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We derive improved upper bounds on the number of crossing-free
straight-edge spanning cycles (also known as Hamiltonian tours
and simple polygonizations) that can be embedded over any spe-
cific set of N points in the plane. More specifically, we bound the
ratio between the number of spanning cycles (or perfect match-
ings) that can be embedded over a point set and the number
of triangulations that can be embedded over it. The respective
bounds are O (1.8181N ) for cycles and O (1.1067N) for matchings.
These imply a new upper bound of O (54.543N) on the number of
crossing-free straight-edge spanning cycles that can be embedded
over any specific set of N points in the plane (improving upon the
previous best upper bound O (68.664N )). Our analysis is based on
a weighted variant of Kasteleyn’s linear algebra technique.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we consider the problem of bounding the number of all crossing-free straight-edge
spanning cycles that can be embedded over a specific set of points in the plane. That is, given a set S
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of N labeled points in the plane, we consider the number of spanning cycles that have a straight-edge
planar embedding over S . We rely on Kasteleyn’s linear-algebra technique [15], and on edge-flipping
techniques that were developed in a previous paper by the authors [8]. No familiarity with [8] is
necessary, since we re-introduce all the notions that we require from it. We now give a detailed and
more formal definition of the problem.

A planar graph is a graph that can be embedded in the plane in such a way that its vertices are
embedded as points and its edges are embedded as Jordan arcs that connect the respective pairs
of points and can meet only at a common endpoint. A crossing-free straight-edge graph is a plane
embedding of a planar graph such that its edges are embedded as non-crossing straight line segments.
In this paper, we only consider crossing-free straight-edge graphs, and we also assume that the points
of the vertex set S are in general position, that is, no three points are collinear. (For upper bounds on
the number of graphs, this involves no loss of generality, because the number of graphs can only grow
when a degenerate point set is slightly perturbed into general position.) For simplicity, we sometimes
refer to such graphs as plane graphs.

We focus on upper bounding the maximal number of plane spanning cycles (also known as Hamil-
tonian cycles, Hamiltonian tours, and simple polygonizations) that can be embedded over a fixed set of
points in the plane. For a set S of points in the plane, we denote by C(S) the set of all crossing-free
straight-edge spanning cycles of S , and put sc(S) := |C(S)|. Moreover, we let sc(N) = max|S|=N sc(S).
The main goal of this paper is thus to obtain improved upper bounds on sc(N).

There are many similar variants of this problem, such as bounding the number of plane forests,
spanning trees, triangulations, and general plane graphs. Recent work on some of these variants can
be found in [1,8,22], and we try to keep a comprehensive list of the up-to-date upper and lower
bounds in a dedicated webpage.1 It seems that the case of spanning cycles is the most popular one,
already considered in [2–6,17,24] and many other works. Moreover, spanning cycles were the first
case for which bounds were published, namely the bounds 3/20 · 10N/3 � sc(N) � 2 · 6N−2 · (�N/2�)!
in [17]. A brief history of the steady progress on bounding the number of spanning cycles can be
found in a dedicated webpage by Erik Demaine.2 Currently, the best known lower bound is sc(N) =
Ω(4.642N ), due to García, Noy, and Tejel [6], and the previous upper bound is sc(N) = O (68.664N )

by Dumitrescu et al. [5]. We derive the improved bound sc(N) = O (54.543N ).
These problems have also been studied from an algorithmic point of view, where the goal is to

derive algorithms for enumeration or counting of the plane graphs (or other graph types) that can
be embedded over a given point set (such as in [13,19]). The combinatorial upper bounds are useful
for analyzing the running times of such algorithms, and also answering questions such as “how many
bits are required to represent a triangulation (or any other kind of plane graphs)?”.

Our bound (as do some of the previous bounds) relies on triangulations. A triangulation of a set S
of N points in the plane is a maximal plane graph on S (that is, no additional straight edges can be
inserted without crossing some of the existing edges). For a set S of points in the plane, we denote by
T (S) the set of all triangulations of S , and put tr(S) := |T (S)|. Moreover, we let tr(N) = max|S|=N tr(S).
Currently, the best known bounds for tr(N) are tr(N) < 30N [22], and tr(N) = Ω(8.65N ) [5].

The upper bound by Dumitrescu et al. [5] is obtained by proving that for every set S of N points
in the plane sc(S) = O (2.2888N ) · tr(S). This has sharpened an earlier bound of Buchin et al. [4], who
showed that every triangulation T of S contains at most 30N/4 ≈ 2.3404N spanning cycles (i.e., cycles
whose edges belong to T ), implying3 that sc(S) < 2.3404N · tr(S). Combining the above ratio with the
bound tr(N) < 30N directly implies the asserted bound. We derive our bound in a similar manner,
showing that sc(S) = O (1.8181N ) · tr(S) = O (54.5430N ).

In spite of our improved bound, we strongly believe, and conjecture, that for every point set S (of
size at least N0, for some sufficiently large constant N0) one has sc(S) < tr(S), and perhaps even a
much sharper ratio holds. The best lower bound for this ratio that we know of is obtained from the
double chain configuration, presented in [6] (and depicted in Fig. 1). It is shown in [6] that when S is

1 http://www.cs.tau.ac.il/~sheffera/counting/PlaneGraphs.html (version of December 2012).
2 http://erikdemaine.org/polygonization/ (version of December 2012).
3 The implication comes from the fact that every spanning cycle, and in fact every plane graph, is contained in at least one

triangulation; see Section 2.
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Fig. 1. Two spanning cycles embedded over a double chain point configuration.

a double chain configuration with N vertices, tr(S) = Θ∗(8N ) and sc(S) = Ω∗(4.64N ).4 Thus, in this
case, sc(S)/tr(S) = Ω∗(0.58N ). (It is stated in [1], albeit without proof, that sc(S) = O (5.61N ), so this
example supports our conjecture.)

In Section 2 we go over the preliminaries required for our analysis. These include, among oth-
ers, the edge-flip techniques used in [8]. Section 3 derives the bound sc(S) = O (12N/4) · tr(S) =
O (1.8613N ) · tr(S) for any set S of N points in the plane. As part of this derivation, we describe
Kasteleyn’s technique for counting perfect matchings and present a new way of applying it. The more
advanced analysis, deriving the improved bound sc(S) = O (10.9247N/4) · tr(S) = O (1.8181N ) · tr(S),
is presented in Section 5. In Section 4 we use the same methods to prove an upper bound on the
ratio between the number of plane perfect matchings and the number of triangulations, showing that
pm(S) = O (1.1067N ) · tr(S) (where pm(S) is the number of crossing-free straight-edge matchings that
can be embedded over the point set S).

