle problems, where one has a graph
with arbitrary weights (on edges or nodes) and is asked to find a triangle with a minimum sum of
weights. It is not hard to show that if (min,+) matrix product can be solved in O(n3−δ) time on
n× n matrices, then these problems can be solved in O(n3−δ) time on n-node graphs.1 The present
authors found a truly subcubic algorithm for the node-weighted problem [28] (later improved vastly
in [30, 12]), but were unable to do this for the edge-weighted problem.

In this paper, we show that a truly subcubic algorithm for minimum edge-weight triangle already
implies truly subcubic all-pairs shortest paths(!). More generally, there is a strong sense in which

1For example, to find a minimum edge-weight triangle, it suffices to cube the weighted adjacency matrix over the
(min, +)-semiring, and examine the main diagonal for its smallest entry. This gives one node in the minimum triangle;
the other two can be found in O(n2) time.
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(min,�) matrix products may be easier than ring matrix products, in that truly subcubic algorithms
for triangle detection problems over (min,�) already imply truly subcubic algorithms for the matrix
product. Our results suggest a new reducibility theory between path problems, matrix products,
matrix product verification, and triangle detection problems. They also simplify and unify prior work
on all-pairs path problems, since we merely need to provide subcubic algorithms for the corresponding
triangle problems (which are often easier to understand).

The generic framework. We consider (min,�) structures defined over a set R together with a
binary operation � : R×R→ Z∪{−∞,∞}.2 We define an extremely generic type of structure that
we call extended, which asserts the existence of an identity matrix and an all-zeroes matrix, in some
sense. (For definitions, see the Preliminaries.) Almost all structures we consider in this paper are
extended, including the Boolean semiring and the (min,+)-semiring.

Fast triangle detection implies fast matrix product. The negative triangle problem over R
is defined on a weighted tripartite graph with parts I, J,K. Edge weights between I and J are from
Z, and all other edge weights are from R. The problem is to detect whether there is a triangle
i ∈ I, j ∈ J, k ∈ K so that (w(i, k) � w(k, j)) + w(i, j) < 0. Note that if one negates all weights
of edges between I and J , the condition becomes (w(i, k) � w(k, j)) < w(i, j). In the special case
when � = + and R ⊆ Z∪{−∞,∞}, the tripartiteness requirement is unnecessary, and the negative
triangle problem is defined on an arbitrary graph with edge weights from Z ∪ {−∞,∞}. This holds
for the negative triangle problem over both the (min,+) and Boolean semirings.

We prove the following generic theorem relating faster triangle detection to faster matrix product.

Theorem 1.1 Let T (n) be a non-decreasing function satisfying T (n) ≥ Ω(n).3 Suppose the negative
triangle problem over R in an n-node graph can be solved in T (n) time. Then the product of two
n×n matrices over R can be performed in O(n2 ·T (n1/3) logW ) time, where W is the absolute value
of the largest integer in the output.

Corollary 1.1 Suppose the negative triangle problem over R is in truly subcubic time. Then the
product of n× n matrices over R can be done in truly subcubic time.

Theorem 1.1 has many interesting corollaries. For one, APSP has a truly subcubic algorithm if
and only if the negative weight triangle problem has one. Another consequence is that faster triangle
detection algorithms yield faster Boolean matrix multiplication algorithms, a question that has been
posed by many researchers, e.g. ([32], Open Problem 4.3(c)) and ([25], Open Problem 8.1).

More corollaries are elaborated upon later in the paper; for now, let us cite just one more. In
Subsection 3.3 we prove that the negative weight triangle problem is equivalent to the metricity
problem: given an n×n matrix, determine whether it defines a metric on [n]. The metricity problem
is a special case of the metric nearness problem (MNP): given a matrix D, find a closest matrix D′

such that D dominates D′ and D′ satisfies the triangle inequality. Brickell et. al [6] show that MNP
is equivalent to APSP and ask whether the metricity problem is equivalent to MNP. Theorem 1.1
partially answers their question in the sense that subcubic metricity implies subcubic MNP.

2An analogous treatment is possible for (max,�) structures. We omit the details, as they merely involve negations
of entries.

3The linearity condition on T (n) does matter for us, as we shall also apply the theorem to quantum algorithms
which may run in subquadratic time.
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Finally, we give an explicit example of a problem for which our blackbox reduction already implies
an improved algorithm: by just plugging in the current best quantum algorithm for triangle [18] we
improve the current best [7] output-sensitive quantum algorithm for Boolean matrix product.

Fast matrix product verification implies fast matrix product. The problem of matrix prod-
uct verification over an extended structure R̄ is to determine whether mink∈[n](A[i, k] � B[k, j]) =
C[i, j] for all i, j ∈ [n], where A,B,C are given n×n matrices with entries from R. Although it looks
like a simpler problem, matrix product verification for the (min,+) semiring (for instance) is not
known to have a truly subcubic algorithm. We prove that truly subcubic matrix product verification
over any R̄ implies truly subcubic matrix product over R̄.

Theorem 1.2 Suppose matrix product verification over R̄ can be done in time T (n). Then the
negative triangle problem for graphs over R̄ can be solved in O(T (n)) time.

Corollary 1.2 Let T (n) ≥ Ω(n) be a non-decreasing function. Suppose matrix product verification
over R̄ is in time T (n). Then matrix multiplication over R̄ is in O(n2T (n1/3) log |W |) time, where
W is the absolute value of the largest integer in the output, i.e. matrix product verification over R̄
is in truly subcubic time if and only if matrix multiplication over R̄ is in truly subcubic time.

This result addresses questions of Spinrad [25] (Open Problem 8.2) and Alon [2], who asked if the
verification problem for various matrix products can be done faster than the products themselves.
The theorem is surprising, as n × n matrix product verification over rings can be done in O(n2)
randomized time [5] but we do not know how to apply this fast verification to ring matrix multipli-
cation. Both of our theorems rely crucially on the fact that the “addition” operation in a (min,�)
structure is a minimum operation.