While this paper constitutes a significant improvement over previous bounds, it is only one step-
ping stone towards the goal of establishing a sharp bound on sc(N), or of at least showing that
sc(N) < tr(N), as conjectured above. The interest in this paper, in our opinion, is in the technique
that it employs, where it combines recent results on edge flippability in triangulations [8] with the
beautiful (and fairly old) technique of Kasteleyn [15,16] that applies tools from linear algebra to derive
upper bounds on the number of perfect matchings in planar graphs. Kasteleyn’s technique has already
been used recently in [4] for deriving bounds on sc(N), but the application in this paper is different,
as it handles edge-weighted planar graphs. Instead of bounding the number of perfect matchings,
it bounds the sum of their weights, where the weight of a matching is the product of the weights
of its edges. This enhanced version allows us to “push” the technique much further and obtain our
improved bounds. We hope that this enhanced tool will lead to further results in this area.

2. Preliminaries

In this section we establish some notations and lemmas that are required for the following sec-
tions.

Given two plane graphs G and H over the same point set S , if every edge of G is also an edge
of H , we write G ⊆ H .

Hull edges and vertices (resp., interior edges and vertices) of a graph embedded on a point set S
are those that are part of the boundary of the convex hull of S (resp., not part of the convex hull
boundary).

Given a set S of N points in the plane, we denote by h the number of hull vertices of S , and put
n = N − h, which is the number of interior vertices of S .

2.1. The support of a graph

Let us denote by sc�(N) the maximal number of plane spanning cycles that can be contained in
any fixed triangulation of a set of N points in the plane. Moreover, denote the set of spanning cycles
contained in a triangulation T by C(T ), so sc�(N) = max|S|=N, T ∈T (S) |C(T )|.

4 In the notations O ∗( ), Θ∗( ), and Ω∗( ), we neglect polynomial factors.
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Fig. 2. A spanning cycle with a support of 5 that contributes 1 to the sum in (1).

Fig. 3. (a) The edge ce can be flipped to the edge ad. (b) A set of three (dashed) ps-flippable edges which are diagonals of
interior-disjoint convex quadrilateral and convex pentagon. (c) A convex decomposition with four bounded cells obtained by
removing the dashed edges from the triangulation; here too the dashed edges are diagonals of pairwise disjoint convex faces,
and form a set of ps-flippable edges.

Any spanning cycle (or, for that matter, any plane graph) is contained in at least one triangulation.
Therefore, we can upper bound the number of spanning cycles of a set S of N points in the plane
by going over every triangulation T ∈ T (S) and counting the number of spanning cycles contained
in T . This implies the bound sc(N) � tr(N) · sc�(N). Applying the bounds tr(N) < 30N from [22] and
sc�(N) � 30N/4 from [4], we obtain sc(N) < 305N/4 ≈ 70.21N .

This bounding method seems rather weak since it potentially counts some spanning cycles many
times. For example, consider a spanning cycle of the double-chain configuration consisting of two
convex chains facing each other, as depicted in the left-hand side of Fig. 1. García, Noy, and Tejel [6]
show that such a spanning cycle is contained in Θ∗(8N ) triangulations of its point set. Therefore, the
above method will count this spanning cycle Θ∗(8N ) times. In this case the above analysis method
will be grossly over-counting because, as stated in [1], this point set has only O (5.61N ) spanning
cycles.

In order to deal with this inefficiency, we define the notion of support (the same notion was also
used in [5,8,22,23,25]). Given a plane graph G embedded over a set S of points in the plane, we say
that G has a support of x if G is contained in (exactly) x triangulations of S; we write supp(G) = x.
Notice that

sc(S) =
∑

T ∈T (S)

∑
C∈C(T )

1

supp(C)
, (1)

because every spanning cycle C contributes exactly one to the right-hand side of the equation (it ap-
pears in supp(C) terms of the first sum, and contributes 1/supp(C) in every appearance); an example
is depicted in Fig. 2. We will use (1) to obtain better upper bounds for sc(N), by showing that, on
average, supp(C) is large.

2.2. Ps-flippable edges

An edge in a triangulation is said to be flippable, if its two incident triangles form a convex quadri-
lateral. A flippable edge can be flipped, that is, removed from the graph of the triangulation and
replaced by the other diagonal of the resulting quadrilateral. Such an operation is depicted in Fig. 3(a),
where the edge ce can be flipped to the edge ad.

In [8], we present the concept of pseudo simultaneously flippable edges (or ps-flippable edges, for
short). Given a triangulation T , we say that a subset F of its edges is a set of ps-flippable edges if the
edges of F are diagonals of interior-disjoint convex polygons (whose boundaries are also parts of T ).
For example, in Fig. 3(b), the three dashed edges form a set of ps-flippable edges, since they are
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Fig. 4. (a) A vertex is valid if and only if it is not a reflex vertex of any face. (b) In a point set of an even size, every spanning
cycle is the union of two edge-disjoint perfect matchings.

diagonals of interior-disjoint convex quadrilateral and convex pentagon (another set of ps-flippable
edges, in a different triangulation, is depicted in Fig. 3(c)).

Ps-flippable edges are related to convex decompositions. A convex decomposition of a point set S
is a crossing-free straight-edge graph D on S such that (i) D includes all the hull edges, (ii) each
bounded face of D is a convex polygon, and (iii) no point of S is isolated in D . See Fig. 3(c) for an
illustration. For additional information about convex decompositions, see, for example, [10,20]. Notice
that if T is a triangulation that contains D , the edges of T \ D form a set of ps-flippable edges, since
they are the diagonals of the interior-disjoint convex polygons of D (again, consider the dashed edges
in Fig. 3(c) for an illustration). Thus, finding a large set of ps-flippable edges in a triangulation T is
equivalent to finding a convex decomposition with a small number of faces (or edges) in T (though
the bounds in [10,20] are not directly related to the bounds stated below).

The two following lemmas are proven in [8].

Lemma 2.1. Every triangulation T over a set of N points in the plane contains a set F of N/2 − 2 ps-flippable
edges. Also, there are triangulations with no larger sets of ps-flippable edges.

Lemma 2.2. Consider a triangulation T , a set F of N/2 − 2 ps-flippable edges in T , and a graph G ⊆ T . If G
does not contain j edges from F then supp(G) � 2 j .

Proof sketch. Consider the set F ′ = F \ G of j ps-flippable edges (every subset of a set of ps-flippable
edges is also a set of ps-flippable edges). The convex faces of T \ F ′ can be triangulated in at least
2 j ways (the actual number, which is a product of Catalan numbers [26, Section 5.3], attains this
minimum when every edge of F ′ is a diagonal of a distinct quadrangular face of T \ F ′), and each of
the resulting triangulations contains G . See [8] for more details. �

We now describe another property of convex decompositions (not discussed in [8]). Consider a
set S of points in the plane and a crossing-free straight-edge graph G embedded on S . We say that
an interior point p ∈ S has a valid triple of edges in G if there exist three points a,b, c ∈ S such that p
is contained in the convex hull of {a,b, c} and the edges ap, bp, and cp belong to G . For simplicity,
we refer to vertices with valid triples as valid (with respect to G), and to the other interior vertices
as non-valid. See Fig. 4(a) for an illustration.

Lemma 2.3. Let S be a set of points in the plane and let G be a crossing-free straight-edge graph over S that
contains all the edges of the convex hull of S. Then G is a convex decomposition of S if and only if every interior
vertex of S is valid with respect to G.

Proof. An interior vertex v is a reflex vertex of some face of G if and only if v is non-valid (see
Fig. 4(a)). The lemma follows by observing that G is a convex decomposition if and only if no bounded
face of G has a reflex vertex. �
2.3. Spanning cycles and perfect matchings

Our analysis, as most of the previous works dealing with the number of spanning cycles, heavily
relies on the number of plane perfect matchings on S (for example, see [4,5,24]). To see the connec-
tion between the two problems, notice that if |S| is even, every spanning cycle C is the union of two
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Fig. 5. (a) We can always connect a new vertex p outside the convex hull of S to two endpoints of some edge of the spanning
cycle. (b) The set {e, e1, e2} is a valid triple of edges.

edge-disjoint perfect matchings on S; namely, the matching consisting of the even-indexed edges of C ,
and the matching consisting of the odd-indexed edges. An illustration of this property is depicted in
Fig. 4(b). Denote by M(S) the set of all plane perfect matchings on S , and put pm(S) = |M(S)|. We
also set pm(N) = max|S|=N pm(S). Hence, a simple upper bound on sc(S) is pm(S)2. In general, the
union of two edge-disjoint perfect matchings is not always a spanning cycle, but it is a cover of S by
vertex-disjoint even-sized cycles.

To deal with point sets of odd size, we use the following lemma:

Lemma 2.4. Let c > 1 be a constant such that every set S of an even number of points in the plane satisfies
sc(S) = O (c|S|). Then sc(S) = O (c|S|) also holds for sets S of an odd number of points.

Proof. Consider a set S of N points in the plane, where N is odd. Pick a new point p outside the
convex hull of S , and put S ′ = S ∪ {p}. Let C be a plane spanning cycle of S . Then there exists an
edge e = vu of C such that p can be connected to the two endpoints u, v of e without crossing C
(e.g., see Fig. 5(a)). Indeed, this is a variant of the property, noted in [7], that every finite collection
of non-crossing straight segments in the plane contains a segment e such that no other segment lies
vertically above any point of e (see also [18, Section 8.7]). By replacing e with the edges vp and
pu, we obtain a crossing-free spanning cycle of S ′ . This implies that we can map every spanning
cycle of S to a distinct spanning cycle of S ′ , and thus, sc(S) � sc(S ′). The lemma then follows since
sc(S ′) = O (cN+1) = O (cN ). �

Bounding the number of perfect matchings on S within a fixed triangulation T can be done by
the beautiful linear-algebra technique of Kasteleyn [15], described in detail in [16, Section 8.3]; see
Section 3 for more details. Buchin et al. [4] have used this technique to show that any triangulation T
of S contains at most 6N/4 perfect matchings, and at most 30N/4 ≈ 2.3403N spanning cycles. We also
note that Sharir and Welzl [24] showed that pm(S) = O (10.05N ), completely bypassing the approach
of counting matchings (or other graphs) within a triangulation. While this bound is fairly small, it
does not seem to be useful for obtaining a good bound on sc(N). For example, using the inequality
sc(N) � pm(N)2, noted above, only gives the rather weak bound sc(N) = O (101.01N ).

2.4. Kasteleyn’s technique

We now present a brief overview of Kasteleyn’s technique. While Kasteleyn originally developed
it to study physical phenomena (such as dimers in a square lattice [14]), his methods are also useful
when studying perfect matchings in general graphs.

Given an oriented graph5 
G = (V , E) with no anti-parallel edges (i.e., edges between the same pair
of vertices but in opposite directions), we define the following adjacency matrix B 
G = (bij)N×N of 
G ,

5 We follow here the notation used in [16] to denote a digraph obtained from an underlying undirected graph by giving each
of its edges an orientation.
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bij =
{1, if e = (i, j) ∈ E,

−1, if e = ( j, i) ∈ E,

0, otherwise

(where N = |V |, and the rows and columns of B 
G correspond to an arbitrary fixed enumeration of
the vertices). Further details and a proof of the following theorem can be found in [16, Chapter 8].

Theorem 2.5 (Kasteleyn’s theorem). Let G be a planar graph. Then there exists an orientation 
G of G such that
the number of perfect matchings of G is

√|det B 
G |.

3. An upper bound on the number of spanning cycles

In this section we first review an enhanced variant of Kasteleyn’s technique and then use it to
derive the following upper bound on sc(S).

Theorem 3.1. For any set S of N points in the plane,

sc(S) = O
(
12N/4) · tr(S) = O

(
1.8613N) · tr(S) = O

(
55.839N)

.

This bound is slightly weaker than the one stated in the introduction, but its proof is considerably
simpler; the improved bound is derived in Section 5.

Proof of Theorem 3.1. First, by Lemma 2.4, we may assume that N is even. Consider a triangulation T
of S . As already observed, every spanning cycle contained in T is the union of two edge-disjoint
perfect matchings of T . Given a plane graph G , we denote by M(G) the set of all perfect matchings
of G . Recalling (1), we have

sc(S) �
∑

T ∈T (S)

∑
M1,M2∈M(T )

M1,M2 edge-disjoint

1

supp(M1 ∪ M2)
.