Our reductions also provide a new approach to finding fast practical algorithms for Boolean
matrix multiplication, another problem of longstanding interest. Over the Boolean semiring with
OR and AND operators in place of plus and times, one can use matrix multiplication over the ring
Zn+1 to compute the product faster. Without use of algebra, the best known combinatorial algorithm
still only runs in about O(n3/ log2.25 n) time [4]. The proofs of Theorem 1.1 and 1.2 are simple in
that they do not involve large constant overhead and would be practical to implement. Hence our
results imply that a practical O(n3−δ) algorithm for detecting triangle-freeness in an n-node graph
would imply truly subcubic and practical Boolean matrix multiplication. Also, practical Boolean
matrix product verification would also imply practical Boolean matrix multiplication.

A remark for the complexity theorists. We believe that our results will be of interest to both
algorithms researchers and complexity theorists. Contrapositives of our results say: to prove cubic
lower bounds for triangle detection problems or matrix product verification in some model, it suffices
to prove cubic lower bounds for a certain matrix product (provided our reductions can be carried
out in the model). That is, to prove a lower bound on a decision problem it suffices to prove one
for the function problem. While some lower bounds are known for function problems such as matrix
multiplication (e.g. [33, 1, 19]), relatively little is known for problems such as triangle-freeness. We
hope our work will encourage researchers to study these connections more closely.

1.1 Intuition For The Results

Let us first review some intuition for why fast triangle detection should not imply fast matrix
multiplication, and then discuss how our approach circumvents it. We shall focus on the case of
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Boolean matrix multiplication (BMM) over OR and AND, which illustrates the key ideas.

As discussed in the abstract, triangle detection returns one bit, while BMM returns n2 bits. This
seems to indicate that an n2.99 triangle detection algorithm would be useless for subcubic BMM, as
it would need to be run for Ω(n2) times. Furthermore, BMM can determine for every edge if there
is a triangle using the edge, while triangle detection only determines if there is an edge in a triangle.
Given our intuitions about quantifiers, it looks unlikely that this universally quantified problem could
be efficiently reduced to the corresponding existentially quantified problem.

So there appears to be strong intuition for why our theorems should not hold. Yet they do
(really). Let A and B be n × n Boolean matrices, and we want to compute their product A · B.
While it is true that triangle detection only returns a bit, our reduction to BMM will only call triangle
detection on small graphs (of O(nε) nodes for some ε > 0) corresponding to small submatrices of A
and B. Triangle detection can tell us if A ·B contains any entry with a 1, in the following way. Set
up a tripartite graph with parts S1, S2 and S3, each containing n nodes which we identify with [n].
The edge relation for S1 × S2 is defined by A, and the edge relation for S2 × S3 is defined by B (in
the natural way). Note a path of length two from i ∈ S1 to j ∈ S3 directly corresponds to a 1 in the
entry (A ·B)[i, j]. Putting all possible edges between S1 and S3, we have that there is a triangle in
this graph if and only if A ·B contains a 1-entry.

The above reasoning can also be applied to submatrices A′ and B′, to determine if A′ · B′ con-
tributes a 1-entry to the matrix product. More generally, triangle detection can tell us if a product
of two submatrices contains a 1-entry, among just those entries of the product that we have not al-
ready computed. We do not have to put all possible edges between S1 and S3; we only need to put
edges corresponding to undetermined entries of the product. That is, triangle detection can tell us
if submatrices A′ and B′ have any new 1-entries to contribute to the current matrix product so far.

On the one hand, if all possible pairs of submatrices from A and B do not result in finding a
triangle, then we have computed all the 1-entries and the rest must be zeroes. On the other hand,
when we detect a triangle, we determine at least one new 1-entry (i, j) in A · B, and we can keep
latter triangle detection calls from recomputing this entry by removing the edge (i, j) between S1

and S3. By balancing the number of triangle detection subproblems we generate with the number
of 1-entries in A ·B, we can get a subcubic runtime for matrix multiplication assuming the triangle
detection algorithm was also subcubic. (In fact we get an output sensitive algorithm.) If triangle
detection takes only O(n3−δ) time for some δ > 0, then the matrix multiplication will take O(n3−δ/3)
time. But if the triangle algorithm runs in O(n3/f(n)) time for some polylogarithmic f(n), then our
matrix multiplication also runs in O(n3/f(n)). With additional effort (and a “simultaneous binary
search” method), the above ideas generalize to any matrix product where “addition” is min.

2 Preliminaries

The graphs in our paper are undirected, but all our results also apply for directed graphs. Unless
otherwise noted, our graphs have n vertices. Whenever an algorithm in our paper uses ∞ or −∞,
these can be substituted by numbers of suitably large absolute value.

Structures and Extended Structures. We give a general definition encompassing all algebraic
structures for which our results apply. Let R be a finite set. A (min,�) structure over R is defined
by a binary operation � : R × R → Z ∪ {−∞,∞}. We use the variable R to refer to a (min,�)
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structure. We say a (min,�) structure is extended if R contains elements ε0 and ε1 such that for all
x ∈ R, x � ε0 = ε0 � x = ∞ and ε1 � x = x for all x ∈ R. That is, ε0 is a type of annihilator, and
ε1 is a left identity. We use the variable R̄ to refer to an extended structure. The elements ε0 and
ε1 allow us to define (for every n) an n × n identity matrix In and a n × n zero matrix Zn over R̄.
More precisely, In[i, j] = ε0 for all i 6= j, In[i, i] = ε1, and Zn[i, j] = ε0 for all i, j. We shall omit the
subscripts of In and Zn when the dimension is clear.

The matrix product of two n× n matrices over R is defined as

(A�B)[i, j] = min
k∈[n]

(A[i, k]�B[k, j]).

It is easy to verify that for all matrices A over an extended R̄, I �A = A and Z �A = A� Z = F
where F [i, j] =∞ for all i, j.

Examples of extended structures R̄ are the (OR,AND) (or Boolean) semiring,4 as well as the
(min,max) and (min,+) semirings (also called subtropical and tropical), and the (min,≤) structure
used to solve all pairs earliest arrivals [27]. An example of a structure that is not extended is the
“existence dominance” structure defined in subsection 3.4.

2.1 Related Work

Itai and Rodeh [16] were the first to show that triangle detection can be done with Boolean
matrix multiplication. Strassen [26] broke the cubic barrier for integer matrix multiplication, showing
that it is in O(nlog2 7) time, thus also showing that Boolean matrix multiplication and triangle
detection are in truly subcubic time. The exponent for ring matrix multiplication ω is the smallest
real number such that n × n matrix multiplication is in O(nω) operations over the ring. After
many improvements on Strassen’s original result, the current best upper bound on ω is 2.376 by
Coppersmith and Winograd [11].

The trilinear decomposition of Pan [21, 22] implies that any bilinear circuit for computing the
trace of the cube of a matrix A (i.e., tr(A3)) over any ring can be used to compute matrix products
over any ring. So in a sense, algebraic circuits that can count the number of triangles in a graph
can be turned into matrix multiplication circuits. Note, this correspondence relies heavily on the
algebraic circuit model: it is non-black box in an extreme way. (Our reductions are all black box.)

3 Triangle Detection, Matrix Product and Verification

We start by showing that matrix product verification can solve the negative triangle problem
over any R̄ in the same asymptotic runtime.

Proof of Theorem 1.2. From the tripartite graph G = (I ∪ J ∪K,E) given by the negative
triangle problem, construct matrices A,B,C as follows. For each edge (i, j) ∈ (I × J) ∩ E set
C[i, j] = w(i, j). Similarly, for each edge (i, k) ∈ (I ×K) ∩ E set A[i, k] = w(i, k) and for each edge
(k, j) ∈ (K × J) ∩ E set B[k, j] = w(k, j). When there is no edge in the graph, the corresponding
matrix entry in A or B becomes ε0 and in C it becomes ∞. The problem becomes to determine
whether there are i, j, k ∈ [n] so that A[i, k]�B[k, j] < C[i, j]. Let A′ be the n× 2n matrix obtained
by concatenating A to the left of the n× n identity matrix I. Let B′ be the 2n× n matrix obtained

4Observe the Boolean semiring is isomorphic to the structure on elements ε0 =∞ and ε1 = 0, where x� y = x + y.
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by concatenating B on top of C. Then A′ � B′ is equal to the componentwise minimum of A � B
and C. One can complete A′, B′ and C to square 2n×2n matrices by concatenating an all ε0 n×2n
matrix to the bottom of A′, an all ε0 2n× n matrix to the right of B′ and n columns of all ε0s and
n rows of all ε0s to the right and bottom of C respectively.

Run matrix product verification on A′, B′, C. Suppose there are some i, j so that mink(A′[i, k]�
B′[k, j]) 6= C[i, j]. Then since

min
k

(A′[i, k]�B′[k, j]) = min{C[i, j],min
k

(A[i, k]�B[k, j])} ≤ C[i, j],

there must exists a k ∈ [n] so that A[i, k] � B[k, j] < C[i, j]. In other words, i, k, j is a negative
triangle over R̄. If on the other hand for all i, j we have mink(A′[i, k] � B′[k, j]) = C[i, j], then for
all i, j we have mink(A[i, k]�B[k, j]) ≥ C[i, j] and there is no negative triangle. 2

3.1 From Detection to Finding

Before we get to the main algorithm, we note that a fast triangle detection algorithm implies
a fast triangle finding algorithm. The proof is in Appendix A. It employs a simple self-reduction.
Theorem E.1 in Appendix E generalizes the approach, showing that truly subcubic negative triangle
detection implies that one can also return up to O(n2.99) negative triangles in truly subcubic time.

Lemma 3.1 Let T (n) = Ω(n) be a non-decreasing function. If there is a T (n) time algorithm for
negative triangle detection over R on a graph G = (I∪J ∪K,E), then there is an O(T (n)) algorithm
which returns a negative triangle in G if one exists.

3.2 Main Algorithm

Consider a tripartite graph with parts I, J,K. We say a set of triangles T ⊆ I × J ×K in the
graph is IJ-disjoint if for all (i, j, k) ∈ T , (i′, j′, k′) ∈ T , (i, j) 6= (i′, j′).

Lemma 3.2 Let T (n) = Ω(n) be a non-decreasing function. Given a T (n) algorithm for Triangle
Detection, there is an algorithm A which outputs a maximal set L of IJ-disjoint triangles in a
tripartite graph with distinguished parts (I, J,K), in O(T (n1/3)n2) time. Furthermore, if there is a
constant ε : 0 < ε < 1 such that for all large enough n, T (n) ≥ T (21/3n)/(2(1− ε)), then there is an
output sensitive O(T (n/|L|1/3)|L|)-time algorithm.

In particular Lemma 3.2 implies that given any graph on n nodes, one can return in O(T (n1/3)n2)
time for every pair of nodes whether they lie on a negative triangle. The condition required for the
output sensitive algorithm holds for all subcubic polynomials, but it does not necessarily hold for
runtimes of the form n3/f(n) with f(n) = no(1). In the special case when T (n) is Θ(n3/ logc n) for
a constant c, the output sensitive algorithm only multiplies a log |L| factor to the runtime.

For rectangular matrices of dimensions m×n and n× p, our arguments can be adapted (see Ap-
pendix B) to give an algorithm that returns |L| entries of the product overR inO(|L|·T ((mnp/|L|)1/3))
time. This can be applied to show that in the special case of BMM, there is an improved randomized
output-sensitive algorithm running in Õ(n2 + |L| · T (n2/3/|L|1/6)) time.