(The inequality comes from the fact that not every pair M1, M2 of matchings, as in the sum, neces-
sarily yields a spanning cycle.) Let us fix the “first” perfect matching M1 ⊂ T ; as mentioned above,
Buchin et al. [4] prove that |M(T )| � 6N/4, so there are at most 6N/4 choices of M1. Next, we con-
struct a convex decomposition D such that M1 ⊂ D ⊂ T , as follows. We start with M1 and add all the
missing hull edges; let us denote the resulting graph as D ′ . By Lemma 2.3, it suffices to add edges
to D ′ so as to ensure that every interior point p ∈ S is connected in D to (at least) three points
a,b, c ∈ S , such that p is inside the convex hull of {a,b, c}. Every interior vertex p of S has degree 1
in D ′ , so we start by setting D := D ′ , and then, for each interior point p ∈ S , we add to D two ad-
ditional edges of T incident to p, so as to create a valid triple. To do so, let e be the edge of D ′
(that is, of M1) incident to p, and let λ be the ray emanating from p in the opposite direction. Let
e1 (resp., e2) be the first edge of T incident to p encountered in clockwise (resp., counterclockwise)
direction from λ; see Fig. 5(b). Then, as is easily checked, {e, e1, e2} is a valid triple of edges, and we
add e1, e2 to D . After applying this step to each interior point p, the resulting graph D is indeed a
convex decomposition of S .

We denote by F the set of edges that are in T but not in D . The edges of F are diagonals of
interior-disjoint convex polygons, and thus F is a set of ps-flippable edges. By Euler’s formula, the
triangulation T contains 3N − 2h − 3 interior edges, and D contains at most 2n + N/2 interior edges
(at most N/2 edges of M1 and at most 2n added edges to form n valid triples). Therefore,

|F | � 3N − 2h − 3 − (2n + N/2) = N/2 − 3.

Remark. Note the strength of this bound: Lemma 2.1 has a rather involved proof, given in [8], and
it yields a set of N/2 − 2 ps-flippable edges in the entire triangulation. In contrast, here we get the
same number (minus 1) after we remove from T an arbitrary perfect matching, with a considerably
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simpler analysis. Thus the significance of the analysis in [8] (giving the proof of Lemma 2.1) is only
for triangulations which contain no perfect matching on S . For example, any triangulation with more
than N/2 interior vertices of degree 3 cannot contain a perfect matching, since, as is easily checked,
two interior vertices of degree 3 cannot share an edge.

Without loss of generality, we assume that F consists of exactly N/2 − 3 edges. We now proceed
to bound the number of ways to choose the second matching M2 while taking the supports of the
resulting graphs M1 ∪ M2 into account. Since M1 and M2 have to be edge-disjoint, we can remove
the N/2 edges of M1 from T , and remain with a subgraph T ′ that has fewer than 5N/2 edges.
Next, we define a weight function μ over the edges of T ′ , such that every edge in F has a weight
of 1 and the remaining edges have weight 1/2. We define the weight μ(M2) of a perfect matching
M2 ⊂ T ′ as the product of the weights of its edges. Therefore, if M2 contains exactly j edges of F ,
then μ(M2) = (1/2)N/2− j . Moreover, for such a matching M2, we have |F \ M2| = N/2 − 3 − j. Clearly,
F \ M2 is also a set of ps-flippable edges, none of which belongs to M1 ∪ M2. By combining this with
Lemma 2.2, we have

1

supp(M1 ∪ M2)
� 1

2N/2−3− j
= 8μ(M2),

which implies that, given a specific triangulation T and a specific perfect matching M1 ⊂ T ,∑
M2∈M(T ′)

1

supp(M1 ∪ M2)
� 8

∑
M2∈M(T ′)

μ(M2), (2)

with T ′ = T \ M1, as above.

Kasteleyn’s technique: An enhanced version. We now apply an extension of Kasteleyn’s technique to
estimate the sum in the right-hand side of (2). Here is a brief overview of the technique being used
(where instead of the original technique, presented in Section 2.4, we apply a weighted extension of
it). Given an oriented graph 
G = (V , E) with no anti-parallel edges and a weight function μ over the
edges, we define the following weighted adjacency matrix B 
G,μ = (bij)N×N of (
G,μ),

bij =
{

μ(e), if e = (i, j) ∈ E,

−μ(e), if e = ( j, i) ∈ E,

0, otherwise

(where N = |V |, and the rows and columns of B 
G,μ correspond to an arbitrary fixed enumeration of
the vertices).

An easy extension of Kasteleyn’s theorem states that every planar graph G can be oriented into
some digraph 
G such that, for any real-valued weight function μ on its edges, we have( ∑

M∈M(G)

μ(M)

)2

= ∣∣det(B 
G,μ)
∣∣ (3)

(recall that μ(M) = ∏
e∈M μ(e)). Recall that in the “pure” form of Kasteleyn’s theorem μ ≡ 1 (i.e., G is

unweighted) and the left-hand side of (3) is just the squared number of perfect matchings in G . The
extension (3) to weighted graphs is given as Exercise 8.3.9 in [16, Section 8.3].

We denote by bi the column vectors of B , for 1 � i � N , and estimate the above determinant using
Hadamard’s inequality (e.g., see [9, Theorem 2.5.4])

∣∣det(B 
G,μ)
∣∣ � N∏

i=1

‖bi‖2. (4)

Applying the above machinery to our plane graph T ′ (i.e., using (3) and (4)), with the edge weights μ
as defined above, we have
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∑
M2∈M(T ′)

μ(M2) =
√∣∣det(B 
T ′,μ)

∣∣ �
√√√√ N∏

i=1

‖bi‖2 =
(

N∏
i=1

‖bi‖2
2

)1/4

�
(

1

N

N∑
i=1

‖bi‖2
2

)N/4

=
(

2

N

∑
e∈T ′

μ(e)2
)N/4

(5)

(where we have used the arithmetic–geometric mean inequality and the fact that every edge of 
T ′
has two corresponding matrix entries). The bound 6N/4 on the number of perfect matchings in a
triangulation T is obtained in [4] by applying the unweighted version of Kasteleyn’s theorem to the
entire T . In this case

∑
e∈T μ(e)2 is the number of edges of T , which is at most 3N , and the bound

follows.
By noting that∣∣T ′ \ F

∣∣� 5N/2 − (N/2 − 3) = 2N + 3,

and combining this with (2) and (5), we obtain

∑
M2∈M(T ′)

1

supp(M1 ∪ M2)
� 8 ·

(
2

N

∑
e∈T ′

μ(e)2
)N/4

� 8 ·
(

2

N
·
(

12 · (N/2 − 3) +
(

1

2

)2

· (2N + 3)

))N/4

= O
(
2N/4). (6)

Recalling once again that a triangulation contains at most 6N/4 perfect matchings [4] (that is, there
are 6N/4 ways of choosing M1), and combining this with (6), we obtain

sc(S) �
∑

T ∈T (S)

∑
M1,M2∈M(T )

M1,M2 edge-disjoint

1

supp(M1 ∪ M2)
�

∑
T ∈T (S)

6N/4 · O
(
2N/4)

= O
(
12N/4) · tr(S),

as asserted. �
As already noted, by applying a more complex analysis, we will obtain in Section 5 a slightly better

bound.

4. Perfect matchings and triangulations

In this section we apply the approach of the previous section to derive an upper bound on the
ratio between the number of plane perfect matchings and the number of triangulations. As already
mentioned in Section 2, Kasteleyn’s technique implies that a triangulation of a set of N points can
contain at most 6N/4 perfect matchings (see [4]). This implies that for every set S of N points in the
plane, pm(S) � 6N/4 · tr(S) ≈ 1.5651N · tr(S). We will improve this bound, using lower bounds on the
supports of perfect matchings, in a manner similar to that in Section 3.

Before proceeding, we note the following lower bound on the ratio pm(S)/tr(S). Let S be a double
circle configuration, depicted in Fig. 6, consisting of N points (see [11] for a precise definition). An
inclusion–exclusion argument implies that tr(S) = 12N/2 ≈ 3.464N (see [11,21]). On the other hand,
Aichholzer et al. [1] proved that pm(S) = Θ∗(2.2N ). Therefore, in this case, pm(S)/tr(S) ≈ Θ∗(0.635N ).

We now present an improved upper bound for this ratio.

Theorem 4.1. For any set S of N points in the plane,

pm(S)� 8 · (3/2)N/4 · tr(S) = O
(
1.1067N) · tr(S).
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Fig. 6. A set of 12 points in a double circle configuration.

Proof. The exact value of pm(S) is

pm(S) =
∑

T ∈T (S)

∑
M∈M(T )

1

supp(M)
. (7)

Consider a triangulation T ∈ T (S) and a perfect matching M ⊆ T . As shown in the proof of The-
orem 3.1, there exists a set of N/2 − 3 ps-flippable edges in T \ M . Therefore, by Lemma 2.2, the
support of M is at least 2N/2−3. Combining this with (7) implies

pm(S) �
∑

T ∈T (S)

∑
M∈M(T )

1

2N/2−3
�

∑
T ∈T (S)

6N/4

2N/2−3
= 8 · (3/2)N/4 · tr(S). �

Combining Theorem 4.1 with the bound tr(N) < 30N from [22] implies pm(N) = O (33.201N ). As
already mentioned above, this does not imply a new bound on pm(N), since Sharir and Welzl [24]
showed that pm(N) = O (10.05N ), bypassing the approach of counting matchings within a triangula-
tion. We are not aware of any construction for which pm(S) � tr(S), and offer the conjecture that
there exists a constant c < 1 such that pm(S) = O (c|S| · tr(S)) for every finite set S of points in the
plane. (See also the conjecture concerning spanning cycles made in the introduction, which is proba-
bly stronger than this conjecture.)

5. An improved bound

In this section we present a more complex analysis for the number of spanning cycles, obtaining a
slightly better bound than the one presented in Section 3. The analysis has three parts, each presented
in a separate subsection.

Let us denote the number of interior vertices of degree 3 in the triangulation T as v3(T ), and the
number of flippable edges in T as flip(T ). In Section 5.1 we give an upper bound for

∑
C∈C(T )

1
supp(C)

that depends on v3(T ). In Section 5.2 we give an alternative upper bound that depends on flip(T ).
Finally, in Section 5.3 we combine these two bounds to obtain

sc(N) = O
(
1.8181N) · tr(N) = O

(
54.543N)

.

5.1. A v3(T )-sensitive bound

In this subsection we derive the following bound, which is a function of N and v3(T ).

Lemma 5.1. Let T be a triangulation over a set S of N � 6 points in the plane, such that N is even and S has a
triangular convex hull; also, let v3(T ) = tN. Then

∑
C∈C(T )

1

supp(C)
< 8

(
3

2t

(
(2 − t)(2 − t/2)

(1 − t)2

)1−t)N/4

.

Proof. As before, we treat every spanning cycle as the union of two edge-disjoint perfect matchings
M1, M2 ∈ M(T ). We start by bounding the number of ways to choose the first perfect matching M1.
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For this, we use the standard variant of Kasteleyn’s technique, with the weight function μ ≡ 1 (i.e.,
the underlying graph G is unweighted).

Recall the inequality
∑

M∈M(T ) μ(M) � (
∏N

i=1 ‖bi‖2
2)

1/4 obtained in Eq. (5), where the bi ’s (for 1 �
i � N) are the column vectors of the (signed) adjacency matrix of the oriented graph 
T . Substituting
μ ≡ 1, the left-hand side becomes the number of perfect matchings in T , and the squared l2-norm
of each column vector is the degree of the vertex corresponding to that column. Since every column
that corresponds to a vertex of degree 3 has a squared norm of 3, the product of the squared norms
of these columns is 3v3(T ) = 3tN .

For the remaining N − v3(T ) columns, we use, as in Section 3, the arithmetic–geometric mean
inequality to bound the product of their squared norms (as in Eq. (5)). This yields the bound(

X

N − v3(T )

)(N−v3(T ))/4

=
(

X

N(1 − t)

)(N(1−t))/4

, (8)

where X is the sum of the degrees of all vertices other than those counted in v3(T ). The sum of the
degrees over the vertices of any specific triangulation is smaller than 6N , and the sum of the degrees
of the interior degree-3 vertices in T is 3v3(T ). Therefore, we have

X < 6N − 3v3(T ) = 3N(2 − t). (9)

Combining (8), (9), and the product of the squared norms that correspond to interior vertices of
degree 3, implies that the number of ways to choose M1 is less than(

3t ·
(

3N(2 − t)

N(1 − t)

)1−t)N/4

=
(

3 ·
(

2 − t

1 − t

)1−t)N/4

. (10)

Next, let us fix a specific perfect matching M1 ∈ M(T ). As shown at the beginning of the proof of
Theorem 3.1, there exists a set F of N/2 − 3 ps-flippable edges in T , none of which belongs to M1.

We continue as in the proof of Theorem 3.1, by assigning a weight of 1 to the edges of F and
a weight of 1/2 to the rest of the edges of T \ M1, recalling (2), and then applying (the weighted)
Kasteleyn’s technique to obtain the bound

∑
M2∈M(T ′)

1

supp(M1 ∪ M2)
� 8

∑
M2∈M(T \M1)

μ(M2) � 8

(
N∏

i=1

∥∥b′
i

∥∥2
2

)1/4

,

where b′
i are the column vectors of the oriented weighted adjacency matrix of T \ M1.

An interior vertex v of degree 3 in T has only two edges adjacent to it in T \ M1, both not in F
(since an edge adjacent to an interior vertex of degree 3 cannot be flippable). Therefore, the squared
norm of a matrix column that corresponds to such a vertex is (1/2)2 + (1/2)2 = 1/2, and the product
of the squared norms of all such columns is 1/2v3(T ) = 1/2tN .