Proof. Algorithm A maintains a global list L of triangles which is originally empty and will
be the eventual output of the algorithm. Let a be a parameter to be set later. At each point the
algorithm works with a subgraph G̃ of the original graph, containing all of the nodes, all of the edges
between I and K and between J and K but only a subset of the edges between I and J . In the
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beginning G̃ = G and at each step A removes an edge from G̃.

Algorithm A starts by partitioning each set I, J,K into na parts where each part has at most
dn(1−a)e nodes each. It goes through all n3a possible ways to choose a triple of parts (I ′, J ′,K ′) so
that I ′ ⊂ I, J ′ ⊂ J and K ′ ⊂ K. For each triple (I ′, J ′,K ′) in turn, it considers the subgraph G′

of G̃ induced by I ′ ∪ J ′ ∪ K ′ and repeatedly uses Lemma 3.1 to return a negative triangle. Each
time a negative triangle (i, j, k) is found in G′, the algorithm adds (i, j, k) to L, removes edge (i, j)
from G̃ and attempts to find a new negative triangle in G′. This process repeats until G′ contains
no negative triangles, in which case algorithm A moves on to the next triple of parts.

Now, let us analyze the running time of A. For a triple of parts (I ′, J ′,K ′) let eI′J ′K′ be the
number of edges (i, j) in I ′ × J ′ that are found in the set of I ′J ′-disjoint triangles when (I ′, J ′,K ′)
is processed by A. Let T (n) be the complexity of negative triangle detection. Then the runtime can
be bounded from above as:

O

 ∑
all n3a triples I′,J ′,K′

(
eI′J ′K′ · T (n1−a) + T (n1−a)

) . (1)

Note that the sum of all eI′J ′K′ is at most n2, since if edge (i, j) ∈ I ′ × J ′ is reported to be in a
triangle, then it is removed from the graph. Hence there is a constant c > 0 such that (1) is upper
bounded by:

c · T (n1−a) ·
∑

all n3a triples I′,J ′,K′

(eI′J ′K′ + 1) ≤ c · T (n1−a) ·

n3a +
∑

all n3a triples I′,J ′,K′

eI′J ′K′


≤ c · T (n1−a) · (n3a + n2).

Setting a = 2/3, the runtime becomes O(n2T (n1/3)).

To get an output sensitive algorithm A′ we make a small modification. For all i = 1, . . . , 2 log n,
run the above algorithm with a := i/(3 log n), and stop when the list L contains at least 2i edges. If
|L| = |Li−1| then return L; otherwise set Li := L and continue with stage i+ 1.

The runtime of A′ is
log |L|∑
i=1

T (n1−i/(3 logn)) ·

n3i/(3 logn) +
∑

all n3i/(3 log n) triples I′,J ′,K′

(eI′J ′K′)

 ≤
log |L|∑
i=1

(
ni/ logn + 2i

)
· T (n1−i/(3 logn)) = 2

log |L|∑
i=1

2iT (2logn−i/3) = 2
log |L|∑
i=1

2iT (n/2i/3).

Since there is a constant ε < 1 so that for all n, T (n) ≥ T (21/3n)/(2(1 − ε)), then for all i,
2iT (n/2i/3) ≤ 2i+1(1− ε)T (n/2(i+1)/3) and hence the runtime is bounded by

O

T (n/|L|1/3)|L|
log |L|∑
i=0

(1− ε)i
 = O(T (n/|L|1/3)|L|).

2
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Application to quantum Boolean matrix products. In the theory of quantum computing
there are many fantastic results. One of these is that a triangle in a graph on n nodes can be found
using only Õ(n1.3) operations [18]. Recently, Buhrman and Spalek [7] studied the problem of verifying
and computing matrix products using a quantum algorithm. Among other nice results, their paper
showed an Õ(n1.5

√
L) output-sensitive algorithm for computing the Boolean matrix product of two

n × n matrices, where L is the number of ones in the output matrix. Lemma 3.2 is a black box
reduction which implies an improved algorithm by plugging in Magniez, Santha and Szegedy’s [18]
triangle algorithm. For completeness, we provide a full proof in Appendix B. Using the improved
output-sensitive algorithm also appearing in Appendix B the below runtime can be modified to be
Õ(n2 + L47/60n13/15) which is better than the result below for all L ≥ Ω(n1.24).

Lemma 3.3 There is an Õ(n1.3L17/30) quantum algorithm for computing the Boolean matrix product
of two n× n matrices, where L is the number of ones in the output matrix.

Notice that since L ≤ n2, we always have n1.3L17/30 << Õ(n1.5
√
L).

Main result. We are now ready to prove Theorem 1.1 via a simultaneous binary search on entries
of the matrix product. The “oracle” used for binary search is our algorithm for IJ-disjoint triangles.

Proof of Theorem 1.1. Let A and B be the given n×n matrices. Suppose the integers in the
output A�B lie in [−W,W ] ∪ {∞,−∞}. We will binary search on [−W,W ] for the finite entries.

We maintain two n × n matrices S and H so that originally S[i, j] = −W and H[i, j] = W + 1
for all i, j ∈ [n]. The algorithm proceeds in iterations. In each iteration a complete tripartite graph
G is created on partitions I, J and K. The edges of G have weights w(·) so that for i ∈ I, j ∈ J
and k ∈ K, w(i, k) = A[i, k], w(k, j) = B[k, j] and w(i, j) = d(S[i, j) +H[i, j])/2e. After this, using
the algorithm from Lemma 3.2, generate a list L of IJ-disjoint negative triangles for G in O(T (n))
time. Now, modify S and H as follows. If (i, j) appears in a triangle in L for i ∈ I, j ∈ J , then
H[i, j] = w(i, j), otherwise S[i, j] = w(i, j). Continue iterating until for all i, j, H[i, j] ≤ S[i, j] + 1.