For the remaining N − v3(T ) columns, we may once again use the arithmetic–geometric mean
inequality to obtain a bound similar to the one in (8). Namely(

Y

N(1 − t)

)(N(1−t))/4

, where Y =
∑∥∥b′

i

∥∥2
2,

and the sum is over the N − v3(T ) vertices of T \ M1 which are not of degree 3 in T . Each such
vertex contributes to Y the sum of the squared weights of its incident edges. The estimate for Y will
therefore be different, since (i) some of the edges of T were removed, and (ii) the weight function μ
is not identically 1. The edges of F have remained and still have a weight of 1 each, so they contribute
at most 2 · (N/2 − 3) · 1 < N to Y . Every other edge contributes 2 · 1/4 = 1/2 if it is not incident to
an interior vertex of degree 3 in T , and 1/4 otherwise. Since a triangulation has fewer than 3N − 3
edges, there are fewer than 2N edges in T \ {F ∪ M1}, and we get

Y < N + (
2N − 2v3(T )

) · 1

2
+ 2v3(T ) · 1

4
= 2N − v3(T )

2
= N(2 − t/2).

By combining this with the rest of the squared norms and with the present version of (8), we have
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Fig. 7. (a) The shaded faces are the two ears of the triangulated polygon. (b) A polygon with three flippable diagonals, two of
which form a ps-flippable set, and with 5 = 22(5/4)1 triangulations.

∑
M2∈M(T \M1)

1

supp(M1 ∪ M2)
< 8

(
1

2t
·
(

N(2 − t/2)

N(1 − t)

)1−t)N/4

= 8

(
1

2t
·
(

2 − t/2

1 − t

)1−t)N/4

. (11)

Finally, to complete the proof, we combine (10) and (11), and obtain∑
C∈C(T )

1

supp(C)
�

∑
M1,M2∈M(T )

M1,M2 edge-disjoint

1

supp(M1 ∪ M2)

<

(
3 ·

(
2 − t

1 − t

)1−t)N/4

· 8

(
1

2t
·
(

2 − t/2

1 − t

)1−t)N/4

= 8

(
3

2t

(
(2 − t)(2 − t/2)

(1 − t)2

)1−t)N/4

. �
Remark. Notice that in the worst case (i.e., when t = 0) we obtain the same asymptotic value as
in our initial bound of 12N/4. Similarly, the bound in (10) becomes 6N/4 when t = 0, as in Buchin
et al. [4].

5.2. A flip(T )-sensitive bound

Hurtado, Noy, and Urrutia [12] proved that flip(T ) � N/2 − 2, and that this bound is tight in the
worst case (the upper bound is also implied by Lemma 2.1; see also [8]). In this subsection we obtain
a bound on

∑
C∈C(T )

1
supp(C)

as a function of flip(T ), which improves our initial bound of 12N/4 when
flip(T ) is larger than N/2 by some positive fraction of N .

We start by mentioning two basic properties of triangulated simple (not necessarily convex) poly-
gons.

Ears. Given a triangulated polygon P , an ear of P is a bounded face of the triangulation with two of
its edges on the boundary of P . It can easily be shown that every triangulated simple polygon with
at least four edges contains at least two ears (whose boundary edges are all distinct). For example,
the two ears of the triangulated polygon in Fig. 7(a) are shown shaded.

Catalan numbers. The N-th Catalan number is CN = 1
N+1

(2N
N

)
. It is well known that a convex poly-

gon with N vertices has CN−2 triangulations (e.g., see [26, Section 5.3]). Therefore, the number of
triangulations of a convex polygon with d � 1 diagonals is

Cd+1 = 1

d + 2

(
2d + 2

d + 1

)
� 2d

(
5

4

)d−1

(12)

(the inequality can be easily verified by induction). Note that equality holds for d = 1 and d = 2.
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Fig. 8. (a) Removing the two (shaded) triangles incident to e′ produces at most four triangulated sub-polygons. (b) A spanning
cycle partitions the convex hull of the point set into interior-disjoint polygons.

We define cgon as the maximum real number satisfying the following property. Every simple poly-
gon P that has a triangulation T P with k of its diagonals flippable and with l � k of these diagonals
forming a ps-flippable set, has at least 2lck−l

gon triangulations. Notice that the triangulations under con-
sideration, including T P , are triangulations of the polygon P , and not of its vertex set. Note also that
we can have the equality l = k only when P is convex.

Lemma 5.2. Let α ≈ 1.17965 be the unique real root of the polynomial 1 + 4x2 − 4x3 . Then α � cgon � 5/4.
That is, the left inequality means that every simple polygon P that has a triangulation T P with k of its diagonals
flippable and with l � k of these diagonals forming a ps-flippable set, has at least 2lαk−l triangulations.

Proof. Fig. 7(b) depicts a polygon that implies the upper bound.
We prove the lower bound by induction on l and k. For the base case of this induction, notice that

when l = k, P has at least Ck+1 � 2k = 2lαk−l triangulations.
Next, consider a polygon P and a triangulation T P of P , such that T P contains a maximal set F

of l ps-flippable edges, and k − l > 0 flippable edges not in F . Let f1, f2, . . . , f j be the non-triangular
faces of the convex subdivision T P \ F . (Notice that T P \ F is a convex subdivision of a polygon, and
not of the convex hull of a point set.) Each f i is a convex polygon with mi � 4 sides and mi − 3
diagonals, and thus, l = ∑ j

i=1(mi − 3).
A flippable edge not in F must be on the boundary of some f i , since otherwise F is not maximal.

We say that such a flippable edge e /∈ F is covered by a face fi if (i) e is on the boundary of f i , and
(ii) the triangle � in T P that is contained in f i and incident to e has two edges in F (so e is the
only edge of � on the boundary of f i ). Ears are incident to two edges of their containing f i , and
thus, edges of an ear cannot be covered by the face of the ear. Since any triangulated non-triangular
polygon contains at least two ears, with four distinct boundary edges, a polygon with m � 4 sides (and
m − 3 diagonals) can cover at most m − 4 edges. Therefore, if all flippable edges not in F are covered,
then k − l �

∑ j
i=1(mi − 4). By multiplying the number of triangulations of the f i ’s and applying (12),

we get that the number of triangulations of P that contain T P \ F is at least

j∏
i=1

2mi−3
(

5

4

)mi−4

= 2
∑ j

i=1(mi−3)

(
5

4

)∑ j
i=1(mi−4)

� 2l
(

5

4

)k−l

� 2lαk−l.