Finally, create the result matrix C. To find out the entries of C, set up a complete tripartite
graph G on partitions I, J and K. The edges of G have weights w(·) so that for i ∈ I, j ∈ J and
k ∈ K, w(i, k) = A[i, k], w(k, j) = B[k, j] and w(i, j) = S[i, j]. Use the algorithm from Lemma 3.2
to obtain a list L of IJ-disjoint negative triangles in O(T (n)) time. For all i ∈ I, j ∈ J so that (i, j)
appears in a triangle in L, set C[i, j] = S[i, j]; otherwise, set C[i, j] = H[i, j]. 2

Some corollaries of Theorems 1.2 and 1.1 include:

Corollary 3.1 Suppose Boolean matrix product verification can be done in O(n3−δ) time for some
δ > 0. Then graph triangle detection on n-node graphs can be done in O(n3−δ) time. Boolean
matrix product, witnesses for all 1 entries in the product, and Boolean matrix transitive closure can
be computed in O(n3−δ/3) time. The reductions are deterministic and entirely combinatorial.

Corollary 3.2 Suppose Boolean matrix product verification can be done in O(n3/ logc n) time, for
some constant c ≥ 1. Then graph triangle detection on n-node graphs, witnesses for Boolean ma-
trix multiplication, and Boolean matrix transitive closure can be found in O(n3/ logc n) time. The
reductions are deterministic and entirely combinatorial.

Corollary 3.3 Suppose matrix distance product verification can be done in O(n3−δ) time for some
δ > 0. Then negative triangle detection is in O(n3−δ) time, the distance product of two matrices with
entries in {−W, . . . ,W} can be computed in O(n3−δ/3 logW ) time, and APSP for n node graphs with
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edge weights in {0, . . . ,W} can be solved in O(n3−δ/3 log(nW )) time.

3.3 More equivalences

We show the equivalence between undirected and directed shortest paths and between metricity
and negative triangle, using edge reweighting techniques. The proofs are in Appendix C.

Theorem 3.1 (Equivalence between undirected and directed APSP.) Let δ, c > 0 be any
constants. APSP in undirected graphs is in Õ(n3−δ logcM) time iff APSP in directed graphs is in
Õ(n3−δ logcM) time.

Theorem 3.2 (Equivalence between metricity and negative triangle.) Let T (n,M) be non-
decreasing. Then there is an O(n2)+T (O(n), O(M)) algorithm for negative triangle in n node graphs
with weights in [−M,M ] if and only if there is an O(n2)+T (O(n), O(M)) algorithm for the metricity
problem on [n] such that all distances are in [−M,M ].

3.4 Examples of algebraic structures, triangle problems and matrix products

In this section we consider various algebraic structures other than the (min,+) and Boolean
semirings. We relate their matrix products and respective triangle problems, showing how several
prior results in the area can be simplified in a uniform way.

Existence-Dominance. The dominance product of two integer matrices A and B is the integer
matrix C such that C[i, j] is the number of indices k such that A[i, k] ≤ B[k, j]. The dominance
product was first studied by Matoušek [20] who showed that for n × n matrices it is computable
in O(n(3+ω)/2). The existence-dominance product of two integer matrices A and B is the Boolean
matrix C such that C[i, j] = 0 iff there exists a k such that A[i, k] ≤ B[k, j]. This product was
used in the design of the first truly subcubic algorithm for the minimum node-weighted triangle
problem [28]. Although the existence-dominance product seems easier than the dominance product,
the best known algorithm for it actually computes the dominance product.

The existence-dominance product is defined over the (min,�) structure for which R = Z ∪
{−∞,∞} and a � b = 0 if a ≤ b and a � b = 1 otherwise. The corresponding negative triangle
problem, the dominance triangle problem, is defined on a tripartite graph with parts I, J,K. The
edges between I and J are unweighted, and the rest of the edges in the graph have real weights. The
goal is to find a triangle i, j, k ∈ I × J ×K such that w(i, k) ≤ w(k, j).

Minimum Edge Witness. The minimum edge witness product is defined over a restriction of the
(min,�) structure over R = Z ∪ {∞,−∞}, where � = × is integer multiplication. For an integer
matrix A and a {0, 1} matrix B, the (i, j) entry of the minimum edge witness product C of A and
B is equal to mink(A[i, k] × B[k, j]). This product is important as it is in truly subcubic time iff
APSP on node-weighted graphs is in truly subcubic time. Chan [9] used this relation to obtain the
first truly subcubic runtime for node-weighted APSP.

The negative triangle problem corresponding to the minimum edge witness product is again the
dominance triangle problem. Hence, by Theorem 1.1 we can conclude that a truly subcubic algorithm
for the dominance triangle problem (such as Matoušek’s algorithm for the dominance product) implies
truly subcubic node-weighted APSP. That is, we get an alternative subcubic algorithm for node-
weighted APSP as a byproduct, although it is a bit slower than the best known. To obtain his
algorithm for node-weighted APSP, Chan [9] gave a completely new algorithm for minimum edge
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witness product with exactly the same runtime as Matoušek’s dominance product algorithm.

(Min-≤). The (min,≤) structure is defined over R = Z ∪ {∞,−∞}, where the binary operation
≤ on input a, b returns b if a ≤ b and ∞ otherwise. The first author showed [27] that the (min,≤)
matrix product is in truly subcubic time iff the all pairs minimum non-decreasing paths problem (also
called earliest arrivals) is in truly subcubic time. The first truly subcubic runtime for the product,
O(n2+ω/3), was obtained by the present authors and R. Yuster [31]. The techniques of Duan and
Pettie [13] also imply an O(n(3+ω)/2) algorithm.

The negative triangle problem over (min,≤) is the following non-decreasing triangle problem:
given a tripartite graph with partitions I, J,K and real edge weights, find a triangle i ∈ I, j ∈ J, k ∈ K
such that w(i, k) ≤ w(k, j) ≤ w(i, j).

Both known algorithms for this problem follow from the algorithms for (min,≤)-product [31, 13]
and are somewhat involved. In Appendix D we give a simpler O(n3/2

√
T (n)) algorithm, where T (n)

is the best runtime for finding a triangle in an unweighted graph. If matrix multiplication is used,
the runtime is the same as in Duan-Pettie’s algorithm, O(n(3+ω)/2). Furthermore, the algorithm can
actually be applied O(log n) times to obtain another Õ(n(3+ω)/2) algorithm for the (min,≤)-product.

Theorem 3.3 If a triangle in an unweighted graph can be found in T (n) time, then a non-decreasing
triangle can be found in O(n3/2

√
T (n)) time, and (min,≤) product is in O(n3/2

√
T (n) log n) time.

Min-Max. The subtropical semiring (min,max) is defined over R = Z∪{∞,−∞}. The (min,max)
matrix product was used by the present authors and R. Yuster [31] to show that the all pairs
bottleneck paths problem is in truly subcubic time. The current best algorithm for the problem runs
in O(n(3+ω)/2) time by Duan and Pettie [13]. The (min,max) product is an important operation in
fuzzy logic, where it is known as the composition of relations ([14], pp.73).

The negative triangle problem over (min,max) is the following IJ-bounded triangle problem.
Given a tripartite graph with partitions I, J,K and real weights on the edges, find a triangle i ∈
I, j ∈ J, k ∈ K such that both w(i, k) ≤ w(i, j) and w(j, k) ≤ w(i, j), i.e. the largest triangle edge
is in I × J . We note that any algorithm for the non-decreasing triangle problem also solves the IJ-
bounded triangle problem: any IJ-bounded triangle appears as a non-decreasing triangle either in
the given graph, or in the graph with partitions J and K swapped. Hence a corollary to Theorem 3.3
is that an IJ-bounded triangle can be found in O(n3/2

√
T (n)) time, where T (n) is the runtime of a

triangle detection algorithm for unweighted graphs.

4 Conclusion

We have explored a new notion of reducibility which preserves truly subcubic runtimes. Our
main contributions are “truly subcubic reductions” from important function problems (such as all-
pairs paths and matrix products) to important decision problems (such as triangle detection and
product verification), showing that subcubic algorithms for the latter entail subcubic algorithms
for the former. Although there is some loss in the transformations (the subcubic runtimes are not
always the same), they are nevertheless compelling since (a) finding any subcubic improvement for
the matrix and path problems already seems quite hard, (b) when subcubic algorithms do exist for
one of these function problems, our reductions should simplify the search, and (c) we are relating
function problems to decision problems in an interesting way.
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The ideas in this paper can be extended to “truly subquadratic reductions” as well. For instance,
very similar techniques can be applied to show that the 3SUM problem has a truly subquadratic
algorithm if and only if the All-Numbers-3SUM problem does. In both problems, one is given a list
A of n integers each. In All-Numbers-3SUM one needs to return all integers c in A such that there
are a, b ∈ A with a + b + c = 0, and for 3SUM one merely has to detect whether one such c exists.
Moreover, our reductions extend even to function problems with nearly cubic output. In Appendix E
we show that triangle detection has a practical truly subcubic algorithm if and only if the problem
of listing up to n2.99 triangles from a graph has a practical truly subcubic algorithm.

We conclude with some interesting open questions arising from this work:

1. Does O(n3−δ) negative triangle detection imply O(n3−δ) matrix product (over any R)?
2. Is there a truly subcubic algorithm for negative triangle?
3. Is 3SUM “APSP-hard”? That is, would a truly subquadratic algorithm for 3SUM imply truly
subcubic APSP?
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A From detection to finding: Proof

Proof of Lemma 3.1. The algorithm is recursive: it proceeds by first splitting I, J and K
each into two roughly equal parts I1 and I2, J1 and J2, and K1 and K2. Then it runs the detection
algorithm on all 8 induced subinstances (Ii, Jj ,Kk), i, j, k ∈ {1, 2}. If none of these return ’yes’, then
there is no negative triangle in G. Otherwise, the algorithm recurses on exactly one subinstance on
which the detection algorithm returns ’yes’. The base case is when |I| = |J | = |K| = 1 and then one
just checks whether the three nodes form a triangle in O(1) time. The running time becomes

T ′(n) = 8T (n) + T ′(n/2), T ′(1) = 1.

Since T (n) = Ω(n) is non-decreasing, T (n) = nf(n) for some non-decreasing function f(n) and
T (n) = 2n2 f(n) ≥ 2n2 f(n/2) = 2T (n/2). Hence the recurrence above solves to T ′(n) = O(T (n)). 2

B Application to quantum Boolean matrix products: Results and
Proofs

Proof of Lemma 3.3. Let A and B be the given Boolean matrices. Consider a tripartite
graph with partitions I, J,K so that for i ∈ I, j ∈ J (i, j) is an edge iff A[i, j] = 1, for j ∈ J, k ∈ K,
(j, k) is an edge iff B[j, k] = 1 and (i, k) is an edge for all i ∈ I, k ∈ K. The graph does not need to
be created explicitly – whenever the algorithm has a query whether (a, b) is an edge in the graph, it
can just query A and B, and any output it has already produced. Then, in the output-sensitive part
of the proof of Lemma 3.2, we can just use T (n) = Õ(n1.3) given by the algorithm of [18]. Notice
that the condition of the lemma is satisfied for T (n) = Õ(n1.3). Hence we get an algorithm with
quantum complexity Õ(n1.3L1−1.3/3) = Õ(n1.3L17/30). 2

Theorem B.1 Let T (n) ≥ Ω(n) be a non-decreasing function. Suppose there is a T (n) time algo-
rithm for negative triangle over R in an n node graph. Then there is an algorithm that returns L
entries of the product over R of an m×n matrix by an n× p matrix in O(L ·T ((mnp/L)1/3)) time.