We are left with the case where there is a flippable edge e /∈ F that is not covered by any f i . Let
e′ be the edge obtained by flipping e. We now derive a lower bound on the number of triangulations
of P that contain e and on the number of triangulations of P that contain e′ . To bound the number
of triangulations that contain e, we partition P into two interior disjoint simple polygons P ′, P ′′ by
“cutting” P at e. More precisely, we consider the two triangulated polygons T P ′ , T P ′′ ⊂ T P . Together,
these two triangulated polygons contain k − 1 diagonals that are flippable. Moreover, the set F re-
mains a set of a total of l ps-flippable edges, some being diagonals of P ′ and some of P ′′ . Thus, the
induction hypothesis implies that there are at least 2lαk−1−l triangulations of P that contain e. To
obtain a similar bound for the number of triangulations containing e′ , we produce at most four trian-
gulated sub-polygons of T P by removing the two triangles incident to e (whose union forms the same
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quadrilateral as the union of the two triangles incident to e′ in the new triangulation). Such a case is
illustrated in Fig. 8(a), where the triangles incident to e′ are shaded. This partitioning may cancel the
flippability of at most five edges (those incident to the two triangles adjacent to e). At most two out
of the five edges may belong to F , since e can only be incident to ears of polygons of T P \ F . Using
the induction hypothesis again, we get that there are at least 2l−2α(k−5)−(l−2) = 2l−2αk−l−3 triangu-
lations that contain e′ (and the four edges around it); in the last estimate we have used the fact that
2l−2αk−l−3 is increasing in l. Therefore, P has at least

2lαk−1−l + 2l−2αk−l−3 = 2lαk−l
(

1

α
+ 1

4α3

)
= 2lαk−l · 4α2 + 1

4α3
= 2lαk−l

triangulations, as asserted (recall that α is the root of the polynomial 1 + 4x2 − 4x3). �
Next, we show how to use cgon (or rather, its lower bound α) and flip(T ) to upper bound∑

C∈C(T )
1

supp(C)
.

Lemma 5.3. Consider a triangulation T with flip(T ) = N/2−3+κN, for some κ � 0, and let α be the constant
in Lemma 5.2. Then∑

C∈C(T )

1

supp(C)
< 8

(
(3 + (γ 2 − 1)(κ + 1/2))(4 + (α2 − 1)κ)

α4κ

)N/4

,

where

γ = α · e
− α2−1

4(4+(α2−1)κ) .

Proof. Once again, we treat every spanning cycle as the union of a pair of edge-disjoint perfect
matchings M1, M2 ∈ M(T ), and use Kasteleyn’s technique (as presented in Section 3) to bound the
number of such pairs. We start by fixing some perfect matching M1 ∈ M(T ) and denote the number
of flippable edges of T that are in M1 as flipT (M1). As shown in the proof of Theorem 3.1, there is
a set of at least N/2 − 3 ps-flippable edges in T \ M1. We restrict our attention to a set F of exactly
N/2 − 3 ps-flippable edges in T \ M1.

For analyzing the complementary matchings M2, we define a weight function μ(·) on the edges
of T \ M1, such that

μ(e) =
{2, if e ∈ F ,

α, if e /∈ F is flippable,
1, if e is not flippable.

Notice that any spanning cycle partitions the convex hull of its point set into interior-disjoint simple
polygons. The support of the spanning cycle is the product of the number of triangulations of each
of these polygons. For a fixed choice of M2 (and of M1), denote by P1, . . . , Pm the polygons in the
partition produced by M1 ∪ M2 (assuming that M1 ∪ M2 is indeed a spanning cycle). For each i, let ki
be the number of flippable diagonals of Pi , and let li be the number of those diagonals (among the
ki flippable ones) that belong to F . If M2 uses flipT (M2) flippable edges of T \ M1, l of which are in F ,
then

∑m
i=1 ki = flip(T ) − flipT (M1) − flipT (M2) and

∑m
i=1 li = |F | − l = N/2 − 3 − l. Applying Lemma 5.2

to each Pi and multiplying the resulting bounds, we obtain a total of at least 2
∑

li α
∑

ki−
∑

li triangu-
lations. Hence,

supp(M1 ∪ M2)� (2/α)
∑

li α
∑

ki = (2/α)N/2−3−lαflip(T )−flipT (M1)−flipT (M2).

Next, notice that μ(M2) = 2lαflipT (M2)−l , so we have

supp(M1 ∪ M2)�
2N/2−3αflip(T )−flipT (M1)−(N/2−3)

μ(M2)
= 2N/2−3ακN−flipT (M1)

μ(M2)
. (13)

By combining (13) with Kasteleyn’s method, we obtain
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∑
M2∈M(T \M1)

1

supp(M1 ∪ M2)
�

∑
M2∈M(T \M1)

μ(M2)

2N/2−3ακN−flipT (M1)

� 1

2N/2−3ακN−flipT (M1)
·
(

2

N

∑
e∈T \M1

μ(e)2
)N/4

. (14)

To bound the sum in the parentheses, we notice that T \ M1 contains exactly N/2 − 3 edges of F ,
exactly κN − flipT (M1) flippable edges not in F , and fewer than 2N − (κN − flipT (M1)) non-flippable
edges. Therefore,

2

N

∑
e∈T \M1

μ(e)2 <
2

N

(
12 · (2N − (

κN − flipT (M1)
)) + α2 · (κN − flipT (M1)

) + 22 · N/2
)

= 8 + 2
(
α2 − 1

)
κ − 2

(
α2 − 1

) · flipT (M1)/N

= (
8 + 2

(
α2 − 1

)
κ
)(

1 − 2(α2 − 1)

8 + 2(α2 − 1)κ
· flipT (M1)

N

)

�
(
8 + 2

(
α2 − 1

)
κ
) · e

− α2−1
4+(α2−1)κ

· flipT (M1)

N
(
using 1 − u � e−u for u � 0

)
= (

8 + 2
(
α2 − 1

)
κ
) · (γ /α)4·flipT (M1)/N . (15)

Combining (14) and (15), we get∑
C∈C(T )

1

supp(C)
�

∑
M1,M2∈M(T )

M1,M2 edge-disjoint

1

supp(M1 ∪ M2)

�
∑

M1∈M(T )

1

2N/2−3ακN−flipT (M1)

((
8 + 2

(
α2 − 1

)
κ
) · (γ /α)4·flipT (M1)/N)N/4

= 8

(
8 + 2(α2 − 1)κ

4α4κ

)N/4 ∑
M1∈M(T )

γ flipT (M1). (16)