Proof. Following the ideas from our paper, a matrix product over R of an m× n by an n× p
matrix can be computed in

O((L+ (mnp)/a3) · T (a))

time, where a is a bucketting parameter. We set a = (mnp/L)1/3 and we get a runtime of O(L ·
T ((mnp/L)1/3)). 2

Below is the improvement of our output-sensitive algorithm for Boolean matrix products.

Theorem B.2 Let T (n) ≥ Ω(n) be a non-decreasing function. Let L ≥ n log n. Suppose there is a
T (n) time algorithm for triangle detection in an n node graph. Then there is a randomized algorithm
R running in time

Õ(n2 + L · T (n2/3/L1/6)),

so that R computes the product C of two given n× n matrices with high probability, provided that C
contains at most L nonzero entries. When T (n) = O(n∆) for some 2 ≤ ∆ ≤ 3 and when L ≥ n, the
runtime becomes Õ(n2∆/3L1−∆/6).

Proof. The algorithm uses ideas from a paper by Lingas [17]. Lingas showed how to reduce,
in O(n2 log n) time, computing the Boolean matrix product of two n × n matrices to computing
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O(log n) Boolean matrix products of a O(
√
L) × n by an n × O(

√
L) matrix and 2 Boolean matrix

products of a O(
√
L)× n by an n× n matrix.

Using Theorem B.1 we get an asymptotic runtime of

n2 log n+ log n · L · T (n1/3) + L · T (n2/3/L1/6).

Since T (n) is non-decreasing and since L ≤ n2, we get that T (n2/3/L1/6) ≥ T (n1/3) and hence we
can bound the runtime by O((n2 + L · T (n2/3/L1/6)) log n).

If T (n) = O(n∆) for some 2 ≤ ∆ ≤ 3 and L ≥ n we have L · (n2/3/L1/6)∆ ≥ n2. Hence the
runtime is just Õ(n2∆/3L1−∆/6). 2

C More equivalences: Proofs

Proof of Theorem 3.1. Clearly, undirected APSP is a special case of directed APSP. We
show that a truly subcubic algorithm for undirected APSP can be used to compute the (min,+)
product of two matrices in truly subcubic time, and hence directed APSP is in truly subcubic time.

Suppose that there is a truly subcubic algorithm P for undirected APSP. Let A and B be the
n× n matrices whose (min,+) product we want to compute. Suppose the entries of A and B are in
[−M,M ]5. Consider the edge-weighted undirected tripartite graph G with n-node partitions I, J,K
such that there are no edges between I and K, and for all i ∈ I, j ∈ J, k ∈ K, (i, j) and (j, k) are
edges with w(i, j) = A[i, j] + 6M and w(j, k) = B[j, k] + 6M . Using P , compute APSP in G.

Any path on at least 3 edges in G has weight at least 15M , and any path on at most 2 edges has
weight at most 2 × 7M < 15M . Hence P will find for every two nodes i ∈ I, k ∈ K, the shortest
path between i and k using exactly 2 edges, thus computing the (min,+) product of A and B. 2

Proof of Theorem 3.2. Given an instance D of the metricity problem, consider a complete
tripartite graph G on 3n nodes n nodes in each of the partitions I, J,K. For any i ∈ I, j ∈ J, k ∈ K,
define the edge weights to be w(i, j) = D[i, j], w(j, k) = D[j, k] and w(i, k) = −D[i, k]. A negative
triangle in G gives i ∈ I, j ∈ J, k ∈ K so that D[i, j] + D[j, k] −D[i, k] < 0, i.e. D[i, j] + D[j, k] <
D[i, k]. Hence D satisfies the triangle inequality iff there are no negative triangles in G. Checking
the other properties for a metric takes O(n2) time.

Let G be a given a graph with edge weights w : E → Z which is an instance of negative triangle so
that for all e ∈ E, w(e) ∈ [−M,M ] for some M > 0. Build a tripartite graph with n node partitions
I, J,K and edge weights w′(·) so that for any i ∈ I, j ∈ J, k ∈ K, w′(i, j) = 2M + w(i, j), w′(j, k) =
2M + w(j, k) and w′(i, k) = 4M − w(i, k). For all pairs of distinct nodes a, b so that a, b are in
the same partition, let w′(a, b) = 2M . Finally, let w′(x, x) = 0 for all x. Clearly, w′ satisfies all
requirements for a metric except possibly the triangle inequality. For any three vertices x, y, z in the
same partition w′(x, y) + w′(y, z) = 4M > 2M = w′(x, z). Consider triples x, y, z of vertices so that
x and y are in the same partition and z is in a different partition. We have: w′(x, z) + w′(z, y) ≥
M+M = 2M = w′(x, y) and w′(x, z)−w′(y, z) ≤ 2M = w′(x, y). Furthermore, if i ∈ I, j ∈ J, k ∈ K,
w′(i, k) + w′(k, j) ≥ M + 3M ≥ w(i, j) and w′(i, j) + w′(j, k) ≥ M + 3M ≥ w(i, k). Hence the only
possible triples which could violate the triangle inequality are triples with i ∈ I, j ∈ J, k ∈ K, and
w′ is not a metric iff there exist i ∈ I, j ∈ J, k ∈ K such that w′(i, j) + w′(j, k) < w′(i, k), i.e.
w(i, j) + w(j, k) + w(i, k) < 0 and i, j, k is a negative triangle in G. 2

5Infinite edge weights can be replaced with suitably large finite values, WLOG.
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D Non-decreasing triangle: Algorithm and Proof

Proof of Theorem 3.3. We are given a weighted tripartite graph with partitions I, J , K and
are looking for a triangle i ∈ I, j ∈ J, k ∈ K such that w(i, k) ≤ w(k, j) ≤ w(i, j).