To bound the sum in (16), we once again use Kasteleyn’s technique. This time, we define a weight
function ν(·) over the edges of T , such that every flippable edge gets a weight of γ , and every other
edge a weight of 1. Notice that, in this manner, ν(M1) = γ flipT (M1) for every M1 ∈ M(T ). We thus
have ∑

M1∈M(T )

γ flipT (M1) �
(

2

N

∑
e∈T

ν(e)2
)N/4

<

(
2

N

(
γ 2 · flip(T ) + 1 · (3N − flip(T )

)))N/4

<

(
6 + 2

N

(
γ 2 − 1

)
(N/2 + κN)

)N/4

<
(
6 + 2

(
γ 2 − 1

)
(κ + 1/2)

)N/4
. (17)

Finally, combining (16) and (17) implies the assertion of the lemma. �
Note that in the worst case, when κ = 0, the bound becomes O ((10 + 2γ 2)N/4). For κ = 0, we

have γ = α · e−(α2−1)/16, and it is easy to verify that γ > 1 for 1 < α � 5/4. So the bound is actually
asymptotically worse than our initial bound of 12N/4, and it continues to be worse when κ is suf-
ficiently small. As the next subsection shows, in this case the v3-dependent bound from Section 5.1
becomes small and can be used instead.
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Fig. 9. Separable edges.

5.3. Integration

In this subsection we combine the results from the two previous subsections to obtain an im-
proved bound for sc(N). This is done by deriving a connection between v3(T ) and flip(T ). We start
by presenting a generalization of Lemma 2.4.

Lemma 5.4. Let c > 1 be a constant such that every set S of an even number of points in the plane and a
triangular convex hull satisfies sc(S) = O (c|S|). Then sc(S) = O (c|S|) also holds for every other finite point
set S in the plane.

Proof. Consider a point set S . If S has an even number of points, we pick a new point p outside
the convex hull of S , and put S ′ = S ∪ {p}. As mentioned in the proof of Lemma 2.4, inserting an
additional vertex outside the convex hull of the point set can only increase the number of spanning
cycles. If S has an odd number of points, we put S ′ = S . Notice that, either way, S ′ has an odd number
of points. Let �abc be a large triangle containing S ′ in its interior, and let S ′′ = S ′ ∪ {a,b, c}. Again,
since inserting an additional vertex outside the convex hull of the point set can only increase the
number of spanning cycles, we have sc(S ′) � sc(S ′′). Since S ′′ has an even number of points and a
triangular convex hull, sc(S) � sc(S ′)� sc(S ′′) = O (cN+4) = O (c|S|). �

We also require the notion of separable edges, as presented in [23]. Consider a point set S , a tri-
angulation T ∈ T (S), and an interior point p ∈ S . We call an edge e incident to p in T a separable
edge at p if it can be separated from the other edges incident to p by a line through p. An equiva-
lent condition is that the two angles between e and its clockwise and counterclockwise neighboring
edges (around p) sum up to more than π . We observe the following easy properties (see Fig. 9 for an
illustration).

(S0) No edge is separable at both vertices induced by its endpoints.
(S1) If p has degree 3 in T , every edge incident to it is separable (recall that p is an interior point).
(S2) If p has degree at least 4 in T , at most two incident edges can be separable at w .
(S3) If p has degree at least 4 in T and there are two edges separable at p, then they must be

consecutive in the order around it.

We are now ready for the main theorem of the section.

Theorem 5.5. For any set S of N points in the plane,

sc(S) = O
(
10.9247N/4) · tr(S) = O

(
1.8181N) · tr(S) = O

(
54.543N)

.

Proof. By Lemma 5.4, we may assume that N is even and that S has a triangular convex hull. Recall
that

sc(S) =
∑

T ∈T (S)

∑
C∈C(T )

1

supp(C)
.

We sort the triangulations in the first sum according to the number of interior vertices of degree 3
that they contain, and get
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sc(S) =
(2N+1)/3∑

i=0

∑
T ∈T (S)
v3(T )=i

∑
C∈C(T )

1

supp(C)
. (18)

(The fact that v3(T ) � (2N + 1)/3 for every triangulation T is established, e.g., in [25].) Given a
triangulation T with v3(T ) = i, we can use Lemma 5.1 to bound

∑
C∈C(T )

1
supp(C)

. However, when
v3(T ) is small, the improvement in Lemma 5.1 is not significant. In this case we will use instead the
bound in Lemma 5.3 which, as we now proceed to show, becomes significant when v3(T ) is small.

Consider a triangulation T ∈ T (S). Since S has a triangular convex hull, T contains 3N − 9 interior
edges. Notice that an interior edge e is flippable if and only if e is not separable at either of its
endpoints (this property is equivalent to e being a diagonal of a convex quadrilateral). From the above
properties of separable edges, we have

flip(T ) �
Interior edges︷ ︸︸ ︷

3N − 9 −3 ·
Interior vertices of degree 3︷ ︸︸ ︷

v3(T ) −2 ·
Other interior vertices︷ ︸︸ ︷(
N − v3(T ) − 3

) = N − 3 − v3(T ).

To find for which values of i it is better to use Lemma 5.1, and for which values it is better to use
Lemma 5.3, we define t = v3(T )/N and

κ = flip(T ) − (N/2 − 3)

N
� (N − tN − 3) − (N/2 − 3)

N
= 1/2 − t,

and solve the equation

8

(
3

2t

(
(2 − t)(2 − t/2)

(1 − t)2

)1−t)N/4

= 8

(
(3 + (γ 2 − 1)(κ + 1/2))(4 + (α2 − 1)κ)

α4κ

)N/4

,

with κ = 1/2 − t , where α ≈ 1.17965 and γ = α · e
− α2−1

4(4+(α2−1)κ) ; this will determine the threshold
where the two bounds coincide. That is, we need to solve the equation (again, with κ = 1/2 − t)

3

2t

(
(2 − t)(2 − t/2)

(1 − t)2

)1−t

= (3 + (γ 2 − 1)(κ + 1/2))(4 + (α2 − 1)κ)

α4κ
.

For this, we use the Wolfram Mathematica software [27], and obtain the solution t ≈ 0.1072.
Moreover, it is easily shown that for i � 0.1072N the bound from Lemma 5.1 is smaller, and for
i � 0.1072N the bound from Lemma 5.3 is smaller. In fact, these bounds, in their appropriate ranges,
are all dominated by the common bound for t ≈ 0.1072, which is 10.9247N/4. This, together with
(18), Lemma 5.1, and Lemma 5.3 imply the asserted bound. �

By combining Theorem 5.5 with the bound tr(N) < 30N [22], we obtain:

Corollary 5.6. sc(N) = O (54.543N ).
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