Begin by sorting all the edges in the graph, breaking ties in the following way: edges from I × J
are considered bigger than edges from K × J of the same weight which are considered bigger than
edges from I × K of the same weight; within I × J or J × K or I × K equal edges are arranged
arbitrarily.

Let t be a parameter. For every vertex v in J or K, consider the sorted order of edges incident
to v and partition it into at most n/t buckets of t consecutive edges each and at most one bucket
with ≤ t; let Bvb denote the b-th bucket for node v. For each edge (x, v) such that v is in J or K and
(x, v) is in Bvb, go through all edges (v, y) in Bvb and check whether x, v, y forms a non-decreasing
triangle. This takes O(n2t) time.

Partition the edges of the graph by taking O(n/t) consecutive groups of ≤ nt edges in the sorted
order of all edges. Let Gg denote the g-th such group. For each g, consider all buckets Bvb of vertices
v in J or K such that there is some edge (v, x) ∈ Bvb ∩Gg. There can be at most 4n such buckets:
there are at most n+ nt/t = 2n buckets completely contained in Gg and at most 2n straddling Gg–
at most one per vertex per group boundary.

Create a tripartite graph Hg for each g as follows. Hg has partitions HI
g , H

J
g and HK

g . HI
g has a

node for each i ∈ I. For S ∈ {J,K} HS
g has a node for each node bucket Bvb such that Bvb ∩Gg 6= ∅

and v ∈ S. Therefore Hg has ≤ 9n nodes.

The edges of Hg are as follows. For all Bjb ∈ HJ
g and Bkb′ ∈ HK

g , (Bjb, Bkb′) is an edge if (j, k)
is an edge and it is in Bjb ∩ Bkb′ . For i ∈ HI

g and Bjb ∈ HJ
g , (i, Bjb) is an edge in Hg iff (i, j) ∈ E

and there is a bucket b′ < b such that (i, j) ∈ Bjb′ . For i ∈ HI
g and Bkb ∈ HK

g , (i, Bkb) is an edge in
Hg iff (i, k) ∈ E and there is a bucket b′ > b such that (i, k) ∈ Bkb′ .

Any triangle i, Bjb, Bk,b′ in Hg corresponds to a non-decreasing triangle i, j, k in G. If a non-
decreasing triangle i, j, k of G is not contained in any Hg, then for some b either both (i, j) and (j, k)
are in Bjb or both (i, k) and (j, k) are in Bkb, both cases of which are already handled.

The runtime becomesO(n2t+T (9n)·n/t). Setting t =
√
T (9n)/n we get a runtimeO(n3/2

√
T (9n)).

We note that T (n) ≤ O(n3) and hence there is some non-decreasing function f(n) such that
T (n) = n3/f(n). Hence T (9n) = 93n3/f(9n) ≤ 93T (n), and our runtime is O(n3/2

√
T (n)). 2

E Triangle Listing: Algorithm and Proof

Here we show that subcubic triangle detection implies subcubic triangle listing when the number
of triangles is subcubic.

Theorem E.1 Suppose there is a truly subcubic algorithm for negative triangle detection over R.
Then there is a truly subcubic algorithm which lists ∆ negative triangles over R in any graph with
at least ∆ negative triangles, for any ∆ = O(n3−δ), δ > 0.

Proof. Let P be an O(n3−ε logcM) algorithm for negative triangle over R for ε > 0. Let
∆ = O(n3−δ) for δ > 0. Given an 3n-node tripartite graph G = (I ∪ J ∪ K,E) with at least ∆
negative triangles over R we provide a procedure to list ∆ negative triangles.
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We partition the nodes in I, J,K into ∆1/3 parts, each of size O(n/∆1/3). For all ∆ triples
I ′ ⊂ I, J ′ ⊂ J,K ′ ⊂ K of parts, run P in O(∆(n/∆1/3)3−ε logcM) time overall to determine all
triples which contain negative triangles.

On the triples which contain negative triangles, we run a recursive procedure. Let I ′ ⊂ I, J ′ ⊂
J,K ′ ⊂ K be a triple which is reported to contain a negative triangle. Split I ′, J ′ and K ′ each into
two roughly equal halves. On each of the 8 possible triples of halves, run P and recurse on the triples
of halves which contain negative triangles, with the following provision. For each level i of recursion
(where i ranges from 0 to log n

∆1/3 ), we maintain a global counter ci of the number of recursive calls
that have been executed at that level. Once ci > ∆ then we do not recurse on any more triples at
recursion level i. Once a triple only contains 3 nodes, we output it if it forms a negative triangle.
Notice that all listed triangles are distinct.

Level i of the recursion examines triples which contain O
(

n
2i∆1/3

)
nodes. At each level i, at

most ∆ triples containing negative triangles are examined, due to the global counters. Therefore the
runtime at level i is at most O

(
∆ · ( n

2i∆1/3 )3−ε logcM
)

. Since ε < 3, the overall runtime becomes
asymptotically

∆
( n

∆1/3

)3−ε
logcM ·

∑
i

(
1

23−ε

)i
= O

(
∆ε/3n3−ε logcM

)
.

When ∆ ≤ O(n3−δ), the runtime is

O(n3−ε+3ε/3−δε/3 logcM) = O(n3−δε/3 logcM),

which is truly subcubic for any ε, δ > 0. 2

Corollary E.1 There is an algorithm that, given ∆ and a graph G on n nodes, lists up to ∆ triangles
from G in time O(∆1−ω/3nω) ≤ O(∆0.21n2.38).

Note when ∆ = n3, one recovers the obvious O(n3) algorithm for listing all triangles, and when
∆ = O(1), the runtime is the same as that of triangle detection.
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